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Canonical guantization techniques are generally considered to provide one of the most rigorous methodologies for passing from a classical to a
guantum description of reality. For classical Hamiltonian systems with constraints a number of such techniques are available (i.e. gauge fixing,
Dirac constraint quantization, BRST quantization and geometric quantization) but all are arguably equivalent to the quantization of an underlying
reduced phase space that parameterizes the "true degrees of freedom™ and displays a symplectic geometric structure. The philosophical coherence of
making any ontological investment in such a space for the case of canonical genera relativity will be questioned here. Further to this, the particular
example of Dirac quantization will be critically examined. Under the Dirac scheme the classical constraint functions are interpreted as quantum
constraint operators restricting the allowed state vectors. For canonical genera relativity this leads to the Wheeler-de Witt equation and the
infamous problem of time but, prima facie, seems to rely on our interpretation of the classical Poisson bracket algebra of constraints as the phase
space realization of the theory's local symmetries (i.e. the group of space-time diffeomorphisms). Aswith the construction of an interpretively viable
symplectic reduced phase space, this straight forward connection between constraints and local symmetry will be questioned for the case of GR.
These issues cast doubt on the basis behind the derivation of the so-called wave function of the universe and give us some grounds for re-examining
the entire canonical quantum gravity program as currently constituted.
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Overview

QOverview

» In constrained Hamiltonian theory local symmetry
transformations are represented in terms of the action of (first
class) constraint functions on a physical phase space

» One approach to quantising constrained systems is the
geometric quantisation procedure whereby we first reduce out
the action of the constraints and then quantise the space
which results

» Another is the Dirac procedure which involves first quantising
an extended phase space and then imposing the constraints at
the quantum level
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Overview

QOverview

» When equivalence holds between these two procedures
(‘quantisation commutes with reduction’) the desired

quantisation of the ‘true’ classical degrees of freedom seems
assured

» |n canonical general relativity where the Hamiltonian function
is itself a constraint, commutation between reduction and
quantisation (if it can be shown) might actually be reason for
doubting the conceptual foundations of Dirac quantised GR

» But if the imposition of a quantum Hamiltonian constraint
(i.e. the WDE) isn't equivalent to a trivialising reduction
procedure what does it mean in terms of the classical
symmetries and degrees of freedom?

Pirsa: 10120056 Page 4/40




Symplectic Mechanics
Prevmplectic Mechanics

Reduced Mechanics

Gauge Symmetry and Constraints

Reduction

Symplectic Mechanics

First of all lets consider the physical phase space of a non-gauge
theory:

» Phase space generically has a symplectic geometry (I,{2)

» Dynamics is characterised by the geometric form of Hamilton's
equations Q( Xy, ) = dH where H is the Hamiltonian and Xy
is a vector field the integral curves of which are dynamical
solutions in phase space ¥

» There is a one-to-one representational correspondence between
both points and solutions in the formalism and the
instantaneous states and histories of the physical system being
represented
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Symplectic Mechanics

Mminlaectiec WViacrhanics

Reduction

Symplectic Mechanics
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Symplectic Mechanics
Preymplectic Mechanics

Reduction

Reduced Mechanics
Gauge Symmetry and Constraints

Presymplectic Mechanics

The physical phase space of a gauge theory on the other hand does
not provide such a straight forward representation of mechanics

» |t is a sub-manifold within the extended phase space T*%
defined by satisfaction of the constraint functions
2 = {X & I'\‘v’, ; (?;(X) — 0}

» The presymplectic geometry (X, @) provides us with a
degenerate dynamical structure since the null directions

(defined by the constraints) mean that the Hamiltonian
function no longer defines a unique dynamical vector filed

» There is now a many-to-one representative relationship
between points/solutions and states/histories
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Symplectic Mechanics
Preyvmplectic Mechanics

Reduced Mechanics

Gauge Symmetry and Constraints

Reduction

Reduced Mechanics

» Points connected by the integral curves of the null vector fields
form equivalence classes called gauge orbits [x] - each point on
a gauge orbit is understood as representing the same physical
state

» We can construct a quotient space [x]| € g with each point
corresponding to a gauge orbit

» |f all goes well this space will be a symplectic manifold with a
unique representation of physical states and dynamics
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Reduction

Reduced Mechanics

z] € g
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Symplectic Mechanics
Preyvmplectic Mechanics

Reduced Mechanics

Gauge Symmetry and Constraints

Reduction

Gauge Symmetry and Constraints

» Dirac presumes that the first class constraints (those that
commute with all the others) generate “infinitesimal
transformations that do not change the physical state’

» |f this presumption is accepted then the reduced phase space
(where the action of the constraints has been removed) should
faithfully parameterise the ‘true degrees of freedom’ in our
theory and we can interpret it as the true physical phase space

» However, it is the details of each theory on its own terms that
dictate whether the Dirac interpretation of constraints is
correct - if it is not then any reduced space will be problematic
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Reduct Geometric Quantisation
Quantisation [Crrac quantisation

[Q.R] =07

Geometric Quantisation

» The objective of the geometric quantisation programme is to
find a correspondence between the set of pairs: Symplectic
manifolds (.#,{1), smooth real functions C*(.# ') on the one

hand; and complex Hilbert spaces ##, self-adjoint operators

(7€) on the other

» We define the full quantisation of a classical system (.#,{2) as
a pairing of a Hilbert space, %% and a one to one map, O,
which takes the classical obervables f € Q°(.#) to the self
adjoint operators Oy on %
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educt Geometric Quantisation
Quantisation [Crrac quantisation

[Q.R] =07

Geometric Quantisation

Explicitly we require that [Echeverria-Enriquez 1999]:

1. 274 is a separable complex Hilbert space. The elements
| ) € 7, are the quantum wavefunctions and the elements
| w)c € P#g are the quatum states where P.#% is the
projective Hilbert space

2. Qs such that: i) Ofy, = O+ O i) Oy = A0r VA € Cii)
O1 = ld s,

3. [Or, 0] =ihOys y (i.e. O isa Lie algebra morphism up to a
factor)

4. For a complete set of classical observables {f;}, 2% is
irreducible under the action of the set { Oy, }
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Reduct Geometric Quantisation
Quantisation [Crrac quantisation

[Q.R] =07

Geometric Quantisation

» To geometrically quantise a canonical gauge theory we first
reduce the presymplectic physical phase space to construct a
symplectic reduced phase space. We can then use ideas above
to quantise this space and get a Hilbert space 57

» Both the constraints and symmetries are incorporated and
divided out at the classical level so we don't have to represent
them at the quantum level at all. Furthermore a well defined
Hilbert space structure with an inner product is guaranteed
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Reduct Geometric Quantisation
Quantisation Dirac quantisation

[Q.R] =07

Dirac quantisation

The first stage in the Dirac approach to quantisation is to quantise
the extended phase space. We can formalise this step in abstract
algebraic terms [Thiemann 2007]:

1. Define a classical Poisson *-subalgebra % in terms of (sub-set)
of functions on phase space with the symplectic structure of
phase space providing the Poisson bracket

2. Then define (based on %) a quantum *-algebra & which
implements if times the Poisson bracket of % as commutation
relations

3. Next, find a representation of &7 in terms of a subalgebra of

linear operators on a Hilbert space Z (.75, ) such that the
constraints are supported as operators on %5,
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Reduct Geometric Quantisation
Quantisation Dirac quantisation

[Q.R] =07

Dirac quantisation

In the second stage of Dirac quantisation we seek to construct a
physical Hilbert space by imposing the quantum constraints.
Informally, this amounts to:

» Treating the (first class) constraint functions operators
restricting the physical state vectors O(¢;) | W) phys =0

» The Hilbert space that is constructed by taking the physical
states is the physical Hilbert space .#,,,s of the quantum
theory

» The quantum observables are then taken to be self-adjoint
operators which commute with the constraints
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Reduct Geometric Quantisation
Quantisation Dirac quantisation

[Q.R] =07

Dirac quantisation

» Formally, however this second stage in the Dirac procedure
suffers from a number of problems: i) ambiguity in the
operator ordering; ii) lack of a rigours procedure for defining
an inner product structure on the space of physical states; and
iii) non-triviality of solving the constraints at a quantum level

» The extent that these difficulties can be overcome depends on
the theory involved and in particular the structure of the
constraint algebra (when it fails to be a Lie algebra the
situation becomes far more complex)
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educt Geometric Quantisation
Quantisation Dirac quantisation

[@Q.R] =07

Dirac quantisation

» But, for the purposes of this talk let us make the (highly
nontrivial) assumption that these problems have been solved -
our preoccupation will be with the conceptual rather than
formal foundations of Dirac quantisation
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educt Geometric Quantisation
Quantisation [Crirac quantisation

[@,R] =07

Does quantisation commute with reduction?

» We have considered two methods of quantisation for
constrained systems - an immediate question is whether the

they are equivalent - i.e. does quantisation commutes with
reduction?

» Strictly this question is entwined with the formalisation issue
of the last slide - in particular the precise structure of the

physical Hilbert space, F%,n,s, and whether it is suitably
isomorphic to that reached by geometric methods, 5%

Pirsa: 10120056 Page 18/40




Reduct Geometric Quantisation
Quantisation [Crirac quantisation

[@,R] =07

Does quantisation commute with reduction?

» However, what we are interested in is the extent to which the
two procedures are representatively equivalent in terms of the
structure they use to describe quantum systems displaying
gauge symmetry

» More precisely, should we think of the classical projection from
physical to reduced phase space as equivalent to the quantum
projection from the auxiliary to physical Hilbert space in terms
of the elimination of the same otiose representational structure
and the isolation of the same ‘true’ degrees of freedom
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Reduct Geometric Quantisation
Quantisation [Crirac quantisation

[@,R] =07

Does quantisation commute with reduction?

» On one level there is a clear inequivalence; whereas classically
the symplectic reduction procedure takes us from a
representation of physical states in terms of an equivalence
class to one which is unique, the Dirac procedure takes us
from an unphysical and otiose representation to one which is
both unique and physical

» Thus it is important that we should not think think of the
action of the constraints on the auxiliary Hilbert space as
generating gauge orbits which are equivalencies classes in the

classical sense
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Reduct Geometric Quantisation
Quantisation [Crirac quantisation

[@,R] =07

Does quantisation commute with reduction?

» For the case that the classical constraints form a Lie algebra
we can identify the quantum constraints with self adjoint
operators on % 5,x. | hese operators can then be understood
as defining a unitary representation of the relevant canonical
gauge group

» This means that we can define a precise connection between
the classical and quantum quotienting procedures in group
theoretic terms and thus confer representational equivalence
on the physical Hilbert space and the quantised, reduced phase

space - they both represent the same reduced set of degrees of
freedom
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Reduct Geometric Quantisation
Quantisation [Crirac quantisation

[@,R] =07

Does quantisation commute with reduction?

» However, when the classical constraint algebra fails to be a Lie
algebra this group theoretic basis for interpreting the quantum
constraints is no longer available to us

» We must still surely hope that 5%, and F are
representationally equivalent not least because representational
equivalence to reduced space quantisation would seem the best
methodology for solidifying the conceptual basis of the Dirac
methodology as correctly isolating the ‘true’ degrees of
freedom of the system

» But we have no hard and fast arguments, let alone proofs of
this equivalence...
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The ADM formalism

Reduction and degrees of freedom

A space of histories?

The dvnamical role of the Hamiltonian constraints

Canonical Gravity

The ADM formalism

We can re-cast the original Lagrangian formulation of general

relativity due to Einstein into a constrained Hamiltonian formalism
(Arnowitt et al. [1962]):

1
S:—/dr/ A3 LG5 P70 — [NTH, + | N|H]}
KJ/R G

where ¢ is a three dimensional manifold of arbitrary topology, g.s
and P2 are tensor fields defined on ¢ and N and N? are arbitrary
multipliers called the lapse and shift
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The ADM formalism

Reduction and degrees of freedom

A space of histories?

The dvnamical role of the Hamiltonian constraints

Canonical Gravity

The ADM formalism

H. and H are constraint functions of the form:

Hi = —2q,.DsP*
5K 1

H = —= ac B C
det(q)[q Gbd — 5 9abq d]

These are called the momentum and Hamiltonian constraints
respectively.
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The ADM formalism

Reduction and degrees of freedom

A space of histories?

The dvnamical role of the Hamiltonian constraints

Canonical Gravity

The ADM formalism

The physical phase space ¥ is a sub-manifold within the extended
phase space [ defined by the constraints:

> = {(qap, P?®) = x € T|H,(x) =0: H(x) =0}

Like in a typical gauge theory it has a presymplectic geometry
(2, 0)
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The ADM formalism

Reduction and degrees of freedom

A space of histories?

The dvnamical role of the Hamiltonian constraints

Canonical Gravity

Degrees of freedom and the gravitational field

» The need for the imposition of these constraints is easily
understood on an intuitive basis since we know that the
physical modes of the classical gravitational field should
correspond to a canonical representation with 4 x o degrees
of freedom and these constraints serve to cut the 12 x o3

variables of the extended phase space down to 8 x «?

» But this still leaves another 4 x o unphysical degrees of

freedom on the physical phase space - how exactly we can
eliminate this remaining degeneracy without simultaneously
interfering with the dynamical degrees is the essential problem
of canonical gravity

» Naively, we would simply press ahead and try and reduced
them out using the symplectic reduction procedure...
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The ADM formalism
Reduction and degrees of freedom
A space of histories?

Canonical Gravity : . : : y
e T The dvnamical role of the Hamiltonian constraints

Reduction

» |f we define the orbits of @ to be four dimensional surfaces ¥ in
> such that the quadritangent to the orbit X is in the kernel
of @ (i.e. @(X)=0) then we can identify the ¥ with the set of
(globally hyperbolic) solutions of the Einstein field equations

» This poses an immediate problem since these orbits are
precisely those which we would normally classify as gauge
equivalence classes - thus a symplectic reduction procedure
would (in principle) lead to a reduced phase space within
which, prima facie, dynamics has been gauged out
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The ADM formalism

Reduction and degrees of freedom

A space of histories?

The dvnamical role of the Hamiltonian constraints

Canonical Gravity

A space of histories?

» In light of this one might then attempt to re-interpret the
reduced space as a space of histories with each point taken to
represent a solution invariant under the class of
four-dimensional diffeomorphisms

» This could be justified on the basis that there exists a single
canonical isomorphism from our reduced phase space points to
the space of gauge invariant solutions in a Lagrangian
formalism

» However, the existence of an isomorphism does not
automatically confer representational equivalence and if we
read the reduced space in such a manner then it has
problematic consequences for how we view the unreduced
phase space
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The ADM formalism

Reduction and degrees of freedom

A space of histories?

The dynamical role of the Hamiltonian constraints

Canonical Gravity

The dynamical role of the Hamiltonian constraints

The Hamiltonian constraints of canonical gravity are of an unusual
dynamical type such that the transformations they effect on the
physical phase space cannot be understood purely as gauge:

v q"v NH g v _pG v
HIN), P} = ————N/]qll[4"° 9" — "' a""IRos™ + Lnp”

where H(N) = [ d>xNH and X* = (£,x%)

Since the second term on the right is non-zero on the constraint
surface - contra Dirac’s presumption - we cannot view the role of

the Hamiltonian constraint as purely producing infinitesimal
diffeomorphisms
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The ADM formalism

Reduction and degrees of freedom

A space of histories?

The dynamical role of the Hamiltonian constraints

Canonical Gravity

The dynamical role of the Hamiltonian constraints

» |n fact, we can only view the constraints of canonical GR as
collectively producing four dimensional diffeomorphisms once a
dynamical solution (generated by the Hamiltonian constraint)
has already be defined

» Thus we can assert that passing to the reduced phase space of
canonical gravity (where the action of the Hamiltonian

constraint is treated as pure gauge) will involving throwing the
dynamical baby out with the gauge symmetry bathwater
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Dirac quantisation of canonical gravity
Quantum momentum constraints

Quantum Hamiltonian constraints

“Tre Quandany | [QRI=0 forQc?

Dirac quantisation of canonical gravity

» The principle reason general relativity was cast into canonical
form in the first place was because it was thought that the
application of canonical quantisation techniques would then
provide a natural path towards a theory of quantum gravity

» Such a procedure (modulo numerous technical issues) leads to
an auxiliary Hilbert space with the appropriate commutation
relations between the self-adjoint operators §,5, and P3”
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Dirac quantisation of canonical gravity
Quantum momentum constraints
Quantum Hamiltonian constraints
[@.R] =0 for QG?

N The '.Quhandal%'}.r

Dirac quantisation of canonical gravity

As we have seen the standard procedure would then involve
imposing both Hamiltonian and momentum constraints as
restraints on the allowed physical states

H(N) | ) phys =0
Ha(Na) | W) phys =0
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Dirac quantisation of canonical gravity
Quantum momentum constraints
Quantum Hamiltonian constraints
[@.R] =0 for QG?

o The Quandanr

Quantum degrees of freedom counting

» The imposition of these quantum constraints seems well
motivated since it corresponds to exactly the reduction to the

required two degrees of freedom that we were interested in
classically.

» However, we need to be sure that we have isolated the correct,
dynamical degrees - and we can only be sure of this by making
an identification between these quantum constraints and the
appropriate classical symmetries
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Dirac quantisation of canonical gravity
Quantum momentum constraints

Canonical Gravif Quantum Hamiltonian constraints
The Quandary [Q.R] =0 for QG?

The quantum momentum constraints

» With regard to the momentum constraints this is can be done
since the quantum momentum operator algebra can be
understood as a natural extension of constrains role in the
classical theory as generators of Poisson bracket algebra
homomorphic to the Lie algebra of infinitesimal
diffeomorphism of o

» This close connection between quantum and classical
algebraic/group theoretic structures motivates us to posit that
the imposition of the momentum constraints will lead to a
representative structure equivalent to that reached by first
reducing out their action at a classical level and then
quantising
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Dirac quantisation of canonical gravity
Quantum momentum constraints
Quantum Hamiltonian constraints
[@.R] =0 for QG?

o The Quandanr

The Wheeler-de Witt equation

» The imposition of the quantum Hamiltonian constraints on the
other hand has no simple group theoretic interpretation since
the classical counterparts close only with structure functions

» Thus, - assuming Ha(N,) | V) phys = O does at least allow us to
construct a viable physical Hilbert space - we have no straight
forward basis to argue that this Hilbert space will be
representationally equivalent to that which would result from
reducing and then quantising
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Dirac quantisation of canonical gravity
Quantum momentum constraints

Quantum Hamiltonian constraints

" The Quandary | [Q:R1=0 for QG?

Does reduction commute with quantisation for canonical
quantum gravity’

So let us not try and make a strong argument either way - rather
just explore the two possible answers to the question - should we
think of the Dirac quantisation of canonical gravity as

representationally equivalent to a geometric quantisation of the
reduced phase space of the classical theory?
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Dirac quantisation of canonical gravity
Quantum momentum constraints
Quantum Hamiltonian constraints
[@.R] =0 for QG?

o The Quandanr

Does reduction commute with quantisation for canonical
quantum gravity’

» Assuming that we should then it appears that the only viable
interpretation of the Wheeler-de Witt equation is as imposing
at a quantum level the dynamically trivialising reduction that
we argued against for the case of the classical theory

» Assuming that we we shouldn’t, we then must then try and
understand exactly which degrees of freedom are we
quantising? How can we be sure they are the correct ones if
the conceptual foundations of the Dirac approach cannot be
anchored in its geometric reduction correlate?
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Dirac quantisation of canonical gravity
Quantum momentum constraints
Quantum Hamiltonian constraints
[@.R] =0 for QG?

o The Quandanr

More questions than answers...

» |f we are to provide the Wheeler-de Witt equation with a solid
conceptual basis it is essential to understand exactly which
classical symmetries its imposition at a quantum level is
connected to

» Should we think of it as representationally equivalent to the
application of full symplectic reduction? If so it seems to lead
us into difficult territory

» |f not, then it is important to ensure that its imposition can be
understood in terms of the isolation of the true dynamical
degrees of freedom of classical canonical gravity - and we
currently lack a basis for doing this
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Dirac quantisation of canonical gravity
Quantum momentum constraints
Quantum Hamiltonian constraints

[Q,R] =0 for QG?
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Dirac quantisation of canonical gravity
Quantum momentum constraints
Quantum Hamiltonian constraints
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