Title: The Double Pulsar: testing GR in strong regime

Date: Feb 04, 2011 01:00 PM

URL: http://pirsa.org/11020087

Abstract: The long awaited discovery of the double radio pulsar system, PSR J0737-3039A/B, surpassed most expectations, both theoretical and observational, as a tool to probe general relativity, stellar evolution and pulsar theories. The Double Pulsar provides a unique and the most complete and clean test of theories of gravity in a regime sensitive to possible strong-gravitational self-field effects. All six post-Keplerian parameters have been measured (including the measurement of the relativistic spin precession), some parameters to a precision of 10^{-4}.

Pirsa: 11020087 Page 1/91

The Double Pulsar, Aurora Borealis and testing theories of gravity

Maxim Lyutikov (Purdue U.)

The Double Pulsar

Three ways for a star to die

$$1-8M_{\odot} \rightarrow \text{White dwarf}$$

 $8-40M_{\odot} \rightarrow \text{Neutron star}$
 $>40M_{\odot} \rightarrow \text{Black hole}$

Supernova explosion

 Nuclear fuel exhausted in the core: nothing counteracts gravity -> collapse

Optically thick to neutrinos: convection.

Neutron star forms -> envelope bounces off and is

expelled

 Convection + rotation -> dynamo action (amplification of B-field)

Structure of magnetosphere: rotating magnetized dipole

- Highly non-linear E&M problem.
- Inductive E-field, E ~ v B, tears vacuum, fills magnetosphere with plasma & currents

Simulations by Spitkovsky

The Double Pulsar: the sixth most important scientific discovery of 2004 (Science)

- Parkes Multi-beam Survey; Burgay et al (2003)
- First ever double pulsar system (6th binary NS system)
 - PSR J0737-3039A: P=22 ms (old)
 - PSR J0737-3039B: P=2.7 s (young)
 - P_{orb}= 2.4-hr (pulsars separated by 9 10¹⁰cm = 3 lt-s)
- Only ~ 1 kpc away (relatively close)
- System observed nearly edge on (<0.5°)
- Allows

- Precise measurement of masses
- Testing GR (0.05% agreement)
- Possibly measuring I_A (EOS)

The Double Pulsar: the sixth most important scientific discovery of 2004 (Science)

- Parkes Multi-beam Survey; Burgay et al (2003)
- First ever double pulsar system (6th binary NS system)
 - PSR J0737-3039A: P=22 ms (old)
 - PSR J0737-3039B: P=2.7 s (young)
 - P_{orb}= 2.4-hr (pulsars separated by 9 10¹⁰cm = 3 lt-s)
- Only ~ 1 kpc away (relatively close)
- System observed nearly edge on (<0.5°)
- Allows

Pirsa: 11020087

- Precise measurement of masses
- Testing GR (0.05% agreement)
- Possibly measuring I_A (EOS)

Direct probes of pulsar magnetospheres

Discovery of "A" pulsar

Pirsa: 11020087 Page 10/91

Pirsa: 11020087 Page 11/91

Pirsa: 11020087 Page 12/91

Pirsa: 11020087 Page 13/91

- Details are not clear ("population synthesis")
- Rate of NS-NS coalecence increased by 10 times (Kalogera et al)
- Good for LIGO

Excellent test ground for GR

Two Pulsar watches (clocks) moving in curved space

Page 16/91

Excellent test ground for GR

0737A Shapiro Delay at the GBT

(Kramer et al 06)

Test ground for GR

- · System is highly over-constrained
- → can be used to test GR

$$M_A = 1.3381(7) M_{Sun}$$

$$M_{\rm B}$$
=1.2489(7) $M_{\rm sun}$

• Orbit shrinks by 7mm a day, $\Delta a/D=3$ 10-22

$$\frac{s^{\text{obs.}}}{s^{\text{exp.}}} \approx (100 \pm 0.05)\%$$

- Different (non-radiative) test of GR than Hulse-Taylor
- Maybe possible to measure I_A (from gravito-magnetic precession, 10^4 deg/yr)

$$\omega = 16.89947(7) \text{ deg/yr}$$

Page 18/91

(Lyne etal, 04, 05; Kramer 06)

PK parameters agree with GR down to few hundredth of percent

- PK parameters are functions of masses and Keplerian parameters (spins are sufficiently small).
- Actual dependence can be different in different theories
- Four independent tests of GR from timing the Double Pulsar

PK parameter	Observed	GR expectation	Ratio
P _b	1.252(17)	1.24787(13)	1.003(14)
γ (ms)	0.3856(26)	0.38418(22)	1.0036(68)
S	0.99974(-39, +16)	0.99987(-48, +13)	0.99987(50)
r(µs)	6.21(33)	6.153(26)	1.009(55)

Kramer et al. 2006

5th PK test - see later

Test ground for GR

- · System is highly over-constrained
- → can be used to test GR

$$M_A = 1.3381(7) M_{Sun}$$

$$M_{\rm B}$$
=1.2489(7) $M_{\rm sun}$

• Orbit shrinks by 7mm a day, $\Delta a/D=3$ 10⁻²²

$$\frac{s^{\text{obs}}}{s^{\text{exp}}} \approx (100 \pm 0.05)\%$$

- Different (non-radiative) test of GR than Hulse-Taylor
- Maybe possible to measure I_A (from gravito-magnetic precession, 10^4 deg/yr)

$$\omega = 16.89947(7) \text{ deg/yr}$$

Page 20/91

(Lyne etal, 04, 05; Kramer 06)

PK parameters agree with GR down to few hundredth of percent

- PK parameters are functions of masses and Keplerian parameters (spins are sufficiently small).
- Actual dependence can be different in different theories
- Four independent tests of GR from timing the Double Pulsar

PK parameter	Observed	GR expectation	Ratio
P _b	1.252(17)	1.24787(13)	1.003(14)
γ (ms)	0.3856(26)	0.38418(22)	1.0036(68)
S	0.99974(-39, +16)	0.99987(-48, +13)	0.99987(50)
r(µs)	6.21(33)	6.153(26)	1.009(55)

Kramer et al. 2006

5th PK test - see later

Test ground for GR

- System is highly over-constrained
- → can be used to test GR

$$M_A = 1.3381(7) M_{Sun}$$

$$M_{\rm B}$$
=1.2489(7) $M_{\rm sun}$

• Orbit shrinks by 7mm a day, $\Delta a/D=3$ 10-22

$$\frac{s^{\text{obs.}}}{s^{\text{exp.}}} \approx (100 \pm 0.05)\%$$

- Different (non-radiative) test of GR than Hulse-Taylor
- Maybe possible to measure I_A (from gravito-magnetic precession, 10^4 deg/yr)

$$\omega = 16.89947(7) \text{ deg/yr}$$

Page 22/91

(Lyne etal, 04, 05; Kramer 06)

PK parameters agree with GR down to few hundredth of percent

- PK parameters are functions of masses and Keplerian parameters (spins are sufficiently small).
- Actual dependence can be different in different theories
- Four independent tests of GR from timing the Double Pulsar

PK parameter	Observed	GR expectation	Ratio
P _b	1.252(17)	1.24787(13)	1.003(14)
γ (ms)	0.3856(26)	0.38418(22)	1.0036(68)
S	0.99974(-39, +16)	0.99987(-48, +13)	0.99987(50)
r(µs)	6.21(33)	6.153(26)	1.009(55)

Kramer et al. 2006

5th PK test - see later

Direct probes of pulsar magnetospheres and plasma physics (and another GR test)

Pirsa: 11020087 Page 24/91

"A" eclipse: modulated at B rotation Rotational a phase of A Eclipse at conjunction (A behind B) Orbital phase

Pirsa: 11020087 Page 25/91

"A" eclipse: modulated at B rotation

Pirsa: 11020087

Rotational aphase of A

 Modulation is at 0.5P_B, P_B and full eclipse after the conjunction

 Absorption when magnetic axis of B is pointing towards us

Magnetosphere of B is modified by the wind of A

- Similar to Solar wind Earth Magnetosphere
- Pulsar A wind blows off pulsar B magnetosphere
- Bow shock, magnetospheath.

"A" eclipse: modulated at B rotation Rotational . phase of A Eclipse at conjunction (A behind B) Orbital phase

Pirsa: 11020087 Page 28/91

"A" eclipse: modulated at B rotation

Pirsa: 11020087

Rotational phase of A

- Modulation is at 0.5P_B, P_B and full eclipse after the conjunction
- Absorption when magnetic axis of B is pointing towards us

Magnetosphere of B is modified by the wind of A

- Similar to Solar wind Earth Magnetosphere
- Pulsar A wind blows off pulsar B magnetosphere
- Bow shock, magnetospheath.

Pulsar A wind blows off most of B magnetosphere

Pirsa: 11020087 Page 31/91

Model of eclipses

- There are open and closed field lines
- Closed field lines are dipolar
- Relativistic plasma, y ~10, n
- Synchrotron absorption on closed field lines of a rotating dipole
 - optical depth along line of sight through rotating dipole, including refraction
 - Eclipse profile is determined mostly by geometrical factors
- Parameters to be fitted:
 - θ_{Ω} , ϕ_{Ω} orientation of Ω
 - impact parameter z
 - χ angle between Ω and μ
 - Plasma density, normalized to n_{GJ,mag}

Pulsar A wind blows off most of B magnetosphere

Pirsa: 11020087 Page 33/91

Model of eclipses

- There are open and closed field lines
- Closed field lines are dipolar
- Relativistic plasma, y ~10, n
- Synchrotron absorption on closed field lines of a rotating dipole
 - optical depth along line of sight through rotating dipole, including refraction
 - Eclipse profile is determined mostly by geometrical factors
- Parameters to be fitted:
 - θ_{Ω} , ϕ_{Ω} orientation of Ω
 - impact parameter z
 - χ angle between Ω and μ
 - Plasma density, normalized to n_{GJ,mag}

Pirsa: 11020087

Page 34/91

- Red dot: line of sight to pulsar A.
- "Donut": last closed surface of B magnetosphere

- Red dot: line of sight to pulsar A.
- "Donut": last closed surface of B magnetosphere

- Red dot: line of sight to pulsar A.
- "Donut": last closed surface of B magnetosphere

Predictions: change of eclipse profile due to geodetic precession

Changes in eclipse profile

Eclipse Profile at MJD 54050

Eclipse Profile at MJD 53860

Eclipse Profile at MJD 54200

Page 40/91

Geodetic precession

Angle of spin of B wrt line of sight

Angles of spin of B wrt orbital plane and spin-B-moment: do not change

New test of theories of gravity

- Precession rate $\Omega_B = \frac{x_A x_B}{s^2} \times \frac{n^3}{1 e^2} \times \frac{c^2 \sigma_B}{G}$
- Observed $\Omega =$ 4.98 +0.43 -0.23 °/yr

$$\left(\frac{c^2\sigma_R}{\mathcal{G}}\right) = 3.38^{+0.49}_{-0.46}.$$

$$\left(\frac{c^2\sigma_B}{G}\right)_{CR} = 2 + \frac{3}{2}\frac{m_A}{m_B} = 3.60677 \pm 0.00035$$
. $\Omega_B = 5.07^{\circ}/yr$

$$\left(\frac{c^2 \sigma_B}{\mathcal{G}}\right)_{\text{obs}} / \left(\frac{c^2 \sigma_B}{\mathcal{G}}\right)_{\text{GR}} = 0.94 \pm 0.13.$$

 C.f. Gravity Probe B, same accuracy, weak field regime, ~ \$1bn.

- G generalized Newton's constant
- oB is a strong-field spin-orbit coupling constant
- the first term accessible only for the Double Pulsar

New test of theories of gravity

- Precession rate $\Omega_B = \frac{x_A x_B}{s^2} \times \frac{n^3}{1 e^2} \times \frac{c^2 \sigma_B}{G}$
- Observed $\Omega =$ 4.98 +0.43 -0.23 °/yr

$$\left(\frac{c^2\sigma_R}{\mathcal{G}}\right) = 3.38^{+0.49}_{-0.46}.$$

$$\left(\frac{c^2 \sigma_B}{\mathcal{G}}\right)_{CR} = 2 + \frac{3}{2} \frac{m_A}{m_B} = 3.60677 \pm 0.00035.$$
 $\Omega_B = 5.07^{\circ}/yr$

$$\left(\frac{c^2\sigma_B}{\mathcal{G}}\right)_{\text{obs}}/\left(\frac{c^2\sigma_B}{\mathcal{G}}\right)_{\text{CR}} = 0.94 \pm 0.13.$$

 C.f. Gravity Probe B, same accuracy, weak field regime, ~ \$1bn.

- G generalized Newton's constant
- oB is a strong-field spin-orbit coupling constant
- the first term accessible only for the Double Pulsar

Testing theories of gravity in strong regime

- In theories of gravity based on generalized Lagrangian, PPN parameters are function of masses only, but these dependancies are different.
- Depends on properties at the source.
- Strong gravity at the source:

$$\frac{E_G}{Mc^2} \sim \frac{GM^2/R}{Mc^2} = \frac{GM}{Rc^2}$$

- ~ 20% for NS
- 10⁻¹⁰ for Earth
- 6 PK parameters+ ratio of masses two masses = 5 GR tests.
- Only in the double pulsar we can measure mass ratio
 R = 1.0714±0.0011

Testing GR with double pulsar

- Corrections to Newtonian (Keplerian) motion: 6 post-Keplerian parameters (5 independent tests)
 - advance of periastron (0.004% precision)
 - Shapiro delay s (0.04%)
 - Shapiro delay r (0.5%)
 - gravitational red-shift (0.7%)
 - decay of orbit due to emission of gravitational waves (1.4%) - strong equivalence principle (gravitation independent of velocity)
 - spin precession (10%)
- No preferred-frame effects (in strong field regime)

We are loosing B - the second clock is breaking down

- Due to precession beam of B is now missing Earth
- B will reappear around 2030.

Angular separation between line of sight and B's magnetic axis

Testing General Relativity with the Double Pulsar

- GR in strong regime is satisfied in the most complete test
- In some parameters to 10⁻⁴ precision
- Any competing theory of gravity should reproduce not only Newtonian, but first PPN corrections.
- Relevant scales ~ au

Pirsa: 11020087 Page 47/91

Kick and tumble in SN explosion

- Pulsar A shows no precession: spin still aligned with the orbit
- Small kick was in the orbital plane (small eccentricity)
- Second SN explosion spun-up and tumbled B

Testing General Relativity with the Double Pulsar

- GR in strong regime is satisfied in the most complete test
- In some parameters to 10⁻⁴ precision
- Any competing theory of gravity should reproduce not only Newtonian, but first PPN corrections.
- Relevant scales ~ au

Pirsa: 11020087 Page 49/91

Kick and tumble in SN explosion

- Pulsar A shows no precession: spin still aligned with the orbit
- Small kick was in the orbital plane (small eccentricity)
- Second SN explosion spun-up and tumbled B

Testing General Relativity with the Double Pulsar

- GR in strong regime is satisfied in the most complete test
- In some parameters to 10⁻⁴ precision
- Any competing theory of gravity should reproduce not only Newtonian, but first PPN corrections.
- Relevant scales ~ au

Pirsa: 11020087 Page 51/91

Kick and tumble in SN explosion

- Pulsar A shows no precession: spin still aligned with the orbit
- Small kick was in the orbital plane (small eccentricity)
- Second SN explosion spun-up and tumbled B

Testing General Relativity with the Double Pulsar

- GR in strong regime is satisfied in the most complete test
- In some parameters to 10⁻⁴ precision
- Any competing theory of gravity should reproduce not only Newtonian, but first PPN corrections.
- Relevant scales ~ au

Pirsa: 11020087 Page 53/91

We are loosing B - the second clock is breaking down

- Due to precession beam of B is now missing Earth
- B will reappear around 2030.

Angular separation between line of sight and B's magnetic axis

Kick and tumble in SN explosion

- Pulsar A shows no precession: spin still aligned with the orbit
- Small kick was in the orbital plane (small eccentricity)
- Second SN explosion spun-up and tumbled B

Enter plasma physics

Pirsa: 11020087 Page 56/91

Pulsar radio emission: the brightest lasers in the Universe

- The Double Pulsar can be used as an exclusive probe of still unknown pulsar coherent radio emission mechanism.
- Pulsar radio emission:
 - Generated within ~ 100 km, seen across the Galaxy.
 - Still a mystery, but must be coherent: maser/laser
 - Power ~ 10³⁰ Watt, brightness temperatures 10⁴⁰ K
 - Plasma maser: leptons with non-equilibrium distribution, with "population inversion"
 - Still do not know the radio emission mechanism, even location within the magnetosphere. (Ask me later about my favorite)
- Intensity: $I = A^2$
- Incoherent: $I = \sum_{i} I_i \sim nI_i$
- coherent: $I = (\sum_i A_i)^2 \sim n^2 I_i$

Orbital variations

- Pulsar B is seen only at some parts of the orbit
- At different orbital phases magnetosphere of B has different distortions: this should show up in emission properties of B.
- By studying these variation we can infer the structure of the magnetosphere and location of emission region

3D view of distorted magnetosphere

Use Solar physics models of wind-Earth magnetosphere interaction (Tsyganenko)

3D view of the distorted magnetosphere. Lomiashvili, in prep

Orbital variations in B emission

Perera et al., in prep.

Modeling of B

Parameters of the model are: θ =73.6°, ϕ =22.5°, χ =60°

3D view of real data

3D plot of MJD 54050

Geodetic precession: stereoscopic view of the emission region

Due to geodetic precession, we get a different look of pulsar B magnetosphere - exceptional possibility to study details of pulsar radio emission

Lomiashvili et al., in prep.

From eclipse modeling we know geometry well.

Can solve inverse problem?

We can reproduce singe -> double profile change

Page 62/91

Location of radio emission generation

Lomiashvili, in prep

Combine the two models (orbital and secular variation)

Relativistic reconnection, probes of pulsar winds

- Reconnection: oppositely directed Bfield in plasma "reconnects".
- This is one of the most important problems in plasma physics
- Reconnection at the magnetospheric "cusp" and in the magnetotail is the reason for Aurora Borealis

Location of radio emission generation

Lomiashvili, in prep

Combine the two models (orbital and secular variation)

Lomiashvili et al., in prep.

From eclipse modeling we know geometry well.

Can solve inverse problem?

We can reproduce singe -> double profile change

Page 66/91

Geodetic precession: stereoscopic view of the emission region

Due to geodetic precession, we get a different look of pulsar B magnetosphere - exceptional possibility to study details of pulsar radio emission

Orbital variations in B emission

Perera et al., in prep.

Modeling of B

Parameters of the model are: θ =73.6°, φ =22.5°, χ =60°

3D plot of MJD 54050

Lomiashvili et al., in prep.

From eclipse modeling we know geometry well.

Can solve inverse problem?

We can reproduce singe -> double profile change

Page 69/91

Geodetic precession: stereoscopic view of the emission region

Due to geodetic precession, we get a different look of pulsar B magnetosphere - exceptional possibility to study details of pulsar radio emission

Relativistic reconnection, probes of pulsar winds

- Reconnection: oppositely directed Bfield in plasma "reconnects".
- This is one of the most important problems in plasma physics
- Reconnection at the magnetospheric "cusp" and in the magnetotail is the reason for Aurora Borealis

Relativistic reconnection, probes of pulsar winds

 Magnetosphere of B is "shaking" with the period of A: reconnection between B-field in the wind and the magnetosphere: a probe of the NS wind very close in: striped wind

of A pulses at B

Relativistic reconnection, probes of pulsar winds

Earth-like models of magnetosphere-wind interaction

B-field in the wind

Pirsa: 11020087 Page 73/91

Relativistic reconnection, probes of pulsar winds

Earth-like models of magnetosphere-wind interaction

B-field in the wind

Pirsa: 11020087 Page 74/91

Relativistic reconnection, probes of pulsar winds

Earth-like models of magnetosphere-wind interaction

Lomiashvili, in prep

Need high density of particles in the magnetosphere: magnetic bottling

- Synchrotron cooling: R_{cool} ~ 10⁸cm ~ 0.05 R_{mag}
- Most particles are reflected by magnetic bottling, only 10⁻⁶ reach cooling radius.
- At R_{mag} particles live ~ 10⁶ P_B, density ~ 10⁴- 10⁵ n_{GJ,mag}
- Need to re-supply at a rate ~ 0.01 0.1 n_{GJ,maa} per period

Origin of particles in pulsar B magnetosphere: van Allen radiation belts

- Radial diffusion in co-rotating magnetosphere - testing density distribution
- Testing scaling relations (geometry) over a much wider parameter range than that provided by Solar planets alone. (~ Jupiter turns into Neptune every half period).

Need high density of particles in the magnetosphere: magnetic bottling

- Synchrotron cooling: R_{cool} ~ 10⁸cm ~ 0.05 R_{mag}
- Most particles are reflected by magnetic bottling, only 10⁻⁶ reach cooling radius.
- At R_{mag} particles live ~ 10⁶ P_B, density ~ 10⁴- 10⁵ n_{GJ,mag}
- Need to re-supply at a rate ~ 0.01 0.1 n_{GJ,maa} per period

Origin of particles in pulsar B magnetosphere: van Allen radiation belts

- Radial diffusion in co-rotating magnetosphere - testing density distribution
- Testing scaling relations (geometry) over a much wider parameter range than that provided by Solar planets alone. (~ Jupiter turns into Neptune every half period).

Page 75/9/1

And back to General Relativity

- Rotation of pulsar B is very noisy the main error in the GR tests.
- Understanding the plasma dynamics will lead to improvements of the GR tests

Pirsa: 11020087 Page 80/91

Origin of particles in pulsar B magnetosphere: van Allen radiation belts

- Radial diffusion in co-rotating magnetosphere - testing density distribution
- Testing scaling relations (geometry) over a much wider parameter range than that provided by Solar planets alone. (~ Jupiter turns into Neptune every half period).

And back to General Relativity

- Rotation of pulsar B is very noisy the main error in the GR tests.
- Understanding the plasma dynamics will lead to improvements of the GR tests

Pirsa: 11020087 Page 82/91

And back to General Relativity

- Rotation of pulsar B is very noisy the main error in the GR tests.
- Understanding the plasma dynamics will lead to improvements of the GR tests

Pirsa: 11020087 Page 84/91

Orbital variations in B emission

Perera et al., in prep.

Modeling of B

Parameters of the model are: θ =73.6°, φ =22.5°, χ =60°

3D plot of MJD 54050

Predictions: change of eclipse profile due to geodetic precession

"A" eclipse: modulated at B rotation Rotational a phase of A Eclipse at conjunction (A behind B) Orbital phase

Pirsa: 11020087 Page 87/91

Pulsar A wind blows off most of B magnetosphere

Pirsa: 11020087 Page 88/91

- Red dot: line of sight to pulsar A.
- "Donut": last closed surface of B magnetosphere

Predictions: change of eclipse profile due to geodetic precession

New test of theories of gravity

- Precession rate $\Omega_B = \frac{x_A x_B}{s^2} \times \frac{n^3}{1 e^2} \times \frac{c^2 \sigma_B}{G}$
- Observed $\Omega =$ 4.98 +0.43 -0.23 °/yr

$$\left(\frac{c^2\sigma_R}{\mathcal{G}}\right) = 3.38^{+0.49}_{-0.46}.$$

$$\left(\frac{c^2 \sigma_B}{\mathcal{G}}\right)_{GR} = 2 + \frac{3}{2} \frac{m_A}{m_B} = 3.60677 \pm 0.00035.$$
 $\Omega_B = 5.07^{\circ}/yr$

$$\left(\frac{c^2 \sigma_B}{\mathcal{G}}\right)_{\text{obs}} / \left(\frac{c^2 \sigma_B}{\mathcal{G}}\right)_{\text{GR}} = 0.94 \pm 0.13.$$

 C.f. Gravity Probe B, same accuracy, weak field regime, ~ \$1bn.

- G generalized Newton's constant
- oB is a strong-field spin-orbit coupling constant
- the first term accessible only for the Double Pulsar

