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High T

THT

irsa: 10120047 Page 3/71



Prelude: Phase Transitions in General

High T Low T

THT RRRRN

Pirsa: 10120047



Prelude: Phase Transitions in General

Pirsa: 10120047



Prelude: Phase Transitions in General

High T Ir=T, Low T

HUTLT fosdomte 1111

At criticality, we have fluctuations of a “massless” field and
long-range correlations described by continuum quantum field
theory. Landau-Ginzbug-Wilson paradigm.
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Prelude: Phase Transitions in General

High T Ir=T, Low T

PELTLT  topiein 11T

At criticality, we have fluctuations of a “massless” field and
long-range correlations described by continuum quantum field
theory. Landau-Ginzbug-Wilson paradigm.

What other things happen?
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Introduction

Holographic phase transitions

New types of critical phenomena

Behavior of the condensed phase

Conclusions
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Holographic states of matter

Holography gives us new tools for studying field theories.
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Holographic states of matter

Holography gives us new tools for studying field theories.

Minimal ingredients for having a phase transition in holography:

Simple model:
Electric charge U(1): J;(x) Bulk U(1) gauge field Ap(r, x)
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Holographic states of matter

Holography gives us new tools for studying field theories.
Minimal ingredients for having a phase transition in holography:
Simple model:

Electric charge U(1): J;(x) Bulk U(1) gauge field Ap(r, x)
Order parameter: O(x) Bulk scalar ¢(r, x)
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Holographic states of matter

Holography gives us new tools for studying field theories.
Minimal ingredients for having a phase transition in holography:
Simple model:

Electric charge U(1): J;(x) Bulk U(1) gauge field Ap(r, x)
Order parameter: O(x) Bulk scalar ¢(r, x)

Lo =7 (D8] + V(9))

(For now, remain agnostic about scalar charge and mass; will specify soon.) What
= 10egn one do with this model? Page 12171



Finite density states in holography

Turn on a chemical potential u for J, (and a finite temperature T).

So in the gravity dual, examine Reissner-Nordstrom-AdS, background.

F R? dr®

ds® = % (—f(r)dt2 - di’z) — r—zm Ai(r — 00) = p
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Finite density states in holography

Turn on a chemical potential u for J, (and a finite temperature T).

So in the gravity dual, examine Reissner-Nordstrom-AdS, background.

2 2 2
_r_ _ 2 4 432 _I._R_i —
ds® = R2( f(r)dt® + dx?) - = () Ai(r = o00)=p

Important fact: at T = 0, near-horizon geometry factorizes into
AdS; x R?. (Electric flux does not allow R? to shrink.)

¥

AdS, x R? >  AdS,

+ T

I
o

This AdS; will be very important.
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The IR CFT and instabilities

AdS;: Emergent conformal symmetry in IR.

Very useful for understanding holographic non-Fermi liquids (Faulkner, Liu, McGreevy,
Vegh).
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The IR CFT and instabilities

AdS;: Emergent conformal symmetry in IR.

Very useful for understanding holographic non-Fermi liquids (Faulkner, Liu, McGreevy,
Vegh).

All operators have IR CFT dimensions 4 under emergent conformal
symmetry. E.g. a charged scalar ¢, has:

. _\/m2R2 q2+1
v v 6 12 4

0=

N | =
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The IR CFT and instabilities

AdS;: Emergent conformal symmetry in IR.

Very useful for understanding holographic non-Fermi liquids (Faulkner, Liu, McGreevy,
Vegh).

All operators have IR CFT dimensions 4 under emergent conformal
symmetry. E.g. a charged scalar ¢, has:

. _\/m2R2 q2+1
=Y Y=\ T6 1271

0=

N | =

For certain couplings the IR dimension is imaginary; we have violated
AdS, BF bound (while preserving AdS; BF bound). Instability: at

T =0, scalar will condense. This is the mechanism driving the
holographic superconductor. (Gubser; Hartnoll, Herzog, Horowitz)
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The IR CFT and instabilities

AdS;: Emergent conformal symmetry in IR.

Very useful for understanding holographic non-Fermi liquids (Faulkner, Liu, McGreevy,
Vegh).

All operators have IR CFT dimensions 4 under emergent conformal
symmetry. E.g. a charged scalar ¢, has:

. \/mzRQ q2+1
+ v = - — 4+ -
6 12 4

0 =

N | =

For certain couplings the IR dimension is imaginary; we have violated
AdS, BF bound (while preserving AdS; BF bound). Instability: at

T =0, scalar will condense. This is the mechanism driving the
holographic superconductor. (Gubser; Hartnoll, Herzog, Horowitz)

Even for g = 0, there is a finite range of masses when this can happen;
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or simplicity, we focus on this neutral case.



Finite T physics

Warmup: take a neutral scalar with a small mass; search (numerically)
for condensed phase solution at various temperatures.

dV

Lp = ——
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Finite T physics

Warmup: take a neutral scalar with a small mass; search (numerically)
for condensed phase solution at various temperatures.

dV

U = ——

Note simplicity of neutral case. In A — oo limit can neglect backreaction: scalar fully

supported by its own potential.

At finite temperature: horizon regularity fully determines
solution—integrate outwards and find

&(r) — Hre + (O)r~™al
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Finite T physics

Warmup: take a neutral scalar with a small mass; search (numerically)
for condensed phase solution at various temperatures.

dV

Llp = ——

Note simplicity of neutral case. In A — oo limit can neglect backreaction: scalar fully

supported by its own potential.

At finite temperature: horizon regularity fully determines
solution—integrate outwards and find

é(r) — Hre + (O)r~al
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Increasing the temperature

In linear region, susceptibility Yy measures the response to the
applied field: (O) = xH.
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Finite T physics

Warmup: take a neutral scalar with a small mass; search (numerically)
for condensed phase solution at various temperatures.

dV

Up = ——

Note simplicity of neutral case. In A — oo limit can neglect backreaction: scalar fully

supported by its own potential.

At finite temperature: horizon regularity fully determines
solution—integrate outwards and find

&(r) — Hre + (O)r~al

Pz 1010 yrm alizable solution has H = 0. Page 23/71



Increasing the temperature

In linear region, susceptibility Y measures the response to the
applied field: (O) = xH.
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Increasing the temperature

In linear region, susceptibility Y measures the response to the
applied field: (O) = xH.

(0) (0) (0)
H -H o C—

|

/ _,f"',

High T. x finite. T = T, Critical T < T,.; Condensed

point, x ~ TICTC phase.
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Increasing the temperature

In linear region, susceptibility Yy measures the response to the
applied field: (O) = xH.

©) ©) ©)
L ..«J"
-H - -H "- -H

High T. x finite. T = T, Critical T < T.; Condensed

point, y ~ Tf}c phase.

These are cartoon pictures; however this is what happens numerically,
and they are precisely the predictions of mean-field Landau theory. Not
surprising; we are solving classical equations of motion.

rrsa 1:00@Member: susceptibility diverges as we approach transition. page 26/71



A quantum phase transition?

That wraps up the finite- T transition.

So: can we tune T, — 07
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A quantum phase transition?

That wraps up the finite- T transition.
So: can we tune T, — 07

Recall IR dimension is

m? R2 I |
= adl /, sz\/ —q——l—

6 12 4

Instability only exists if v imaginary; thus if we can tune v — 0, we
should have T. — 0, and a quantum phase transition.
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Tuning the IR dimension

How to do this?
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Tuning the IR dimension

How to do this?

1. Crudest: set g — 0, tune m?® by hand. (For simplicity, this is how we do
it.)
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Tuning the IR dimension

How to do this?

8

irsa: 10120047

Crudest: set g — 0, tune m? by hand. (For simplicity, this is how we do
it.)

Less crude: keep g nonzero, couple in boundary magnetic field:

f

1, [ m?R? V1+12B2 -1
5s.q=§i\/ e 1T (61Bq| — ¢*)——

There is a critical B field above which dg 4 is real.

L1
4
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Tuning the IR dimension

How to do this?

8

Crudest: set g — 0, tune m? by hand. (For simplicity, this is how we do
it.)

Less crude: keep g nonzero, couple in boundary magnetic field:

/
1 m?R? vV1+12B2 -1
6.0 =3 £ —5— + (6Bl - ) +

6 7282

There is a critical B field above which dp 4 is real.

1
4

Less crude still: study D3D5, find tunable “m?” as a function of
magnetic field (Jensen, Karch, Son, Thompson)

The “universality class” of the transition does not depend on how you do
it: so parametrize it with some coupling g:

Pirsa: 10120047
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b=odu V=Y

Page 32/71

For 2 < 2~ scalar violates AdS-> BF bound: instability.



Thus we can drive this critical temperature 7. — 0.

i g

|
|
|
|
I
|
|
I
|
|
|
i
|
|
|
1

?
w9
g C
What is the nature of the quantum critical point? What happens if
rsa; 10120047 we violate the AdS, BF bound? Page 3371



Quantum phase transition

Let's now approach critical point: g ~ g. from below.
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Quantum phase transition

Let's now approach critical point: g ~ g. from below.

Physics slightly below AdS BF bound is an example of annihilation

of two conformal fixed points (Kaplan, Lee, Son, Stephanov).
In general, conformality is lost and a new IR scale is generated:

m
Air = Ayv exp (- )
Bc — 8

Peculiar exponential behavior is characteristic of Berezinskii-Kosterlitz-Thouless

transition, a classical phase transition involving vortex physics in 2D.

This scale controls physics near the transition: T, (®), etc. Let us
understand how this works in our setup.

Pirsa: 10120047 Page 35/71



Understanding IR scale, part |

Put coordinates on uncondensed AdS,:

ds* —dt* +dz*

2 2
R2 z

Honzem AdS,
| — R UV

Z —> OO |

irsa: 10120047 Page 36/71



Understanding IR scale, part |

Put coordinates on uncondensed AdSo:

ﬁ _ —dt? +dZ?
R22 - z2
Horzeom Ad54
e R UV ————)
Z—» 00 z—0

Now study scalar wave equation on AdS;:

d’ . &—8—1/4

A

Famous 1/z2 potential. If g < g, infinitely many negative
“energy”’ bound states: scalar instability.

b = w?o,

irsa: 10120047 Page 37/71
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Understanding IR scale, part ||

In our problem, there is a UV cutoff on z,,,. Imagine putting an IR
cutoff zjz as well-then this helps stabilize the spectrum.

IR uv

by -

R ZUV
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Understanding IR scale, part ||

In our problem, there is a UV cutoff on z,,,. Imagine putting an IR
cutoff zjz as well-then this helps stabilize the spectrum.

IR uv

- - —
- —

2IR Zuv

To find zjz: assume ¢(zzr yv) = 0. Study w = 0 (threshold) solutions:

#(2) = Vzsin [ﬂ og i]

Zyv
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Understanding IR scale, part ||

In our problem, there is a UV cutoff on z,,,. Imagine putting an IR
cutoff zjz as well-then this helps stabilize the spectrum.

IR uv

b -

2IR Zuv

To find zjz: assume ¢(zzr yv) = 0. Study w = 0 (threshold) solutions:

o) = Vzsin | VE=glog |

Satisfies boundary condition with no nodes if

ZIR [y
log —R —
Zyv Bc— 8

This is ground state-no nodes! Thus this is the minimum zz that
P iBLaDIlizes the instability. So a scale is generated! This scale controls the-

francition



What provides the scale?

One way: via a finite temperature. Replace AdS; with an AdS;
BH; then horizon cuts off the geometry.

| —1T
Te ~ — ~ Ayy ex
c ZIR uv P( ;—gc_g)

If T > T., no instability.
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What provides the scale?

One way: via a finite temperature. Replace AdS; with an AdS;
BH; then horizon cuts off the geometry.

| —TT
Te ~ — ~ Ayy ex
i ZIR o p(vgc-g)

If T > T., no instability.
Another way: if T = 0, then scalar will condense; nonlinearities
provide the scale.

(O) ~ exp (—

Will come back to this.

~=)
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Summary of critical behavior

Thus, we have BKT-generated energy scale in time and a novel
guantum critical point.
What is the critical behavior?
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Calculational interlude

How do we do finite frequency response at low temperatures?
Want to compute retarded correlator Gg(w, k) for operator O.

r

AdS, x R2 >  AdS,

- T

0

Impose infalling boundary conditions at horizon (Son, Starinets). Find
exact solution in AdS; region, then match onto UV solution
(Faulkner, Liu, McGreevy, Vegh).
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Calculational interlude

How do we do finite frequency response at low temperatures?
Want to compute retarded correlator Gg(w, k) for operator O.

r

AdS, x R —  AdS,

- f

0

Impose infalling boundary conditions at horizon (Son, Starinets). Find
exact solution in AdS; region, then match onto UV solution
(Faulkner, Liu, McGreevy, Vegh).

Extract answer at boundary: ¢(r — o0) ~ Hr®€ + (O)rs=all,

Gr(w, k) ~ (%(?

AdS; region contributes interesting non-analyticities in w, 7. UV

Pirsa: 10120047 = Page 45/71

region does not know about phase transition.



Critical behavior |: a bifurcating critical point

Susceptibility is x = Ggr(w = 0,k = 0).

irsa: 10120047 Page 46/71



Critical behavior |: a bifurcating critical point

Susceptibility is x = Ggr(w = 0,k = 0).
Findat T =0, g — g_:

(g) = _.3+ng_gc
KiE -ﬂ+5vg—gc

(a, 38 are constants from solving UV equatinn.)

Unlike normal transition, it doesn’'t diverge at g = g.—instead,
bifurcates!

irsa: 10120047
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Critical behavior |l: diverging correlation length

Now turn on finite k: this contributes to the AdS, mass, and so
pushes us away from critical point:

.B—f-g\/(g_'gc)“l"i_i

GR(LLJ=0,k)= =
a+&\/(g_gc)+ %:«T
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Critical behavior |: a bifurcating critical point

Susceptibility is x = Ggr(w = 0,k = 0).
Findat T =0, g — g_:

( )_.3+5Vg_gc
A -a+&vg_gc

(a: 38 are constants from solving UV equatinn.)

Unlike normal transition, it doesn’'t diverge at g = g.—instead,
bifurcates!
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Critical behavior |l: diverging correlation length

Now turn on finite k: this contributes to the AdS, mass, and so
pushes us away from critical point:

.3+B\/(g_'gc)+i_§

GR(LJ=0,k)= =
a+&\/(g_gc)+ f‘«?
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Critical behavior |l: diverging correlation length

Now turn on finite k: this contributes to the AdS,; mass, and so
pushes us away from critical point:

_.3+B\/(g~g 45
Gr(w =0, k) = =
| a‘!'&\/(g_gc)'i'%
k_ Cuts in complex k-plane; can use
AVT — 3. these to do Fourier transforms.
- Find diverging correlation length:

§~ (g_gc)_%'

Mean-field scaling in k; this is because spatial directions do not take part
1A non-trivial IR CFT. oo

irsa:



Critical behavior lll: finite frequency

Turn on a finite w; we find then in blue region:

e
In this region system does not know about g — g., or about k.

This behavior holds over an exponentially large range of w:
1
log(w) < ”—
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Across the transition

What if g < g7 Now if we are at T = 0 we know we must be in a
condensed phase. Deep IR depends on details of nonlinearities.

Split spacetime into three regions:

old
-
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Across the transition

Pirsa:

What if g < g7 Now if we are at T = 0 we know we must be in a
condensed phase. Deep IR depends on details of nonlinearities.

Split spacetime into three regions:

o(r) =

Close to transition we can derive analytic formula for nonlinear

response curve (up to a single parameter that is determined by

nonlinearities.) We expect it to have some sort of oscillatory
.Character...
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The Efimov Spiral
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The Efimov Spiral
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The Efimov Spiral

Straight line from linear response explodes into a spiral that goes
on forever.

Intersections with H = 0 line define an infinite number of
normalizable Efimov states.
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Thoughts on the spiral

i
% 14
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Thoughts on the spiral

States are exponentially spaced.
Discrete scale invariance, broken

eventually by UV. Outermost
state is thermodynamically

stable, (O) ~ exp (_Nﬁ)
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Thoughts on the spiral

States are exponentially spaced.
Discrete scale invariance, broken

eventually by UV. Outermost
state is thermodynamically

stable, (O) ~ exp (_Nﬁ)

At any finite T, the infinite number of spirals is replaced by a
straight line down to the origin.
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Thoughts on the spiral

States are exponentially spaced.
Discrete scale invariance, broken
eventually by UV. Outermost
state is thermodynamically

stable, (O) ~ exp (—ﬁ)

At any finite T, the infinite number of spirals is replaced by a
straight line down to the origin.

As we approach critical point g — g~ , can show analytically that
spiral is squeezed into linear response line: recall, finite

susceptibility as g — g_.
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Found a nontrivial quantum phase transition from gravity. Some
strange properties:

1. Driven completely by IR physics.
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Found a nontrivial quantum phase transition from gravity. Some
strange properties:

1. Driven completely by IR physics.
2. Susceptibility remains finite approaching transition.
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Found a nontrivial quantum phase transition from gravity. Some
strange properties:

1. Driven completely by IR physics.
2. Susceptibility remains finite approaching transition.

3. Finite frequency critical response does not care about k.
‘'z = 00" fixed point in some sense.
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Found a nontrivial quantum phase transition from gravity. Some
strange properties:

1. Driven completely by IR physics.
2. Susceptibility remains finite approaching transition.

3. Finite frequency critical response does not care about k.
“z = 00" fixed point in some sense.

ez BKT scaling in time; mean-field scaling in space. Paoe oo



Future directions

How do these critical degrees of freedom affect other fields they
are coupled to? (e.g. Fermions near quantum criticality.)
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Future directions

How do these critical degrees of freedom affect other fields they
are coupled to? (e.g. Fermions near quantum criticality.)

Can we write down an effective field theory for this sort of phase
transition? (What replaces Landau?)

Perhaps a semi-holographic construction (Faulkner, Liu, McGreevy, Vegh;
Faulkner, Polchinski; Son, Nickel):

S = Suv(9) + Sir(®) + ?7/ ol

This works well for non-Fermi liquids but is rather nontrivial in this
case... (in progress with Liu, Mezei).
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More speculatively...

Field theoretical physics behind this remains obscure.

Insensitivity to k suggests that somehow different localized patches
are going critical individually; like a lattice of uncorrelated degrees

T
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More speculatively...

Field theoretical physics behind this remains obscure.

Insensitivity to k suggests that somehow different localized patches
are going critical individually; like a lattice of uncorrelated degrees

T

s this related to the finite entropy density? (In gravity calculation,
yes.) Can we make this precise somehow?
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More speculatively...

Field theoretical physics behind this remains obscure.

Insensitivity to k suggests that somehow different localized patches
are going critical individually; like a lattice of uncorrelated degrees

TLITLT

s this related to the finite entropy density? (In gravity calculation,
yes.) Can we make this precise somehow?

Can this help us better understand the nature of the AdS; ground
state?

The End 3 Page 70/71
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€ More speculatively...

Field theoretical physics behind this remains obscure.

Insensitivity to k suggests that somehow different loczalized patches
are going critical individually; like a lattice of uncorrelated degrees

THLT

Is this related to the finite entropy density? (In gravity calculation,
yes.) Can we make this precise somehow?

Can this help us better understand the nature of the AdS; ground
state?

The End. "

Matsil |ghal Quantum Phase Transitions from AdS;: Beyond the Landau P
v i

£ : il P ' — = —
- —alie Vi W RE T T P g [——

introduction
Holographic phase transitio
New types of critical pheno
Behavior of the condensed |
Conclusions

-~



