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Abstract: Symmetric monoidal categories provide a convenient and enlightening framework within which to compare and contrast physical theories
on a common mathematical footing. In this talk we consider two theories: stabiliser qubit quantum mechanics and the toy bit theory proposed by
Rob Spekkens. Expressed in the categorical framework the two theories look very similar mathematically, reflecting their common physical
features. There are differences though: in particular a finite Abelian group emerges naturally in the categorical framework, and this group is
different in each case ($Z_4$ for the stabiliser theory and $Z_2 \times Z_2$ for the toy bit theory). It turns out that this mathematical difference
corresponds directly with a key physical difference between the theories: the stabiliser theory cannot be modelled by local hidden variables, while
the toy bit theory can. This analysis can be extended to other Abelian groups yielding a group-theoretic criterion for determining the possibility of
local hidden variable interpretations for other physical theories.
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Using the categorical approach to compare theories

O Use Abramsky and Coecke’'s categorical approach as a framework in
which to compare different theories (inc. quantum mechanics).
O Every theory has an associated (symmetric monoidal) category - its

process category.
O Allows comparison of theories which normally are not formulated in

terms of the same mathematical structures.
O Comparing different physical theories allows us to pinpoint the

categorical structures ‘responsible’ for different physical phenomena.

We will concentrate on a particular test case:

O Compare qubit stabiliser theory with Spekkens’s toy bit theory.
O Concentrate on the the possibility of a local hidden variable

interpretation.
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Structure of the talk

1. Preliminaries:

O local hidden variables
0 qubit stabiliser theory and Spekkens’s toy bit theory

2. Review categorical framework, introduce process categories of stabiliser
theory (Stab) and toy theory (Spek).

3. ldentify key structures which arise in both of these categories, and note
where they subtly differ.

4. Make a link between one of these structures, the phase group, and the
issue of local hidden variables.
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Hidden vanables

Does quantum mechanics have an underlying hidden variable interpretation?

Quantum states give us the probabilities of different outcomes when
measuring observables. Do these probabilities reflect an epistemic probability
distribution over a set of hidden states, each of which has a definite value for
each observable?

We all know that the answer is NO.
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Mermin’s no-go argument (1)

Consider three spatially separated qubits in a GHZ state: —(|000) + |111)).

v

If there is a hidden variable interpretation then there are definite values for
each of these six observables, either +1 or -1.
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Mermin’s no-go argument (2)

We can only measure one observable from each qubit in one go. Consider the
following four combinations.

X X2 X3 1
X Y2 Y5 —1
i X2 Y3 -1
Y1 ¥ X3 -1

The GHZ state is such that only certain parities of outcomes are allowed.
Finding a valid hidden state is equivalent to filling in the table such that the
row parities are respected. This is impossible.

— there is no local hidden variable interpretation for quantum mechanics.

D. Mermin. Quantum mysteries revisited. Am. J. Phys., 58:59-87, 1990
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Mermin’s no-go argument (1)

Consider three spatially separated qubits in a3 GHZ state: %{ 000) + |111)).
O
.\1 — ?
;=1
gy —" X3 =7
Yo = ? T3
O

If there is a hidden variable interpretation then there are definite values for

each of these six observables, either -1 or -1.
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Mermin’'s no-go argument (2)

We can only measure one observable from each qubit in one go. Consider the
following four combinations.

Xy X2 X3 1
X1 Y, Y35 —1
i X2 Y3 —1
Y1 Y5 X3 -1

The GHZ state is such that only certain parities of outcomes are allowed.
Finding a valid hidden state is equivalent to filling in the table such that the
row parities are respected. This is impossible.

— there is no local hidden variable interpretation for quantum mechanics.

D. Mermin. Quantum mysteries revisited. Am. J. Phys., 58:59-87, 1990
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Spekkens’s toy bit theory

R. Spekkens. Evidence for the epistemic view of quantum states: A toy
theory. Phys. Rev. A, 75(032110), 2007.

There is one type of system in the theory, which can exist in one of four ontic
states.

There are six possible states of maximal knowledge, consistent with the
knowledge balance principle. These are called epistemic states.

Epistemic states described by subsets.
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Measurements in the toy theory

A measurement consists of asking as many yes/no questions as is compatible
with the knowledge balance principle.

AlA|B|B||a|B|Aa|B||a|B|B|A]

A measurement induces an inevitable disturbance.

Such disturbances are described by relations.
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Compound systems in the toy theory

The analysis can be extended to compound systems consisting of several
elementary systems.

For example, epistemic states for systems with two components fall into two

classes:
Uncorrelated - ‘Separable’ Maximally correlated - ‘Entangled’
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Toy theory - displays some quantum features

The toy theory exhibits many characteristically quantum features:
O Incompatible observables
1 No-cloning

O Protocols such as teleportation and dense coding

Burt it is by construction a local hidden variable theory.
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Qubit stabiliser theory

Systems: Qubits

States: Stabiliser states
Processes: Clifford operations
Observables: Pauli group

1 qubit states:
O |0), |1).|4+).|—), |2),| — 1)

2 qubit states:

0 36 product states e.g. |0) = = &
0 24 maximally entangled states eg.

|H

(10)®10)+1{1)®I|1))

]|

W

3 qubit states:
1 Many more, including GHZ states e g %{}D? R0)R0)+|1)R1)R1|1))
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Qubit stabiliser theory

Systems: Qubits

States: Stabiliser states
Processes: (Clifford operations
Observables: Pauli group

1 qubit states:
O {0), 1), |+),1—).|),| —1)

2 qubit states:

0 36 product states e.g. |0) +);
0 24 maximally entangied states eg.

(10)®10)+|1) ®|1))

3

3 qubit states:
O Many more, including GHZ states e g. u—%{ 0)RNO0OORX0)+DHR)R(1))
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Toy theory - displays some quantum features

The toy theory exhibits many characteristically quantum features:
O Incompatible observables

1 No-cloning
Protocols such as teleportation and dense coding

Burt it is by construction a local hidden variable theory.
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Mermin’s no-go argument (1)
Consider three spatially separated qubits in a3 GHZ state: w,?‘ 000) + [111)).
@
.\.1 — ?
Ny ——1
\3 = .\-3 — ?
— Yo —¢
O O
If there is a hidden variable interpretation then there are definite values for
each of these six observables, either +1 or -1.




Toy theory - displays some quantum features

The toy theory exhibits many characteristically quantum features:
O Incompatible observables
1 No-cloning
O Protocols such as teleportation and dense coding

Burt it is by construction a2 local hidden variable theory.
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Categorical approach - Algebra of processes

In quantum mechanics (and stabiliser theory) states are described by vectors,
and processes by /inear maps.

In the toy bit theory states are described by subsets, and processes by
relations.

We are uninterested in these details: we confine our attention to the algebra
of how the processes combine.
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Graphical depiction of processes

We use diagrams to represent processes and their composition.

A process transforming a system of type A into a system of type B:

.

The composition of two processes is equal to a third:

A B C A - &
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Composite systems and parallel processes

Parallel processes:

In QM, tensor product — ® —. In toy theory, Cartesian product — x< —.

A process involving interaction:
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Preparation of states, scalars

The following diagram depicts the preparation of a new state of system A:

<L

In reality would occur as part of a combination:

P

We term this kind of combination a scalar:

<P

In QM scalars € C, in toy theory scalars € B.
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Our categories

Quantum mechanics: FHilb (already well known to mathematicians).
Stabiliser theory: Stab
Toy bit theory: Spek

Will not describe structure in detail.

Pirsa: 11010113 Page 28/128

16 / 4




Preparation of states, scalars

The following diagram depicts the preparation of a new state of system A:

A
y

e

In reality would occur as part of a combination:

<t

We term this kind of combination a scalar:

<P

= K" ~ 1B

In QM scalars € C, in toy theory scalars € B-.
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The dagger operation

Bijection between processes of this type:
A

and this type:
B A

In QM (and stabiliser theory) corresponds to the adjoint. In toy theory
corresponds to relational converse.
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Impossible processes

We need something to represent an impossible process. This could represent
the result of composing two operations which can never occur one after the

other.
For every pair of systems A and B we have a zero process.

A B
———10an |——

such that ¥V f.g

a 2':'.4.Hi-c7 = = ;0.4_L.*. <. =

In particular we also have zero scalars.
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Preparation of states, scalars

The following diagram depicts the preparation of a new state of system A:
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L.

In reality would occur as part of a combination:

“pg

We term this kind of combination a scalar:
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Impossible processes
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Compact structures

A system A has a compact structure if there exist a state and co-state:
~ A A ~

— :l ‘_1 el L

Which satisfy the following property:

A

- .

In QM, every system has such a state and co-state. [he state is the Bell
state.
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Basis structures in the toy theory

An example of a basis structure in the two theory. We will label the four
ontic states of a single elementary system simply as 1.2.3 and 4. Then the
following two relations constitute a basis structure:

éd= 1~{(1,1).(22))
2~ {(1,2),(2,1)}
3~ {(3,3),(4.4)}
4~ {(3,4),(4,.3)}

€ 1~ {=}
3«-{#}

It's not obvious, but 4 copies the following two states:

-
- | | -
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Preparation of states, scalars

The following diagram depicts the preparation of a new state of system A:

In reality would occur as part of a combination:

g

We term this kind of combination a scalar:

<P

In QM scalars € C, in toy theory scalars € Bs.
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Compact structures

A system A has a compact structure if there exist a state and co-state:
A A N

e, Ml _‘__1 ‘__1 —

Which satisfy the following property:

A

N

In QM, every system has such a state and co-state. [he state is the Bell
state.
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Bijections between different types of process

One of the key consequences of compact structure is that it generates 3
whole series of bijections between processes of different types:

If we start with a process of this type:

— c
B
We can get other processes of different types, for example:
A
A £ =N B j &

—n F o]
-
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Bijections between different types of process

One of the key consequences of compact structure is that it generates 3
whole series of bijections between processes of different types:

If we start with a process of this type:

= c
B
We can get other processes of different types, for example:
e |
A = = B 2=
o f / or | > s
B N B
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Upper and lower star bijections

4
>
B

In QM, transposition. In the toy theory, relational converse.

And we can define f. = (f7)*:

B
Eaw :/\ -J
A4

In QM, complex conjugation. In the toy theory, identity.
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Impossible processes

We need something to represent an impossible process. This could represent
the result of composing two operations which can never occur one after the

other.
For every pair of systems A and B we have a zero process.

A B
— el —

such that ¥ f.g

i |
A .0_4_H1 =l e

In particular we also have zero scalars.
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The dagger operation

Bijection between processes of this type:

A

and this type:
B A

In QM (and stabiliser theory) corresponds to the adjoint. In toy theory
corresponds to relational converse.
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Upper and lower star bijections

B.A

;

B J
In QM, transposition. In the toy theory, relational converse.

And we can define f. = (f7)":

B
T L= ( N
—

A

In QM, complex conjugation. In the toy theory, identity.
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Basis structures - definition

A basis structure on an object A consists of a pair of operations

A -~ A |
s —8 € —9

e
satisfying the following five conditions:

> >
—® o —8 (Coassociativity)
H. — _‘ e
e (1)

.~ \
e = (Counit)
= — ounit
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Basis structures - definition (continued)
S . - e
] I = —49 (Cocommutativity)
= ~
*— - - —e
— = | = S— (Frobenius)
4. — b ._
M —t (4)
—. .— = — (Speciality) (5)
where
5t .— d @
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Basis structures in QM

In quantum mechanics there is 3 bijective correspondence between basis
structures and orthonormal bases. Explicitly:

. H—>HRIH = |2)— 1) R |1) e:H—-C:=h)—1
For example, the qubit in stabiliser theory has three basis structures:
dz copies |0) and |1).
O &y copies |+) and |—).

0 &y copies |z) and | — 7).

m—
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Basis structures - definition

A basis structure on an object A consists of a pair of operations
= T :
0 —@ € —@

= =

satisfying the following five conditions:

~~ ”~
—@® -~ —8 (Coassociativity)
e — - — @ p oy
e 0 N (1)
—® =
—9 = ——— = — @ (Counit)
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Basis structures in QM

In quantum mechanics there is a bijective correspondence between basis
structures and orthonormal bases. Explicitly:

- H—-HIH = [z) — 1) @ |1) e:H—->C=:i)—1
For example, the qubit in stabiliser theory has three basis structures:
0z copies |0) and |1).
O &y copies +) and —).

0 oy copies |z) and | — ).
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Basis structures - definition

A basis structure on an object A consists of a pair of operations
A g A
5 —@ € —@

N -

satisfying the following five conditions:

> il
—@® i/’“’ z E/F.\““ (Coassociativity )
o 5 (1)
_—® o (C \
—@ = —= ounit
~— e (2)
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Basis structures - definition (continued)
TN P
— 9 e (Cocommutativity)
E‘“u___‘__r,,-' = kxx_‘_- (3)
—-_,H\IM —
g =0 = ~— (Frobenius)
S~ o (4)
—‘ .— = — (Speciality) (5)
where
:_F :F 2l ®
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Basis structures in QM

In quantum mechanics there is a bijective correspondence between basis
structures and orthonormal bases. Explicitly:

- H—HQIH = |z) — 1) R |z e-:Ho>C-l1)y—>1

For example, the qubit in stabiliser theory has three basis structures:

0 oz copies |0) and |1).

dx copies |+) and |—).

dy copies |z) and | —1).
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Basis structures in the toy theory

An example of a basis structure in the two theory. We will Iabel the four
ontic states of a single elementary system simply as 1.2.3 and 4. Then the
following two relations constitute a basis structure:

§= E~{{L1)(Z2)}
2~ {(1,2),(2,1)}
3~ {(3,3).(4,4)}
4~ {(3,4),(4.3)}

€:x 1~ {=}
3 ~ {=}

It's not obvious, but 4 copies the following two states:
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Qubit stabiliser theory

Systems: Qubits

States: Stabiliser states
Processes: Clifford operations
Observables: Pauli group

1 qubit states:
O |0), (1), [+), |-, |9),| — )

2 qubit states:

0 36 product states e.g. |0) @ |+);
1 24 maximally entangled states e.g. =(]0) ® |0) +|1) ® |1))

>

v

3 qubit states:
O Many more, including GHZ states e g. —\%i 0)®10)x0)+|1)x|1)®|1))

! -
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Spekkens’s toy bit theory

R. Spekkens. Evidence for the epistemic view of quantum states: A toy
theory. Phys. Rev. A, 75(032110), 2007.

There is one type of system in the theory, which can exist in one of four ontic
states.

There are six possible states of maximal knowledge, consistent with the
knowledge balance principle. These are called epistemic states.

Epistemic states described by subsets.
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Compact structures

A system A has a compact structure if there exist a state and co-state:
_."1 "1 T

b - :l :1—,..**

Which satisfy the following property:

A

=

In QM, every system has such a state and co-state. [he state is the Bell
state.
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Basis structures in QM

In quantum mechanics there is a bijective correspondence between basis
structures and orthonormal bases. Explicitly:

- H—->HSQSH = |2) — 2) R |2) e:H—->C:=li)—1
For example, the qubit in stabiliser theory has three basis structures:

O éz copies |0) and |1).

O &6y copies |+) and |—).
0 oy copies |2) and | — 7).
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Eigenstates of basis structures

We term the states which are copied by & eigenstates.

®_
@_
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Basis structures in the toy theory

An example of a basis structure in the two theory. We will label the four
ontic states of a single elementary system simply as 1.2.3 and 4. Then the
following two relations constitute a basis structure:

6:: 1~ {(1,1),(2,2)}
2~ {(1,2),(2.1)}
3~ {(3,3).(4.4)}
4~ {(3.4).(4.3)}

€ 1~ {=}
3%{:}

It’'s not obvious, but 4 copies the following two states:
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Basis structures in QM

In quantum mechanics there is a bijective correspondence between basis
structures and orthonormal bases. Explicitly:

O H—>HRIH = |2)— 1) R |1) e:H—-C:h)—1
For example, the qubit in stabiliser theory has three basis structures:

O 4z copies |0) and |1).

O &y copies |[+) and |—).
[0 &y copies |z) and | — 7).
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Abstract GHZ states

We can bend around the input line to get a diagram with three outputs,
describing preparation of a tripartite state:

In quantum mechanics, if we began with the 4 which copies |0) and |1) then
this state is the (un-normalised) GHZ state |000) + |111).
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Bijections between different types of process

One of the key conseguences of compact structure is that it generates 3
whole series of bijections between processes of different types:

If we start with a process of this type:

A
] C
-

B
We can get other processes of different types, for example:

!
= = =
— | or C_

f =——
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The dagger operation

Bijection between processes of this type:
A

and this type:
B A

In QM (and stabiliser theory) corresponds to the adjoint. In toy theory
corresponds to relational converse.
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Bijections between different types of process

One of the key consequences of compact structure is that it generates 3
whole series of bijections between processes of different types:

If we start with a process of this type:

A
=== "3
B
B
We can get other processes of different types, for example:

: 4

Fe=ai, ) ==

— ]  or /_
N

f E——
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Basis structures - definition

A basis structure on an object A consists of a pair of operations
A e A 4

f_i —. € —.

N 5

satisfying the following five conditions:

P P
= e /__.x_% (Coassociativity)
b = (1)
P
E = — = @ (Counit)
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Basis structures in QM

In quantum mechanics there is a bijective correspondence between basis
structures and orthonormal bases. Explicitly:

d:H—>HRIH = |2)— 1) R |1 e:H—-C:h)—1
For example, the qubit in stabiliser theory has three basis structures:
O &z copies |0) and |1).
(0 dx copies |+) and |—).

0 dy copies |z) and | — 7).
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Eigenstates of basis structures

We term the states which are copied by & eigenstates.

®_
@_

@
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Abstract GHZ states

We can bend around the input line to get a diagram with three outputs,
describing preparation of a tripartite state:

In quantum mechanics, if we began with the 4 which copies |0) and |1) then
this state is the (un-normalised) GHZ state |000) + |111).
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Basis structure monoid

Now consider the action of 4':

Now consider plugging states into the inputs

-

S

From the axioms defining a basis structure this turns out to be a
commutative monoid.

Pirsa: 11010113 Page 70/128

28 / 4



Basis structures - definition

A basis structure on an object A consists of a pair of operations
4 7 A

) —‘ € —.

N =

satisfying the following five conditions:

P P
® - —8 Coassociativity)
o WSS S— { 1 )
—8
. —— —Q/f_ (Counit)
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Basis structures - definition (continued)
— 9 ( = @ (Cocommutativity)
5\‘5__’; = ““-»___‘__ (3)
= e
F _H‘H\'“\. /{_‘__-'""-'_ 4.
3 —r =y, o ® —

—‘ .— = — (Speciality) (5)

where
"_“-HH\ )
o ,»-'._ e ._
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Basis structure monoid

Now consider the action of 4':

Now consider plugging states into the inputs

-

=

From the axioms defining a basis structure this turns out to be a
commutative monoid.
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Basis structure monoid in quantum mechanics

If we express |©’) and |@) in terms of the basis which is copied by a:
W) = (¥, P, - - -, Vn), @) = (01,09, ..., Op )
then | © ©) is written as:
vEo) =(Vi- 01, V.09, ..., Un-On)

Recalling that [¢,) = (¥1, 5. . ... %), and neglecting normalisation, we note
that if |v) is unbiased with respect to this basis then:

- 2 12 12 i

Y @ ) = (lYn]”, |¥=l, ..., e r—IiE k... 1) =€
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Basis structure monoid

Now consider the action of 4':

Now consider plugging states into the inputs

_ vos

From the axioms defining a basis structure this turns out to be a
commutative monoid.
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Basis structure monoid in quantum mechanics

If we express |v>) and |@) in terms of the basis which is copied by 4:
) = (Y, 0o, ..., v,), @) =(d1.09,...,0,)

then |v» © ¢) is written as:

Recalling that |v,) = (1, ¥5. . ... %¥,), and neglecting normalisation, we note
that if |¢) is unbiased with respect to this basis then:

= 2 2 2

Y G ¥.) = (lPa], |¥al’, - ... s —tE -1

|
m
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Basis structure monoid

Now consider the action of 4':

Now consider plugging states into the inputs

— ( - )_:

From the axioms defining a basis structure this turns out to be a
commutative monoid.
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Upper and lower star bijections

4
B.JL:/\-
>,
B

In QM, transposition. In the toy theory, relational converse.

And we can define f. = (f)™:

P 2
A-B_x-/
A

In QM, complex conjugation. In the toy theory, identity.
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Basis structure monoid in quantum mechanics

If we express |v0) and |@) in terms of the basis which is copied by 4:
L‘ — { "'-._‘1- 'L"l ..... l’-_‘ﬂ :'- O — "rj]_- 'r_-}':.:. - o (—j?‘[ ]
then |©» © ¢) is written as:

w - D:- = (V1.1 . U2.09. . . .. Un-Ohj )

Recalling that |¢,) = (Y. 1. . . .. ¥, ), and neglecting normalisation, we note
that if |¢) is unbiased with respect to this basis then:

- 2 2 i

= |
Y @ .Y = (Ja]=. |sl”. ... 1)) = (1.1...., 1) =€
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Unbiased states

Inspired by this we make the following definition in the general categorical
setting. A state v is unbiased with respect to a basis structure if:

O
- @
&)

We can show that under the action of the basis structure monoid, these
states are closed. Thus they form an Abelian sub-group of the monoid, which

we refer to as the phase group.
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Basis structures in Stab and Spek

Eigenstates Unbiased Phase group
5 | 10), 1) |4, 1-).16). ] — i)
fi\ 5 = 0). l 1 =3 Z;
o | 1), | —8) | |).1-).10).11
} — am AN EmT.
°Z | e == s =
i "m § O . |,
| = M= = et
i m. — unlll = =
Y | T (.
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Description of observables in this approach

In both quantum mechanics and the toy theory, we observe the following
correspondence:

O Observable — Basis structure
O Outcome of measurement — Eigenstate

Furthermore, if we prepare a system in state v, the probability of obtaining a
measurement outcome corresponding to an eigenstate r; is some function of

this scalar:

Specifically, if this scalar is equal to the zero scalar, then the probability is
zero i.e. this outcome is impossible.

Pirsa: 11010113 Page 82/128

4




Basis structures in Stab and Spek

Eigenstates Unbiased Phase group
oz | 10), [1) | |4). 1), 16, | —4)
ox | |+, |- 0), |1). |3}, | —¢ Zs
o | 15). | —i +).]-).10). |11
; N N .
0z
([N H E pgs =
; | o B BT . - o
0x 2 A Lo
(N HE pgu =
5 | N B ] N
{ '}
(I | HE BaE =
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Description of observables in this approach

In both quantum mechanics and the toy theory, we observe the following
correspondence:

1 Observable — Basis structure
O Outcome of measurement — Eigenstate

Furthermore, if we prepare a system in state v, the probability of obtaining a
measurement outcome corresponding to an eigenstate r; is some function of

this scalar:

Specifically, if this scalar is equal to the zero scalar, then the probability is
zero i.e. this outcome is impossible.
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T e T T S A T N A~ =R =
Forbidden triples

We will be particularly interested in triples of outcomes of measurements
applied to abstract GHZ states for which the corresponding scalar is the zero

scalar.

where a, b and ¢ are each an eigenstate of some basis structure (not
necessarily the same one).

(a, b, c) is a forbidden triple.
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ey
Forbidden triples

We will be particularly interested in triples of outcomes of measurements
applied to abstract GHZ states for which the corresponding scalar is the zero

scalar.

where a, b and ¢ are each an eigenstate of some basis structure (not
necessarily the same one).

(a. b, c) is a forbidden triple.
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Basis structures in Stab and Spek

Eigenstates Unbiased Phase group
6z | 10), 1) | |4, ]-),18),| —i
dx — — 0). |1 ). | — 1) Zy
dy 2 — 1 +).1—).10).|1
- — am Bl m .
“Z | I == s =
- | mmo - L. |,
N = = s = e
< | mIm BN T mm
= ] s s = |
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Forbidden triples

We will be particularly interested in triples of outcomes of measurements
applied to abstract GHZ states for which the corresponding scalar is the zero

scalar.

K‘@
® ==
@

-/

where a, b and ¢ are each an eigenstate of some basis structure (not
necessarily the same one).

(a,b.c) is a forbidden triple.
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Some key results (without proof)

1. For two eigenstates r; and r; of the same basis structure, the following
state-outcome scalar is an idempotent.

27N N\
\ Ir; — I 7

2_ If this scalar is the identity scalar, then z; = ;.
3. Under certain reasonable assumptions we can show that the only

idempotent scalars in the category of a quantum-like theory are the
identity and the zero scalar.

Thus we conclude that if z; # r;, then:

| I —,IJ’ I = 0
S’ S’
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Monoid determines allowed and forbidden triples

6 - =€y
% >

Now suppose ¢ and (a @ b). are both eigenstates of some (possibly different)

basis structure.
.H O : 4 o =¥
k C

p

(a.b.(a ® b),) is an allowed triple. (a.b.c) is a forbidden triple.
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Y N A Y A S SN Y =S BTN TR T A
Labelling of states

Stab Spek
~0 0)
Z1 1)
To ik
T =
Yo )
Yi — 1)




I D e
Phase group tables

Spek
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Monoid determines allowed and forbidden triples

=
o

T

Now suppose ¢ and (a © b). are both eigenstates of some (possibly different)
basis structure.

a6 — O6 —o
prs

(a.b.(a ® b),) is an allowed triple. (a.b.c) is a forbidden triple.
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Phase group tables

Spek
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Monoid determines allowed and forbidden triples

1!

Now suppose ¢ and (a @ b). are both eigenstates of some (possibly different)
basis structure.

—
‘o
g

[
©
[

(a.b.(a @ b),) is an allowed triple. (a.b. c) is a forbidden triple.
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e e =S o= S L
Phase group tables

Spek
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S = A =S o L L WU RL
Allowed triple tables

Spek allowed triples Stab allowed triples

Since allowed triples are of form (a.b. (a © b),).
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Subgroup and cosets

Spek allowed triples Stab allowed triples
| |

For the four triples of observables thus singled out, any outcome triple which

doesn’t appear in the table is forbidden — phase group gives complete
information on their allowed /forbidden triples.
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Monoid determines allowed and forbidden triples

.

Now suppose ¢ and (a
basis structure.

@ = 00O =0
~@

(a.b.(a ® b),) is an allowed triple. (a.b.c) is a forbidden triple.
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Subgroup and cosets

Spek allowed triples Stab allowed triples

¥ oy 751 Yo

Yo | i Yo 1’1 ‘ To

\l/ XI\[/ X
Yo i h

For the four triples of observables thus singled out, any outcome triple which
doesn’t appear in the table is forbidden — phase group gives complete
information on their allowed /forbidden triples.
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Mermin table

Write out these special four triples of observables in rows:

) = == a
N B ¥
x5 K
i Y2 Xj;

A possible assignment of values to the observables?

,..\.Pl — J."U ..\";l — If_. .\'3 — ID
Xi1=720 Yo=m Ys=wu
}1 — 3 ‘Yj — Iy }:3. — T

}1 (751 Y: — Yo X;a — Xg
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Subgroup and cosets

Spek allowed triples Stab allowed triples

For the four triples of observables thus singled out, any outcome triple which
doesn’t appear in the table is forbidden — phase group gives complete
information on their allowed /forbidden triples.
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Mermin table

Write out these special four triples of observables in rows:

X7 X9 X3
X Yo Y3
i1 X2 Y3
i Y2 X;

A possible assignment of values to the observables?

X,
:(;_ — Ip }:2 — Yo };

Ep Ae—25 A3 — T3
Y1
Yi=ynn Xo=13 Y3=1u
YiI=unn Yo=mwm Xz=umx
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Allowed triple parities

Spek parities Stab parities

Lo X Ly | To I Yo h g | To | Ty Yo | Y1
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= =S T = S e, S S ST
No-go proof for Stab

Calculate the parity of the whole table either by
(i) Calculating row parities (ii) Calculating column parities

Row parities can be read off from allowed triple table.

X; X9 X3 0O
Ay Yo Yo 1
Y; X2 Y3 1
B N A 1
0 0 0
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| =Y T B ST S NN
No-go proof for Spek?

In the case of Spek, we can no longer derive a contradiction: the parities for
the rows don't allow it.

p e s A
rr ¥ 8
% X = 6
x X E 8
0 0 0

Should expect this, since the toy theory is a local hidden variable theory.

Note that the origin in this difference re. locality lies in the difference
between the phase group tables.
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General phase groups?

O If observable coset condition applies, we can generalise the Mermin
table.
O We can generalise the notion of parity in such a way that every row of

the generalised table has a well-defined generalised parity.
O Argument about column parities can be extended in some cases.

Whether or not a phase group passes or fails the Mermin table test seems to
be related to the group extension problem.

“Given G4, G5 find G such that G, is a normal subgroup of &, and
GG, =G,"

If G,.G; = Z,, then both Z, and Z, x Z, are valid group extensions.
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Subgroup and cosets

Spek allowed triples Stab allowed triples

For the four triples of observables thus singled out, any outcome triple which
doesn’t appear in the table is forbidden — phase group gives complete
information on their allowed /forbidden triples.
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General phase groups?

O If observable coset condition applies, we can generalise the Mermin
table.
O We can generalise the notion of parity in such a way that every row of

the generalised table has a well-defined generalised parity.
O Argument about column parities can be extended in some cases.

Whether or not a phase group passes or fails the Mermin table test seems to
be related to the group extension problem.

“Given G, G5 find G such that G, is a normal subgroup of &, and
G/G, =6y

If G,.G5 = Z,, then both Z, and Z, x Z, are valid group extensions.
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Forbidden triples

We will be particularly interested in triples of outcomes of measurements
applied to abstract GHZ states for which the corresponding scalar is the zero

scalar.

O
‘—@ = 0

B

where a, b and ¢ are each an eigenstate of some basis structure (not
necessarily the same one).

(a.,b. c) is a forbidden triple.
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Description of observables in this approach

In both quantum mechanics and the toy theory, we observe the following
correspondence:

O Observable — Basis structure
O Outcome of measurement — Eigenstate

Furthermore, if we prepare a system in state v, the probability of obtaining a
measurement outcome corresponding to an eigenstate r; is some function of

this scalar:

Specifically, if this scalar is equal to the zero scalar, then the probability is
zero i.e. this outcome is impossible.
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Basis structures in Stab and Spek

Eigenstates Unbiased Phase group
47 0), (1 +). =) 7). | —1
Ay 1), | — 1) +).{—).10). |1
2 T | B EEN EE
- (1 H E paE =
= | H u . _EHEEN =N -
Xl | omm om | 272
. | EE _ _EEEE = =u
F_'}‘
(I ] HE BaE =
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Basis structures in QM

-

In quantum mechanics there is a bijective correspondence between basis
structures and orthonormal bases. Explicitly:

O:H—>HRQIH = |2)— 1) R |1) e:H—->C:=h)—1

For example, the qubit in stabiliser theory has three basis structures:
O 4z copies |0) and |1).

0 dx copies |[+) and |—).

dy copies |z) and | — ).

Pirsa: 11010113
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Basis structures - definition

A basis structure on an object A consists of a pair of operations

T e |
5 —@ e @

~— 4
satisfying the following five conditions:

o~ i

4 - 8 (Coassociativity)
//'—. .
% = — —48 (Counit)
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Basis structures - definition (continued)
— 9 ( = —@ (Cocommutativity)
h'\aﬁ__,.f" e x.“‘“-q_ (3)
»— — —~ —&
P = e = S (Frobenius)
— 9 — s, »
. S0 s {4)
& — (Speciality) =
where
a' ,,._ e ®
irsa: 11010113 Page 115/128 a



Basis structure monoid in quantum mechanics

If we express [v0) and |@) in terms of the basis which is copied by a:

then |©y & @) is written as:
v o0o) = \v1.01,.V2.09, ..., U . On )

Recalling that [1,) = (¥y. 1. . ... n), and neglecting normalisation, we note
that if |¥) is unbiased with respect to this basis then:
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Monoid determines allowed and forbidden triples

/_® - a @ b).
0O - > O
b

Now suppose ¢ and (a = b). are both eigenstates of some (possibly different)
basis structure.

3

.—i\ b)
~a

[
©

I
-

(a.b.(a ® b),) is an allowed triple. (a.b.c) is a forbidden triple.
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Basis structures - definition (continued)
—@ (f = —@& (Cocommutativity) (3)
= - e
o B P s —@
o = | ] = ~— (Frobenius)
~— — (4)
& & - (Speciality) =
where
' . e .
L
irsa: 11010113 Page 118/128 2 3 a



Basis structures - definition

A basis structure on an object A consists of a pair of operations
A P A 1

o _. € —9
e A

satisfying the following five conditions:

— g
o i —8 (Coassociativity)
— ~ (1)
_—® —— (c )
—@ = — i ounit
e e (2)
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Compact structures

A system A has a compact structure if there exist a state and co-state:
o~ 4-1 -—1 B

=== -

Which satisfy the following property:

In QM, every system has such a state and co-state. [he state is the Bell
state.
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T AT == 7 N TH S e W TR
The dagger operation

Bijection between processes of this type:
A

and this type:
B A

In QM (and stabiliser theory) corresponds to the adjoint. In toy theory
corresponds to relational converse.
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Our categories

Quantum mechanics: FHilb (already well known to mathematicians).
Stabiliser theory: Stab
Toy bit theory: Spek

Will not describe structure in detail.
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Qubit stabiliser theory

Systems: Qubits

States: Stabiliser states
Processes: (Clifford operations
Observables: Pauli group

1 qubit states:
] _D;:._ 1._;‘ _ _ 31— 4)

2 qubit states:

0 36 product states e.g. |0) ® |+):
1 24 maximally entangled states e.g.

|H

(10)®1(0) +1{1)®11))

%]

V-

3 qubit states:
01 Many more, including GHZ stateseg. =(|0)®2[0)®|0) + 1) ® (1) ® |1))

»3
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| = A T S - RS S L
Qubit stabiliser theory

Systems: Qubits

States: Stabiliser states
Processes: (Clifford operations
Observables: Pauli group

1 qubit states:
0 |0), |1).|+).|—). |2).| — 1)

2 qubit states:

0 36 product states e.g. |0) ® |+);
O 24 maximally entangled states e g.

|H

(10)®|0)+11)®I|1))

bd|

W

3 qubit states:
0 Many more, including GHZ states e g. :%. 0)®10)x|(0)+|1)RI1) R |1))
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Bijections between different types of process

One of the key consequences of compact structure is that it generates 3
whole series of bijections between processes of different types:

If we start with a process of this type:
A

C
f._

B
We can get other processes of different types, for example:

B!
= ) s
— ;] o | P
%

f E——
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Basis structures in QM

In quantum mechanics there is a bijective correspondence between basis
structures and orthonormal bases. Explicitly:

- Ho>HQH - Iz) — 7)) ® |2) e:H—->C:=:hi)—1
For example, the qubit in stabiliser theory has three basis structures:
0 46z copies |0) and |1).

0 dx copies |+) and |—).

0 oy copies [z) and | — 7).
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Basis structure monoid

Now consider the action of 4':

Now consider plugging states into the inputs

-

e

From the axioms defining a basis structure this turns out to be a
commutative monoid.
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Basis structure monoid in quantum mechanics

If we express |v’) and |@) in terms of the basis which is copied by a:
) = (¥V1,.UV9,.-.,Vy), P) = (P1,92,---,Pn)
then | © ©) is written as:
Ve o) = (U1.01.0a.09. . ... Un.On )

Recalling that [1.) = (¥y. 1. . ... n), and neglecting normalisation, we note
that if |2) is unbiased with respect to this basis then:

: : . v ' D £
W @ W) = (|tha], |¥al,..., Vnl) - Iy—¢
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