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Abstract: We extend the formalism of embedded spin networks and spin foams to include topological data that encode the underlying three-manifold
or

four-manifold as a branched cover. These data are expressed as
monodromies, in away similar to the encoding of the gravitational field

via holonomies. We then describe convolution algebras of spin networks and
spin foams, based on the different ways in which the same topology can be
realized as a branched covering via covering moves, and on possible
composition operations on spin foams. We illustrate the case of the

groupoid algebra of the equivalence relation determined by covering moves
and a 2-semigroupoid algebra arising from a 2-category of spin foams with
composition operations corresponding to a fibered product of the branched
coverings and the gluing of cobordisms. The spin foam amplitudes then give
rise to dynamical flows on these algebras, and the existence of low
temperature equilibrium states of Gibbs form is related to questions on

the existence of topological invariants of embedded graphs and embedded
two-complexes with given properties. We end by sketching a possible
approach to combining the spin network and spin foam formalism with matter
within the framework of spectral triples in noncommutative geometry.

(Based on joint work with Domenic Denicolaand Ahmad Zainy al-Y asry)
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Based on

e Domenic Denicola, Matilde Marcolli, Ahmed Zainy al-Yasry,
Spin foams and noncommutative geometry, Classical and Quantum
Gravity, 27 (2010) 205025 [53 pages]

e M.Marcolli, A. Zainy al-Yasry, Coverings, correspondences and

noncommutative geometry, Journal of Geometry and Physics,
Vol.58 (2008) N.12, 1639-1661.
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Spin networks (comp Lie group G) in a 3-manifold M:

triple (I, p, ¢)
© oriented graph embedded ' C M;
© labeling p of each edge e of I' by a representation p. of G;
© labeling ¢ of each vertex v of [ by an intertwiner

by Pe® "B Pe, = Per BB per

e, outgoing edges
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idea: a “quantum three-geometry”

e vertices = quanta of volume

e egdes = quanta of area separating them

e representation data encode holonomies = gravitational field
e ambient topology M is fixed (eg Turaev-Viro invariants)

idea of additional topological data: topspin networks

e ambient topology variable encoded in spin network data
® M encoded as a branched covering of S°

e monodromies in addition to holonomies
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Embedded graphs in S3 up to ambient isotopy
(Reidemeister moves)
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3-manifolds as branched covers

p : M — S3 with restriction p : M\ p~1(IN) — S3\ I to
complement of an embedded graph ' C S3 an ordinary covering of
some degree n

Non-unique: Poincaré homology sphere fivefold covering of S3
branched along the trefoil knot K> 3 or threefold covering branched
along the (2,5) torus knot K3 s

PL 4-manifolds: branched coverings of the four-sphere S*,
branched along an embedded simplicial two-complex (Piergallini)

Branched cover cobordism: 3-manifolds My and M; branched
coverings p; : M; — S> along embedded graphs I'; C S3,
4-dim cobordism W with 8W = My U M; branched cover

g: W — S°x[0,1], branched along £ C S* x [0, 1] with
8L =T UT; and glt=0 = po. gle=1 = p1
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Fundamental group representations
Branched covering p: M — S3 determined by representation

o:m (SN -85,

Wirtinger presentation: D(I') planar diagram
permutations o; € S, assigned to arcs of D(I")

= o -1
O = OO0,

at crossings

HO’,‘HUJ-_I =1
/ J

at vertices (o; incoming, o; outgoing arcs)
P[ presentation by monodromies around edges of the embedded graph
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Covering moves: different coverings with same 3-manifold

S\ J
LS, _

(Bobtctﬂeva— iergallini)

At vertices
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Topspin networks (topologically enriched spin networks)
© a spin network (I, p,¢) with ' C S3,
© a representation o : (S~ TI) = S,.

=> gives a spin network in M branched covering of S3

(topology of M in spin network data through monodromies)

Spin network data and covering moves compatibility: way to
extend holonomy data p, . compatibly with covering moves

Page 10/33



At vertices
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Spin foams (spin network cobordisms)
v = (Ip,t) and ¢ = (", p/, ") spin networks, graphs I' and I
embedded in M and M.
Spin foam W : ¥ — ¢/ in a cobordism W with W = MUM' is a
triple W = (L, g, £):
© an oriented two-complex ¥ C W, with X =TT U
© a labeling p of each face f of L by a representation gf of G;
© a labeling I of each edge e of I that does not lie in I" or I’ by
an intertwiner

®ﬂf_" ® pr

f-ecd(f) F-8€B(f")

additional consistency conditions:

© edge e in [ and f, face bordered by e then g; = p,
(or dual depending on orientation)

© vertex v of I and e, edge adjacent to v in L then i, = ¢,
(or dual depending on orientation)
© similar for I
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Spin foams as a cobordism of spin networks
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Topspin foams (topolog[cally ennched)

v =(l,p,t,0)and ¢ =(I",p,., ") are topspin networks with
monodromy reps in same S, (and I, C S3)

A topspin foam W : ¢ —» ¢/ is W = (L, 5,1, 5) with

© a spin foam (I, 5, ) between ¢ and ¢’ with £ C $3 x [0, 1],

© a representation & : m((S3 x [0,1]) \ £) — S, defining
branched cover cobordism W between M and M’ (branched
coverings defined by (I',o) and (7, 0”))

PL (smooth) 4-manifold W cobordism encoded in the spin foam
data, like M and M’ with spin networks

Note In a path integral formulation, the sum over geometries is
now also a sum over topologies, through the monodromy data
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Diagrams version
3-dimensional projection diagram D(X)

© assigning to each one-dimensional strand e; of D(X) the same
intertwiner L. assigned to the edge e;

© assigning to each two-dimensional strand f, of D(X) the same
representation g of G assigned to the face f;

© assigning to each two-dimensional strand f, of D(X) a
topological label 6, € S, such that taken in total such
assignments satisfy the Wirtinger relations &, = 535,65, at
crossings of faces and along edges

7 o=

a:ecd /- B€0
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3-manifolds (realized in different ways as branched covers) as
correspondences between embedded graphs

C(r,M)={TCECS*EMIS S >FE oI

—

Composition: fibered product (motivated by KK-theory)
c(r,ry xc(r',rm —c(r,r"
rc Euma}(E) C S3 « MxgaM — S3 D E"urn’n; Y (E) D I
2-morphisms: branched cover cobordisms
YCSCSx1+WaSxIDS§>Y
OW =MUM, 8r=rUl>,
Y.Y' S, S’ embedded 2-complexes
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2-category

e Objects 0bj(C) = X

e 1-morphisms C(X, Y) 3 ¢, composition
C(X,Y)xC(Y,Z)— C(X Z)

e 2-morphisms C?)(p,y) > ¢

e Vertical composition C(?(p, %) x C?(p,v) = C?(p, )

e Horizontal composition C(? (g, 1) x C(zj(t;. n) — C3(p,n)

Vertical and horizontal composition of 2-morphisms
Vertical composition: gluing cobordisms along a common boundary

W1.W2=W1bmw2

Horizontal composition: fibered product along branched covering
maps
W1 o W2 — W1 )(53,([0_1] Wz

Horizontal composition as in KK-product in D-brane geometry
(see Connes—-Skandalis and Mathai—-Rosenberg)
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Algebras from categories
— Group algebra C*(G): discrete group G group ring C[G], finitely
supported functions with convolution

(AxBH)g)= Y filg)hr(e)
E=g182

involution f*(g) = f(g—!), norm closure

— Semigroup algebra f : § — C with convolution

(AxR)(s)= D f(s1)f(s)

=95

no longer necessarily involutive: represent on £2(S) by isometries
0:0s = 1 but ;07 = es idempotent

— Groupoid algebra G = (G(9),G(1) s, t) functions f : G(1) = C
with convolution

(AxR)M = Y AMm)k(H)

=Y¥1972

and involution f*(v) = f(y~1)
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— Semigroupoid (small category) algebra: functions of morphisms
with convolution

(A xh)(o) = Z f(01)f2(02)

o=0100?

bra has two associative multiplications (o

and o) with

(s1ob1)e(azoby) = (a1ea2)c(breby)

I

— small 2-category, functions on 2-morphisms f : C{2) — C

(heR)(®) = D A(P1)HR(2)
O=0,00,

il

Pl (Ro)@)= 3 AW)A(T)
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Algebras and NC spaces
Associative convolution algebra = NC space of “quotient”

Equivalence relation R on X: quotient Y = X /R (often not good:
too few functions) classical functions on the quotient

A(Y) := {f € A(X)|f is R — invariant}

NCG: A(Y) noncommutative algebra
A(Y) = A(TR)

functions on the graph 'z C X x X of the equivalence relation
with convolution

(A*R)(x,y)= D fi(x,u)k(u,y)

Xrsursy

PERIMETER

INSTITUTE and involution f“'(x.
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Quantum Statistical Mechanics and NCG
A = algebra of observables (C*-algebra)
State: ¢ : A — C linear

p(1)=1, ¢(a%a)>0

Time evolution o; € Aut(.A)
Rep m on Hilbert space # = Hamiltonian H = S0¢|,—0

m(0:(a)) = er(a)e™""

Equilibrium state (inverse temperature 3 = 1/kT)

ﬁ"ﬁ (ae‘jH) Z(B)=Tr (e‘jH)
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KMS states ¢ € KMS3 (0 < 8 < o0)
Va,b € A 3 holom function F, ;(z) on strip: YVt R

F.p(t) = p(aoe(b)) Fap(t+iB) = ¢(oe(b)a)

Ground states (8 =00, T =0)

At T > 0 simplex KMSg ~» extremal £
(Points on NC space A)

At T = 0: KMS, = weak limits of KMS;

Poo(a) = lim ¢p(a)

J—»00

ldea: extremal KMSg states are classical points of a
noncommutative space
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Motivation N.1: NCG and arithmetic, Q-lattices
(A, ¢) Q-lattice in R”
lattice A C R” + labels of torsion points

¢:Q"/Z" — QA/A

group homomorphism (invertible Q-lat is isom)

Commensurability (A1, #1) ~ (A2, @2) iff QA; = QA2 and ¢, = ¢»
mod A}_ 5 2 Az

Q-lattices / Commensurability = NC space

Groupoid algebra of equivalence relation
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Main properties:

e Partition function {(3) Riemann zeta function

e Low temperature KMS states = invertible Q-lattices = Z*

e Galois group action Gal(Q%**/Q)

e Dual system with scaling action (spectral realization of {(s))
Generalizations: GL(2), Q(v/—D), Shimura varieties, number
fields, function fields (Connes and M.M. and Ramachandran, Ha and

Paugam, Jacob, Consani and M.M., Laca and Larsen and Neshveyev,
Cornelissen and M.M.)

Main idea: Convolution algebra: moduli space of “degenerate
structures”. Dynamics: low temperature equilibrium states select
non-degenerate objects
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AA . . om ~ gl W AA -l -
Aotivation N.2: Standard Model in NCG

e Almost commutative geometry M x F

e Moduli spaces of Dirac operators (Yukawa parameters)
e Spectral action recovers gravity coupled to matter

e Planck scale 7 Quantum gravity ?

Would like to have:

e Algebra of “spectral correspondences” (cobordisms) with
“degenerate” Dirac operators.

e Dynamics such that equilibrium states al low temperature
recover “good” (nondegenerate) geometries (emergent geometry)

" C L
Lictionary or analogies pDetween these two Settings

Chapter 4, §8 of Connes—Marcolli book (2008)
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2-semigroupoid algebras and time evolutions: f = ) 4 Code
Two associative products: vertical and horizontal

(heh)(®) = D A(P1)AR()

¢:¢:.¢2

(Rof)(@®)= D) A(®1)E(D2)

'@:@*_ 3¢3

Time evolutions: vertical and horizontal

O't(fl L fz) — O'r(fl) ® O‘r(fz)

Jr(fQ o fZ) = Ut(fl) O Jr(f2)
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Topological factor
'.d(}:l Ur Zg) = :.;.:(Eﬂu.‘(iz)

(eg exp of additive invariant) needed for time evolution
Hamiltonian (infinitesimal generator of time evolution)

HE(W') = log A(W') (W)

on space of W' ~ W under covering moves
To have Gibbs states

_ Te(mu(F)e)
Tr(e—7H)

wa(f)

N condition Tr(e ”®) < oo = problem of multiplicities in the
spectrum
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Dynamics on groupoid algebra of topspin netoworks (or foams)

o (F) (W, V') = (:((u‘l:’))); f(v,v)

include topological data through character x : S — U(1)

w=( 11 I o 1 -

)e:ved(e) e:ved(e)

WW(¥) € S, product of Wirtinger relations at vertices, is = 1 for
actual (nondegenerate) geometries, and nontrivial otherwise

. o )4, ¥) = (5egy ) X)) F(W,¥)

Pl
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Topological factor
w(Xy Ur I2) = w(X)w(X2)

(eg exp of additive invariant) needed for time evolution
Hamiltonian (infinitesimal generator of time evolution)

HE(W') = log A(W') £(V')

on space of W' ~ W under covering moves
To have Gibbs states

_ Tr(my(f)e 72)
Tr(e—7E)

a(f)

Oof muitiplicities in the
r [
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Aultiplicities: question on existence of an invariant of embedded
graphs w(IN) with

© w(I') depends on the ambient isotopy class

© values of w(l') form discrete set of positive real numbers
growing at least exponentially ~ " for large n

© number of embedded graph I combinatorially equivalent to a
given g with fixed w(l) is finite and grows at most like *”
some k > 0

Same question for invariant w(X) of embedded two-complexes

rcs$xpi

=> ensures the existence of low temperature Gibbs states
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Quantized area of spin networks
S C S° be a closed embedded smooth (or PL) surface, generically
intersects [ transversely finite number of points

As F(yMy) = h ( 5 Gielix + 1) ) («My)

xesSnr

for f(,My) in convolution algebra of topspin networks with
fibered product, j, = je spin of SU(2) rep p. of edge containing x

More generally N : | J- E(I') — Z

Af(uMy)=h| Y N(e) (el +1))? | f(xMy)

ecE(IN)

i

I l generalizes multiplicity of inters with S
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Amplitude and time evolution for 2-semigroupoid algebra of
topspin foams

Af(W)=h(| Y x=() GG +1)"? ) f(w)
feF(E)

time evolution (up to topological factor e™X(=W) — (1))

oe(f) = etlA—A)f

Topological condition: Question invariant x(X, W) of embedded
two-complexes ¥ and branched cover data g: W — S3 x [0, 1]
© values of x(I', W) discrete set in R% growing at least linearly
cin+ ¢ for large n, ¢; > 0
© for fixed branched cover number of embedded ¥ with x(X, W)
fixed grows at most like €*” some « > 0 (indep of W)
© on fibered product W = W x g, W' =
x(EZ U qg7 '(X2), W) = x(E, W) + x(L2, W)

YCSx1EW3BS3xIoOE; and E2C53xlf—:W’i}S3xIDE’
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Spin foams and almost commutative geometries

A possible approach to coupling with matter

e coupling gravity to matter via almost-commutative geometries
(NCG models of particle physics and cosmology) X x F

e when discretize spacetime replace 4-dim X with spin foam and
3-dim with spin networks

e keep the finite NC geometry F describing matter

e product geometry X x F spectral triple (A, H, D)

e replace Dirac operator on X with analog spectral triples on spin
foams (Aastrup—Grimstrup—Nest)

e similar dynamics but also involving spectral action

Page 33/33



