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Abstract: Assuming exotic matter, several models representing static, spherically symmetric wormhole solutions of Einstein's field equations have
been considered in the literature. We examine the dynamical stability of such wormholes in one of the smplest model, in which the matter is
described by a massless ghost scalar field, and prove that all solutions are unstable with respect to linear fluctuations and possess precisely one
unstable, exponentially in time growing mode. Numerical simulations of the nonlinear field equations suggest that these wormholes either expand or
collapse and form a black hole. The stability problem for aternative models including electrically charged wormholesis also discussed.
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Example: ¥ = R x S? (two asymptotic ends):

Traversability: Causal contact between the two universes.




Interstellar travel, time machines
Morris, Thorne, Yurtsever, PRL 61, 1446 (1988
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Friedman, Schieich, Witt, PRL, 71, 1486 (1993)
“In a globally hyperbolic, asymptotically flat spacetime satisfying

Einstein’s field equations and the (averaged) null energy condition,
every causal curve from J— to J* is continuously deformable to J.”

T, k*k” > 0 for all null vectors k*.

Therefore, in order to construct a wormhole, it is necessary to violate
the null energy condition. In particular, it is necessary to violate the
weak energy condition which states that the energy density is
nonnegative for all timelike observers.



The existence of wormholes in GR requires exotic matter.
Cosmological observations (dark energy models)
Quantum effects
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see, 10r instance, rianagan and vvaia, rmu 54 3 (1996).
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For the following, we assume the existence of exotic matter and
analyze the classical dynamical stability of wormholes.

For this, we fix some theory where stationary wormholes exist,
and ask whether or not they are stable with respect to small
perturbations of the fields in this theory.
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"’V ,V,d =0,

®: A real scalar field
R,.: Ricci tensor associated to the spacetime metric g,,,..
V .: Covariant derivative associated to g,,....

x = —8w(:. negative coupling constant.




R, =k V.8V,
"V, V,d =0,

®: A real scalar field
R, : Riccl tensor associated to the spacetime metric g,,,..

V .: Covariant derivative associated to g,,....
— —8 (G negative coupling constant.

Violation of y condition:
0if &#V @ # 0 for a null vector £~.
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ds* = —e™*%dt” + e**dz” + e (d¥* + sin” ¥ dy*),

where a, ¢ y ® depend on the coordinate =z € (—oo, co) only.
r = e°. geometric radius

Asymptotically flat, if e* — 1
and r*/z? — 1, &, — 0 for
T — 00 0F T — —00. | ..’J‘tifﬁ;‘f—" "1\...\

Regular and traversable if a, ¢
and @ are regular for all z.



R, =k V.0V,
"’V ,V,d =0,

®: A real scalar field
R,.: Ricci tensor associated to the spacetime metric g,,,..
V .: Covariant derivative associated to g,,....

= —8m(G': negative coupling constant.
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R_uyk’ikp = k(k*V,®)* < 0 if &#V @ # 0 for a null vector k*.



2 — 2 322 2a 7.2 2% £.1.82 1 22 2
ds® = —e **dt* + e**dz” + e*° (d¥* + sin” 9 d*),

where a, ¢ y ® depend on the coordinate =z € (—oo, oc) only.
r = e°: geometric radius

Asymptotically flat, if e* — 1
and r¢/z* — 1, ®, — 0 for
z—000rz — —00. T

Regular and traversable if a, ¢
and @ are regular for all .
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Solutions (H.G. Ellis 1973, K.A. Bronnikov 1973

dSE 2+, arctan(z/b)+2v0 dfz
§ .

—2~; arctan(z/b)—270 [ g2 2. 2N [382 2 20 2 2Y]
g TN | de” + (2 + §°) (dF” +sin” 4 dip®) |,
= 2 Fo

@) = 1/ 227D aetan (5,

where v, 7 and b > 0 are integration constants.

Scale freedom:
=t} {) )
t— e *t, z— ez, b— ‘b,
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variants: B := be~"°, 7.
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where v, 70 and b > 0 are integration constants.
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. Armendariz-Picon, PRD 65, 104010 (2002):

These wormhole solutions are linearly stable.

(Analytic study for the massless case y; = 0 and conjecture for
the massive case)

mE ™~ A A ™ 3Tala
D 66, 044005 (2002)
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H. Shinkai and S.A. Hayward, PR

Numerical evolution of an initial nonlinear perturbation of the
massless solutions indicates that the wormhole is unstable.

So who is right?



Consider small, time-dependent perturbations of the form

, : 2 . -
®(A) =@+ Ad® + O(19), D =D,u,05., 0P:= d'i(b{)\"]!

| A=0

and similarly for the metric coefficients d, e and c in

ds? = —e??dt® + e**dz? + e*¢ (d¥? +sin® ¥ dp?).




Consider small, time-dependent perturbations of the form

B(A) =B+ 108 + O(N%), B =Buaric, 00 := —B())

dA =
and similarly for the metric coefficients d, e and c in
ds® = —e?®dt? + e**dz® + €% (d9? + sin® 9 dy?).
Infinitesimal coordinate transformation ¢t — t +£°, z — z + £,
da — da + e *(e%E”); , dc+—> de+E%¢, 0D — 6D + £50,
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nt quantities: A := da — e™° (e‘ ,f) C:=6dc—cz3 .
. :



The linearized field equations yield the following pulsation equation for
the gauge-invariant quantity ¥ := ¢**~°C'/c,:

U, — e 2%(e20%,), + U(z)¥ =0,

where a = —v; arctan(z) and

U(z) =

64*--_ arctan(z)
1+ z2

Notice that the potential diverges at the throat = = ;.
Problem: ¥ is not well-defined at the throat, where . = 0.
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Example: reflection symmetric case v; = 0:

Uy — Vo +U(z)¥ =0,

2

with the positive potential U (z) = ~ -5 + 2

i y "y ¥ f ] ™
14+x4)< z4(14+z4)

The potential is positive, so one could be led to the conclusion
that the wormhole is linearly stable (Armendariz-Ficon, 2002).

On the other hand, the singularity at the throat = = 0 requires ¥ to
decay to zero sufficiently rapidly as = — 0 (mirror).

Clearly, this condition is artificial.

Perturbations with compact support cannot grow in time as long
as the support does not contain the throat = = 0.




Consider the Hamiltonian operator H := —3% + U(z), 8 := e %24,.

Zero mode (from the family of static solutions):

-

/1 L r2 o—7] arctan(z | Ly -
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¥, diverges at the throat = = ~,; however 1/7 is regular.

Define the intertwining operators

{an at g alyﬂ

A=0- , .
L 5 Wy

Then, H = AT A.

The quantity y := AV satisfies the new equation y;; + AA y = 0,
where AA" = —3° + W (z). The new potential W is everywhere
regular and decays like 1/z? asymptotically.
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The operator AA" possesses the zero mode
T — . Jeh arctan(zx) 1
I/IPG n ( fl) 5 14+~ =T,
v1+2f 1+ 5> arctan(z)

For v, # 0 this mode decays like 1/z for|z| — oo, hence it
represents a normalizable state (eigenfunction).

Furthermore, 1/7, has exactly one node (namely at the throat
r = ), hence it represents the first excited state.

Therefore, the ground state has negative energy E, = —3* < 0,
and the corresponding eigenfunctions xs(z) gives rise to an
exponentially growing mode of the form x(t, z) = e“xs(z).



For v; = 0 it is possible to prove that the ground state has
negative energy using the Rayleigh-Ritz variational principle,
Eo = inf (x, AA'X).
IXI=4

The ground state gives rise to an exponentially in time growing
solution for the gauge-invariants A and C which is everywhere
regular in space.



X+ Adtx =0, A=~ %o, Al =—5— 0%

The operator AAT possesses the zero mode

(I — Y ‘Je‘r; arctan(zx) 1

14, %"
1L arctan(z)

. A+ 1
Vi I~ =N

For v; # 0 this mode decays like 1/z for|z| — oo, hence it
represents a normalizable state (eigenfunction).

Furthermore, 1/7, has exactly one node (namely at the throat
r = ), hence it represents the first excited state.

Therefore, the ground state has negative energy E, = —3° < 0,
and the corresponding eigenfunctions xs(z) gives rise to an
exponentially growing mode of the form x(t, z) = e“*xs(z).



For v; = 0 it is possible to prove that the ground state has
negative energy using the Rayleigh-Ritz variational principle,

Eo = inf (x, AA"X).
xlI=1

The ground state gives rise to an exponentially in time growing
solution for the gauge-invariants A and C which is everywhere
regular in space.



Unstable mode: solution proportional to %, 3 = /—Ej.

In terms of proper time at the throat,

V= - 3 1
w i ] !i.‘.(_.h&.lj.'..:""_ I e
= F'throat

lunstable —

A numerical shooting proce-
dure gives the following val-
ues for T' = Tur!ﬁ:u.bieff'rfhrduf

(The green line is a theoreti-
cal prediction for v; = oc.)
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So the wormholes are “very” unstable.
Exampie: Fthroat =— lkm! Tunstable = 5:{‘53




Unstable mode: solution proportional to e”%, 3 = /—Ej.

In terms of proper time at the throat,

'UnstaoLe J,-"_[ 9 ‘3

A numerical shooting proce-
dure gives the following val-
ues for ¥ = Tunstable fj'rch roat

(The green line is a theoreti-
cal prediction for v; = o¢.)
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So the wormholes are “very” unstable.
Example: rihroat = 1M, Tunstable = SUS.
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Numerical integration of the nonlinear field equations in spherical
symmetry (system of 1 + 1 wave equations with constraints).

Constraint-satisfying initial data representing a static wormhole
plus a small Gaussian perturbation.

We check consistency with the time scale predicted by
perturbation theory.

Two cases: 1) The throat collapses, 2) The throat expands.



or+on=
TR R

" snipei [pary

The areal radius of the throat collapses.







Geometric invariants L := ¢**V,®-V,®, K :=1—g#*V,r-V,r, at
the apparent horizon converge to the Schwarzschild values.




We observe the formation of an apparent horizon.




Geometric invariants L := ¢g**V,®-V,®, K :=1—g**V,r-V,r, at
the apparent horizon converge to the Schwarzschild values.
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The collapsing case

Violation of the second law.




Possible way back home

Balh of the sl trek




Fehroat




However, there are some subtleties on how to define the throat in an
invariant way...
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However, there are some subtleties on how to define the throat in an
invariant way...
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Is there a way to stabilize the wormholes?

Adding angular momenta (Matos, Nunez, Sushkov..

Since the resulting spacetime is not spherically symmetric
anymore, the stability analysis is expected to be considerably
more difficult in this case.

Alternative: Keep spherical symmetry but add charge!



However, there are some subtleties on how to define the throat in an
invariant way...
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Is there a way to stabilize the wormholes?

Adding angular momenta (Matos, Nunez, Sushkov..

Since the resulting spacetime is not spherically symmetric
anymore, the stability analysis is expected to be considerably
more difficult in this case.

Alternative: Keep spherical symmetry but add charge!



Hence, we consider, aside from the ghost scalar field, a Maxwell
field. In spherically symmetry, this gives rise to a "Coulomb"-kind
of field.

Four-parameter family of static, spherically symmetric wormhole
solutions:

VK—Qﬁ—l(l + A?) y,
QE 2d . L
) e“dit ANdy + Q. dd Asind dy,

ds® = —e*dt* + e 2? [dz® + (z* + b%) (d¥° +sin® 9 d?)],

5

~ with

I sinh{Ay) B

where y = arctan(z/b) and e*¢ = LCOSh(;‘xy] oy Sim
A = /72 — ko(Q2 + QZ,)e* /(207).
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Hence, we consider, aside from the ghost scalar field, a Maxwell
field. In spherically symmetry, this gives rise to a "Coulomb"-kind
of field.

Four-parameter family of static, spherically symmetric wormhole
solutions:

= /—261(1+ A2)y,
o
b
ds®> = —e?dt® + e 2 [dz® + (22 + b%) (d9® + sin® 9 dp?)],

F="%2dt ANdy + Q,, d? Asin?d de,

where y = arctan(z/b) and 24 = y S2BAY) | with

A= /77— mo(@2 + Q2™ [ (252).




Charging the wormholes

All solutions with A > 0 are linearly unstable.

The subfamily +, = 0, A = iv has an interesting behavior: For v
large enough we numerically find a complex eigenvalue 3 + iw.




Spherically symmetric metric, coupled to dust with negative
density and a magnetic charge Q.
Doroshkevich, Hansen, Novikov, Shatsl
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Field equations reduce to a one-dimensional mechanical system
for each mass shell z,
1 pu(z) Q7

ST +V(rz)=E(2), PREEY————F i

where u(z) is the mass function for the dust.

Potential well with minimum at » = Q%/u(z), where each shell z is
in equilibrium.

Stability?



Unstable due to the formation of shell-crossing singularities!

When perturbed, each shell undergoes periodic motion with
period

o p(z)

 V2|E(@)]P*

Since the period is slightly different for neighboring shells, the
shells will cross eventually.

I'(z)

The function v(7, z) := r.(7, z) /r=(0, ), measuring the norm of
the normal geodesic deviation vector field . undergoes wild
oscillations. Forfixedzandn =1.2.3, ...,

v(11 +nT) =v(11) = const at turning points

v(nT) =1 — const X n at the minimum.



The (theoretical) existence of wormholes in Einstein’s theory of

gravity is due to an equilibrium between the attractive gravitational
force and the repulsion of an exotic matter field.
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equilibrium is unstable, at least for solutions which are static and
spherically symmetric.
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Furthermore, the timescale associated to this instability is very
small (compared to the areal radius of the throat divided by c).
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Conclusions

The (theoretical) existence of wormholes in Einstein’s theory of

gravity is due to an equilibrium between the attractive gravitational
force and the repulsion of an exotic matter field.

For the simple model of a massless ghost scalar field, this
equilibrium is unstable, at least for solutions which are static and
spherically symmetric.

Furthermore, the timescale associated to this instability is very
small (compared to the areal radius of the throat divided by c).

Numerical simulations suggest that the wormhole either expands
forever or collapses to a Schwarzschild black hole.

Addition of a charge does not seem to stabilize the wormholes

“Bad news” for interstellar travel agencies...
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Introduction

A simple model
The (theoretical) existence of wormholes in Einstein’s theory of A simpie model

gravity is due to an equilibrium between the attractive gravitational A simple model

force and the repulsion of an exotic matter field. A simple model

For the simple model of a massiess ghost scalar field, this S—————

equilibrium is unstable, at least for solutions which are static and
spherically symmetric.

Linear fluctuations

Linear fluctuations

Linear fluctuations
Furthermore, the timescale associated to this instability is very Existence of an unst....

small (compared to the areal radius of the throat divided by c). Existence of an unst...

Numerical simulations suggest that the wormhole either expands Existence of an unst...

forever or collapses to a Schwarzschild black hole. Time scale
Time scale

[\ Addition of a charge does not seem to stabilize the wormholes i sasaiistion

“Bad news” for interstellar travel agencies... Nonlinear evolution
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