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Abstract: Traditional condensed matter physics is based on two theories. symmetry breaking theory for phases and phase transitions, and Fermi
liquid theory for metals. Mean-field theory is a powerful method to describe symmetry breaking phases and phase transitions by assuming the
ground state wavefunctions for many-body systems can be approximately described by direct product states. The Fermi liquid theory is another
powerful method to study electron systems by assuming that the ground state wavefunctions for the electrons can be approximately described by
Slater determinants. From the encoding point of view, both methods only use a polynomia amount of information to approximately encode
many-body ground state wavefunctions which contain an exponentially large amount of information. Moreover, another nice property of both
approaches is that all the physical quantities (energy, correlation functions, etc.) can be efficiently calculated (polynomially hard). In this talk, I'll
introduce a new class of states: (Grassmann-number) tensor-net states. These states only need polynomia amount of information to approximately
encode many-body ground states. Many classes of states, such as Slater determinant states, projective states, string-net states and their
generaizations, etc., are subclasses of (Grassmann-number) tensor-net states. However, calculating the physical quantities for these state can be
exponentially hard in general. To solve this difficulty, we develop the Tensor-Entanglement Renormalization Group (TERG) method to efficiently

calculate the physical quantities. We demonstrate our algorithm by studying several interesting boson/fermion models, including t-J model on a
honeycomb lattice.
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o Is it superconductor at finite doping?

« Spin liquid in Hubbard model on honeycomb lattice at half-
filling (Nature 464, 847 (2010) )

o Possible realistic material
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o Bose Einstein Condensation(BEC

o Various of magnetic orders in spin systems

o Integer Quantum Hall and Topological Insulators
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n ideal tnal wavefunction, e.d

o After minimizing the energy, we can find various symmetry
ordered phases.
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Beyond mean-field and ELF
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» Recent development: SRG(Tao Xiang,etal. PRL, 2009
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o System size: N=2'
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Fermion hopping terms are non-local in two and higher dimensions.




Fermion

" - B Ay gy Y
-y - - -y
- -

ol iy, P |
el il i .

* Treat fermion systems as ordinary hardcore boson/spin systems.

=8

._._' '_ .:: _._T

Fermion hopping terms are non-local in two and higher

e A naive wavefunction

m. =01




Fermion

—— Ay gyl ey, "B
— — — ,
e - - - —

N =
iy L
4 J = - ot

" Treat fermion SYSIEMS as orainary naracore Dason/spin sysiem

Fermian hopping terms are non-local in two and higher dimensions.

m

e A naive wavefunction

m. =01




Fermion

g =3l an
ny
-

|
— el | ot

® Treat fermion SYSIEMS &S Orainary naracore Doson/spin Sysiems.

1d |14 |15 I:

Fermion hopping terms are non-local in two and higher dimensions.

n.

o A naive wavefunction

m. =0,




Grassmann TPS zcacusa 21

» A fermion wavefunction should give out the carrect sign under
different orderings.




Grassmann TPS zcacusa 20

» A fermion wavefunction should give out the correct sign under
different orderings.




Grassmann TPS zccuea o

o A fermion wavefunction should give out the correct sign under
different orderings.




A free fermion model:

o |maginary time evalution is performed to find the ground sta
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The energy is carrect even with extremely small D.

e |runcation error is laraer for critical systems.
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Chiral superconductivity:
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A rabust chiral SC phase is found over a large doping regime.
» Coexist with AF at low doping.

+ With baoth singlet and triplet paring.
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» A robust chiral SC phase is found aver a large doping regime.
» Coexist with AF at low doping.

» With both singlet and triplet paring.

» Tnplet d vector anti-parallel with Neel! vector.
» PN tance-inC 8

E
L e s A

V)]
wr
)
D
¥ ]

1
A
o

1IN Y 1 S 7]

+ S5=1/2 AF on honeycomb lattice.(Phys. Rev. B 78, 024420 (2008) )
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