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Motivation and Goals

@ Manvy examples of AdS/CFT correspondence are well established by now

@ However, there is no direct derivation of the duality in any example

@ Many approaches for such derivation have been (and are being) tried. eg

» Explicit rewriting of field theory Feynman diagrams as worldshest correlators

- - ¥ -
ODaKUMmar..

» Taking the zero radius limit of the string sigma model. Berkovits.
-

@ In this talk we will outline vet another approach:
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It is believed that the extra, radial. direction of AdS is related to the RG scale.
This observation is in the heart of holographic renormalization

We will try to make the relation between RG and holography more precise

In particular we will claim that the exact RG equations for a3 free scalar theory are
equivalent to higher spin gravity in AdS
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QOutline

@ General comments
@ Exact RG eguations
@® RG equations as Bulk equations: RG +« GR
@ Correlators
¥,
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General comments - Free theory
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The field theory we will discuss is a free scalar theory,

S /d:“-rr“:"w..u__-'*njl. A=1---N.

The analogues of the single trace operators are operators built from one © and one |

OFly---aiis. ¥,---Vr _ Gl . _SsHMN x)T - - - 5" @™ ([x).

The boundary theory has conserved currents of arbitrarily high spin which should be dual
to bulk higher spin gauge helds

Hl’l

It is conjectured to be dual to higher spin gravity in AdS. Sundborg, Sezgin-Sundell
Klebanov-Polyakov
Such interacting higher spin theory in AdS was constructed by Vasiliev and co
Recently S. Giombi and X. Yin have verified that the 3pt functions in Vasiliev's theory
agree with the free theory
The dual theory is not 3 string theory. For example, the large N expansion is trivial and 't
Hooft argument does not apply.

M
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General comments - RG and Holography

@ In Holography we have

S$=5 4 / ol ) Ox).
with O;(x) being operators and ¢;(x) the sources. In the bulk we have fields ®;(x. r) dual
to O; which have “boundary values” ¢;(x)
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General comments - RG and Holography

@ In Holography we have
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S = Sp+ / 5 x) Oy(x).

with O;(x) being operators and ¢;(x) the sources. In the bulk we have fields ®,(x. r) dual
to O, which have “boundary values” o;(x)

In RG the situation is very similar. We have an action defined at some cut-off scale Ag

such that the “effective couplings” ®,(x.A) go to ¢(x) for A going to Ap.
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General comments - RG and Holography

@ In Holography we have

S$=5-1 / b x) Op(x).

with O;(x) being operators and @;(x) the sources. In the bulk we have fields ®,(x. r) dual
1o \.1 which have 'b*:rL.IT‘.da!"‘_qr values' -_’-I-q' X |
In RG the situation is very similar. We have an action defined at some cut-off scale Ag
S=5+ / o x) O(x)
Then we define the theory at scale A below Ag,
S=S+ [ ®uilx.N)Os(x),
such that the “effective couplings” ®,(x.A) go to ¢;(x) for A going to Ag.

We will try to argue that essentially the above two statements are equivalent. at least in
the particular example we will discuss.

N
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General comments - RG and Holography

9
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In Holography we have

Ly

So + / bl %) Op(x).

with O;(x) being operators and ¢;(x) the sources. In the bulk we have fields ®/(x. r) dual

to O; which have “boundary values” @;(x)
In RG the situation is very similar. We have an action defined at some cut-off scale Ag

S = Sr: t / el x ) Olx)

Then we define the theorv at scale A below Ag.

Lry

S5+ | ®ilx. A)Os(x),

such that the “effective couplings” ®,(x.A) go to ¢:(x) for A going to Ag.

We will try to argue that essentially the above two statements are equivalent. at least in
the particular example we will discuss.

Anything one directly obtains from the field theory is in 3 “fixed gauge” with respect to
bulk gauge symmetry

One has to add the redundancy implied by having gauge s;-rmme:rjﬂmich s not always a
Page 9/5
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Exact RG - Polchinski's equation

@ We start with a partition function
Z = [ [Dg] e 5o
@ and introduce a smooth cut-off

Skin / d?ppralp)alp) —  Sum(A) / d’pp” K Y p* /A" )olp)o(p).

such that K(x) interpolates between 1 at x = 0 and 0 at x = o
@ Then we demand that

= : - d
2 / Dg)] e SemlN)—Smel) — 4y =0
F J dal
@ This implies that the effective action has to satisfy
a _ ( p 1 "H*D: ".":: " 0Smr OSm: ":5. r
E Sinrl A) = / a p— J\‘ : = - -T_ E
/ / p- N ol p) ool p) yl ploe(p)
i
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Exact RG - Free theory
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For generic theories Polchinski's equation gives an infinite set of equations for the infinite
number of possible couplings.

In 3 free theory the only couplings are quadratic in the helds

Sin - / df'pcrfc; B(p.qg) o{p)o(qg) + F
and we get only two equations for B and F
dvBip.g) = / d”sdPs’ B(p.s) a(s.s’) B(s'. g)

daF / d‘r'_'pd‘r'-qrup_c:lprq_pr + Bl(qg.p)).
where we define

Plp.qg) - p°K ::,:r_ .-\:|.~"ﬁ"p q). a=dP!

The free energy (and thus the bulk on-shell action in the AdS/CFT correspondance) is
given by

F - /Id;’\dwF-- /d:\Tm-B. — T'iagrpgr.’?ﬁ'li
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equations as matrix equations

Let us expand B in powers of p/A and g/A
B=Y AN By amm 5P P g =AN"""Bgpict

and also define

e — A5 /CJ'LD f d” g alp. g)p=g*

Then the RG equation can be written as a matrix eguation

We will soon interpret this equation as 3 radial component of 3 bulk equation of motion
WAJ I: . 3
What about other directions! o
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Exact RG - Free theory
@ For generic theories Polchinski's equation gives an infinite set of equations for the infinite

number of possible couplings.
@ In 3 free theory the only couplings are quadratic in the fhelds
Simr = — / d®pd® q B(p. q) o(p)o(q) + F
and we get only two equations for B and F
3
dvB(p.q) = / d”sd"s’ B(p.s)a(s.s") B(s'. q)
daF /d;'-lpd‘r'-qwrp_f:;:IPIQ_;}I + B(q.p)).
&M
“ f
1 p—1
d

r
77
| il

where we define
FPlp.g) = oK p‘ A~ )alf (p— q).
on in the AdS/CFT correspondance

-

alL Ll

T"lﬂg[P B))

@ The free energy (and thus the bulk on-shell

given by |
Jﬁ = /d:'\ d*.lc'- ‘Id-ﬂ'."-TrF! E
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RG equations as matrix equations
]
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Let us expand B in powers of p/A and g/A

- e

B=Y% A"'E .. .::.U;" pEqt..qr =N""""Bg prg~

=

and also define

Then the RG eguation can be written as a matrix eguation

d ; 1
_B.__—: E.’Tf L I'—B:- T r"a ‘:5 T t.‘ Bl_,—:' .
dhA — - — —
We will soon interpret this equation as 2 radial component of 3 bulk equation of motion
What about other directions?
. &
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Exact RG - Free theory

@ For generic theories Polchinski's equation gives an infinite set of equations for the infinite

number of possible couplings.
@ In 3 free theory the only couplings are quadratic in the fhelds

' /dﬂpﬂiﬁ B(p.g) o(p)o(q) + F

Siue

and we get only two equations for B and F

-
dyB(p.q) = — [ d”sd”s’' B(p.s)a(s.s") B(s'. q)
daF / d:'-'pd‘r'-qrup_f:',|qu_p| + Bl(qg.p)).
where we define
D)y | LE -ljﬁ FJ 1

P(p.q) = p°K " (p? /A*)6'P)(p - q).

@ The free energy (and thus the bulk on-shell action in the AdS/CFT correspondanc
given by
. | dATra-B. — —Triog(P — B) )
Page 15/5
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Exact RG - Polchinski's equation

@ We start with a partition function

@ and introduce 3 smooth cut-off

Skin = '. dDD_ﬂ;_’lpi-?{.’Jl = Sum() dfpp‘ﬁ
/ /

such that K(x) interpolates between 1 at x = 0 and 0 at x = o

@ Then we demand that

I a
Z = [ Do) e SN —Smi) 7, —0.
[Do] =
@ This implies that the effective action has to satisfy
d - D l o H | D: '.": : i "5 T ‘5'".- ‘:5."
& iy~ [ 5, L NN § e S . )
dA ) p* N | dol(p) so(p) o plée(p) |

sa: 10120045
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Exact RG - Free theory
@ For generic theories Polchinski's equation gives an infinite set of equations for the infinite

number of possible couplings.
® In 3 free theory the only couplings are quadratic in the fields
i / d®pd” q B(p. q) o(p)é(q) +F

W

| B(s'. q)

5

Ly

and we get only two equations for B and F
/ d’sd"s’ B(p.s)a

]
daB(p.qg) =
daF f d:'ﬁpd‘r'-x;rrup.:: (P(g.p) + Blg.p))
'-!.__p i == g\p

where we define
P.p_cl._ —S:H ‘i.p; .'\.:I-“I‘

CTIC

@ The free energy (and thus the bulk on-shell a

given by :
F= [ dAd\F ~ [ dATra-B

sa: 10120045

1

n in the AdS/CFT correspondance) is

Triog(P — B) )
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RG equations as matrix equations

@® Let us expand B in powers of p/A and g/A

and also define .
L =A—*" [ d% [ d°q a(p.q)pte"

@ Then the RG eguation can be written as 3 matrix eguation

iE,-_. ByalBy, + A (s +1t)B..
dA — -

@ We will soon interpret this equation as a radial component of a2 bulk equation of motion
What it other directions?
at about othe tions am

sa: 10120045
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Exact RG - Free theory
@ For generic theories Polchinski's equation gives an infinite set of equations for the infinite

I_.Il ":ITI

number of possible couplings.
@ In 3 free theory the only couplings are quadratic in the fields
d”pd”q B(p.q) o(p)é(q) + F

5'!‘"

| B(s’. g)

[F /]
L

and we get only two equations for B and F
s’ B(p.s)a

/I d’sd"s

diB(p.g) =

]
daF /d‘"'pd‘r'_qwrp_{;:lpr'q_pr + B(qg.p))
where we define
FP(p.qg) = oK Eip; .-\:w"ﬁ"p - q). a=dyP?
@ The free energy (and thus the bulk on-shell action in the AdS/CFT correspondance) is
given Dy
F= [ dAd\F ~ | dATra-B. - —Triog(P — B) )

sa: 10120045
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RG equations as matrix equations

@ Let us expand B in powers of p/A and g/A

B ST A By b8Pt . .pr*qgr..gqt=AN" Bs: p~q~

and also define

L =A" [ dP% / d’q a(p. q)pt &=

@ Then the RG eguation can be written as 3 matrix eguation

B B

_Ei_ c s r!;L-E;'r - 31 1:.5 B f} Eggj .
;s = F =

@ We will soon interpret this equation as 3 radial component of 3 bulk equation of motion
What about other directions? ™

sa: 10120045

Page 20/5



sa: 10120045

equations as matrix equations

Let us expand B in powers of p/A and g/A

B=3 N*"'By 0 ap - 05q" g*=N""Byp-q~

and also define :
A f s | d°q a(p. q)p= ¢t

Then the RG equation can be written as a matrix eguation

* o B.alB, +A s +t)Be.
an = e -

We will soon interpret this equation as 3 radial component of 2 bulk equation of motion
What about other directions? oM

Qur cut-off scheme is transiation invariant. We can add a dependence orhJ “reference
coordinate” a by the following. The action is invariant under the following shift of
coordinates

M ¥ af) — . y
id"x d“x Bla+x.a+x"Yola+ x)ola+ x').

thus Fourier transforming to momentum space we get

— Bap~q-=i(p — q ) Bap-q

aa; B Page 21/5




A Generalization

We have discussed till now a3 transiation invariant RG. However, this can be generalized by
introducing an E;-piic:t_ﬂepg-wd&nc& on the reference coordinate 3 into the cut-off function
K(p-/A<) > K(p~/A=. 3), i.e. “position dependent momentum cut-off” or equivalently

putting the theory on a grid of spatially varying size

1

n " TE

4= . Tl 1

' 4 ST - ‘

5 -_‘:1- ‘(A#:?"f 4 .:. ' T !

L . = 'y? -

- FRL AR~ v SN P | e
T TN S g o A e 1 d

R g% B cs 2 By = Byl B+ A~Y(s+1) By
= = . S | d."'l. — = S— -

We identify

sa: 10120045
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RG equations as matrix equations
3

sa: 10120045

Let us expand B in powers of p/A and g/A

B \-‘ \ = 'E.;: - SO T p‘;‘- I‘J;:q:‘: ’ 'I:I':L - 'I\ — Sip:‘-q;-

and also define

= — A5 T /d!;fdf'q*up-ﬂlﬂ"‘-qi

Then the RG egquation can be written as a3 matrix eguation

iﬁ____: Biu"!iS"_’ T ."\. 1:5 +~r) 85*
dh — = — =

We will soon interpret this equation as 3 radial component of 2 bulk equation of motion
What about other directions?

Qur cut-off scheme is translation invariant. We can add a dependence on a “reference
coordinate” a by the following. The action is invariant under the following shift of
coordinates

— a m - ; ]
L pL = - o - r /
/dtd x Bla+x.3a+x"Yola+ x)ola + x').

thus Fourier transforming to momentum space we get &My

d = = =
— Bap~g~=i(p — q ) Bapg-
ada; Page 23/5




A Generalization
We have discussed till now a transiation invariant RG. However, this c3
introducing an explicit :Iﬁpe'*lderlce on the reference coordinate 3 into the cut-off function

K(p®/A?) »  K(p? /A2, a),
putting the theory on a grid of spatially

- SEm—.
i -~
= A -1 e —
1 N OREE R
| Wrioba, i
LT AR N :
i A = e - L -
- - o - n
e T - ."fj._
s —_-a..-.H r. N —
: 5 7 By s st
2 *5 “ _'f :
- = . | -
% i
- b _J_-
= oW
& ~d
bl
R ! =

We identify
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B o B,

dh = -
d =

= B;T 5 L

da g

position dependent momentum cut-off’
varying size

n be generzlized by

equivalentiy
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RG

F
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equations as matrix equations

Let us expand B in powers of p/A and g/A

=% K "By 3.y 5 P..Pq.. g =A""""Bgpq-,

and also define

5 &—T 5 o) e I
o /d“pfd“q-up-q!p’-ﬂ*.

Then the RG equation can be written as a matrix eguation

.i =T BEI'II'—IS'[ T -I"'- ::5 T t BF"
an - = — =

We will soon interpret this equation as a2 radial component of 2 bulk equation of motion
What about other directions?

Our cut-off scheme is transiation invariant. We can add a dependence on a “reference
coordinate” a by the following. The action is invariant under the following shift of
coordinates

B ¥ al) - . =
/G“‘ ’d"“x B(a+ x.3+x"ola + x)o{a + xX').

thus Fourier transforming to momentum space we get &My

d T : 5
EE‘_W - i(p — q' ) Bap~q~
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A Generalization

We have discussed till now a transiation invariant RG. However, this can be generalized by
introducing an explicit dependence on the reference coordinate 3 into the cut-off function

K(p- AZ) »  K(p?/A2. 3), i.e
putting the theory on a grid of spatially varying size

e F
_— T X =1 T s T
! s 5 i
ey e
—— Ly A}i‘:’g. &
e ."—._ i " 1';-‘- ..1 -
= _l. -.f- l-_i.l}:u
il 3 LN v ::‘L N | c
TR R, i o8, S 2 e 3 Spmar d
" Y — ? 7 -\P-‘_
< & 1 K . R -dTS? b
= = '.._ S - f e
N _.’:-
- # e

'R
B
I

We identify

position dependent momentum cut-off” or equivalently
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Short digression: From matrix multiplication to Moyal

product

@ The matrix multiplication appearing in the equations can be elegantiy encoded as a

non-commutative Moval product.
The index u takes D + 2

_—

@ One introduces auxiliary variables, “oscilators™: y#, v., ¢, Z,
different values {e.r. 0. 1. ,D—1)

@ The auxiliary variables are multiplied by 3 =-product which is defined by
: ’ & "+ ' i
pre gt —— | 7 =3 re l
' 2 \ OV 1z ! 2z v (s r
o } L £ O ) =
Vu®*=¥u + | | 7 zZ,*s=7Z, 6 +—| 1
2 \ Oy* 74 2 \ Oy 3z J
@ In particular [¥,. ¥7l. = 2. Ba. 27 ~fi, . The metric on this auxiliary space is
e = (—1.1.7n). where 7 is the metric on the original flat space-time

'

Page 27/5
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A Generalization

We have discussed till now a transiation invariant RG. However, this can be generalized by
iNntroducing an E-piic:t_:&pgnd&nc& on the reference coordinate 3 into the cut-off function

Ki p‘ '\" | r
putting the theory on a grid of spa

5 1 1
- - — T ;s L B -
{ = - = - i
v e 2 Thr N
% L a ’;‘E_'_\‘,-'.‘. "-- F 1
L L -
— — : * l‘-,..-' . ‘-—-
T {3 B i t‘zl?:'.
= P B o oa v A, Fp i
S e A —
: D e
C - ., .'. -u_E ] il
- -
= ' -
F
Tt T S L1 =

We identify
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H:,D"-'\".Jl. |:f'.-"

position dependent momentum cut-off’

tially varying size

or equivalently

L
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Short digression: From matrix multiplication to Moyal

product

@ The matrix multiplication appearing in the equations can be elegantly encoded as a
non-commutative Moval product.
@ One introduces auxiliary variables, “oscilators”: v#_ ¥.. ¢  Z.. The index u takes D + 2

different values {e.r . 0.1. D—1)

@ The auxiliary variables are multiplied by a3 =-product which is defined by

:'_ ¥ ¥ 1 ¥
yie = yo — = ) e, zEe=ze | | i

y B v, =z ! ’ 2 v 17,

1 o / & :- i ! a \ _—
Va®*=¥u + =1 Zo=Z, +—| f
- > - . 2 .'1'2. ": P 2 1 I-.'V‘.' *.-. ) =

@ In particular [¥V,.. ¥7l. = fla. Ba. 27 -fi, . The metric on this auxiliary space is
e = (—1.1.7n). where 1 is the metric on the original flat space-time
N

L
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A Generalization

We have discussed till now a transiation invariant RG. However, this can be generalized by
introducing an explicit dependence on the reference coordinate 3 into the cut-off function
K(p-/A-) » K(p/A-. a), i.e. “position dependent momentum cut-off” or eguivalently
putting the theory on a grid of spatially varying size

ol v
FL 4 Tl f-'r-‘.a ‘- y $
L Re o sy a5
*..-__ l_‘_\- .‘( l.';-_ -a - | >
e LR R i T T | d
R R, Wy 3 . e
- " L r - 1
i €5 Bl —~Bg = By By + AN (s + 1) By
e - ...._ — = I' L — \ a —
2 :

We identify
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Short digression: From matrix multiplication to Moyal

product

@ The matrix multiplication appearing in the equations can be elegantivy encoded as a

non-commutative Moval product.
@ One introduces auxiliary variables, “oscilators™: v#. ¥.. z#. Z.. The index u akes D + 2

different values {e.r. 0. 1. D —1)
@ The auxiliary variables are multiplied by a =-product which i

T 4 i ) 1 y 7 \
i -, f \ - -
yHe =) B ZHe —zF — —
2\oy. )" ACH,
= = 1 / [ i * = 1 Fe i =
Yu®*=Yu +—| | 7 .t =7 +—| } 17,
- il -_. \ v ‘_,: F : i --“‘r; i‘:.. [ i
@® In particular [¥,. ¥°l. = fla. Ba. 27 -1, . The metric on this auxiliary space is
(—1.1.7n). where i is the metric on the original flat space-time
o

Icx
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Short digression: From matrix multiplication to Moyal

product ||

@ One can define also

L}
| =

="+, V3

Fa

and
H—-—e"

@ The following property holds
o ™ ® Ef'.' —

Y+ Z"+s H= Y™+ Z) = (Y*

@ We define

Bly.z.v.Z Bs Y=+ H+ Z-(Z — 5,
Xl V. Z. V. Z) \ 1) t_—_ZE' H = ‘; 2 Ze
sitl == =
@ Then :
Ev"fS‘: +* B+a, =B

sa: 10120045
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AdS in terms of the auxiliary variables
@ The group of linear
. is SO(D

™
d

ansformations on each set of auxiliary variables preserving the metric
1, 2), the group of isometries of AdSp.1. As is well known. we can

represent the corresponding Lie algebra as star commutators with generators which are
quadratic functions of the oscillators

@ Dilatations and translations are given by

P,

5z -2 r. P,=%2z"2z" 2,2 + ,z°
@ The commutation relation
[Pr. P3]e = P;
implies that if we define 3 connection
(0 1
e — .
I!"
then it is flat _ _ =
dW'¥' + WY A W' 0
and it describes an AdSp.; background
e -2 . o
F — rgﬂ'b
%
and the metric is )
y  dre + dx*dx”
sa: 10120045 ds-
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Linearized equations describe AdS vacuum

@ The linearized equations are

L

d = d : : : L
— B A s PT'B:—:. — B G- il o '}E;: —(=
an = o= T e e B

@ Using our definitions of the =product and the connection W'Y these are just given by

d

B+wP.8-8B+w" -0

w

The commutator EW;"". B]. gives an additional term proportional to z®* — z* which does
not appear in the field theory equations of motion since there is no meaning to these
components in field theory. Thus, we have to add these components to the discussion
remembering that the field theory eguations are recovered by setting these to zero

W

sa: 10120045
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From matrix multiplication to Moyal

Short digression:
product |}

@ One can define also
= - L = . _ = = . -
. i— };' 1 ;?‘. V3 — — ‘f; 2?_ £ = 23' ¥/. :_ 1:{ }j; T ;?;
and e
*{ & Y L E;’T F 4
@ The following property holds
Y 2 Z"s He Y™« Z)2(Y*  +Z" s H= Y™ = Z
milém” 8 (Y = 2"« H= YY" = 2").

@ We define
Bly.z.7.2 By YSs Hs ZL(3 - 2,
i v.Z. V.2 . :.I.!I.J :—“‘Zi- H = ‘;; i Ze (5(?
@ Then :
EséLllf? Esf =T Eg e, ¥ E;

sa: 10120045
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Linearized equations describe AdS vacuum

@ The linearized equations are
d B A1 = d RSl = B pigk
= N \S+IL)Ds, — ey PO nHp —q ) Dap=g-
dah = = da; - 95

@ Using our definitions of the =product and the connection W'Y these are just given by

d

B+w%.8-B-w"”—-0.

dbx#

@ The commutator EU.';U'_ B]. gives an additional term proportional to z®* — z* which does
not appear in the field theory equations of motion since there is no meaning to these
components in field theory. Thus, we have to add these components to the discussion
remembering that the field theory eguations are recovered by setting these to zero

W

w0
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Non-linear equations

sa: 10120045

We wrote the linearized equations as covariant constancy condition with respect to
AdSp.1 connection

The full non-linear equation can be also written as covariant constancy condition with
respect to 3 dynamical connection. We define

(D 11'_. i- - : 1 "'1'1"_ ||:Ji — Bcr i I'i_‘

and write

d

dx,,

B+W.=B-B=W, =0

The covariant constancy equation is consistent only if the connection is flat
dwW -~-War=sW=10
This equation implies a2 condition on the cut-off function a,

da + W 9 , s +an=W ) _ U
“ f
This condition is satisfied for any position independent cutoff. and basically states that
the cutoff function is consistent with AdS isometries
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Some coomments

@ The bulk equations of motion we obtain admit gauge transformations

.lh\' 'df . ['.1'_.]__ &E 'B" r#E
@ However, the identification
"W = B = ()
does not transform covariantly under these gauge transformations. The choice of a, i.e

the choice of cutoff scheme, is related to 3 choice of gauge in the bulk

Since RG eguations describe flows between equivalent descriptions of the physics it is
natural that they will be written in terms of covariant constancy and a fiat connection

7
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Non-linear equations

sa: 10120045

We wrote the linearized equations as covariant constancy condition with respect to
AdSp.1 connection.

The full non-linear equation can be also written as covariant constancy condition with
respect to a dvnamical connection. We define

(AW.)E =0, (6W,.)o= = Bgr aZ,
and write
.d B+W.,=B-B+W, =0
dx,,

The covariant constancy equation is consistent only if the connection is flat
dW +~-WaAar=sW=10

This equation implies a2 condition on the cut-off function a,

da+W9Arsa+an=w® —-o
N
This condition is satisfied for any position independent cutoff. and basically states that

the cutoff function is consistent with AdS isometries
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Some coomments

The bulk equations of motion we obtain admit gauge transformations

AW =de + [W. €, . AB—=Bs+s¢i—¢c+ B
However, the identification
W = B =
does not transform covariantly under these gauge transformations. The choice of a, i.e

the choice of cutoff scheme, is related to a choice of gauge in the bulk

Since RG equations describe flows between equivalent descriptions of the physics it is
natural that they will be written in t=rms of covariant constancy and a flat connection
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Non-linear equations

)
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We wrote the linearized equations as covariant constancy condition with respect to
AdSp.1 connection

The full non-linear equation can be also written as covariant constancy condition with
respect to 3 dvnamical connection. We define

( ﬂ_".'__ ;i: =0, (oW, *Ei = Bi' .

and write

d
dx,,

B+W.*=B—-—BsW,=0

The covariant constancy equation is consistent only if the connection is flat
dW ~-WaAa=sW=10

This equation implies 3 condition on the cut-off function a,

doa+~WOArsa+anwW? =0
M
“ i
This condition is satisfied for any position independent cutoff. and basically states that

the cutoff function is consistent with AdS isometries
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Linearized equations describe AdS vacuum

@ The linearized eguations are

A~*(s +t) B, — Bap*¢~= i(p’ — q' ) Bap=g~

@ Using our definitions of the =—product and the connection W7 these are just given by

il w?%.8-B:w'"”-0.

d-_-_.. pd

@ The commutator [W; . B]. gives an additional term proportional to z* — ' which does

not appear in the field theory equations of motion since there is no meaning to these
components in field theory. Thus, we have to add these components to the discussion

remembering that the field theory eguations are recovered by setting these to zero

oy
L
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Some coomments

The bulk eqguations of motion we obtain admit gauge transformations

A‘i" {:';a . [Li,'- .l. ) &B — B = i E & E
However, the identification
"i‘f - B = ()
does not transform covariantly under these gauge transformations. The choice of a, i.e

the choice of cutoff scheme, is related to a choice of gauge in the bulk

Since RG sgquations describe flows between equivalent descriptions of the physics it is
natural that they will be written in terms of covariant constancy and a3 flat connection

™

0
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Vasiliev's theory vs RG

@ Vasiliev theory of higher spin gauge theory in AdS is formulated using the same kinematic
language we used for the RG equations.

@ The dynamics is given by
dW + W =AW =0, dB+ W=B-B=+sW =0,

@ supplemented by constraints relating B and W. (schematically)

S+B=B=S,

Ly
-
L

~ 1+ B, dS +W=5+5S=«W =0.

@ Here S is an auxiliary variable implememting the constraints. This formulation is
manifestly gauge invariant.

@ By rewriting the RG eguations we obtained very similar equations.

However, the constraint is W = B += a is not gauge invariant

@ One can hope that either
» The RG equations are equivalent to Vasiliev's equations in some particular W
» The RG equations can be made gauge invariant by adding an auxiliary field \./3
similar manner
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On-shell action and correlators

@ Remember that the free energy is given by

sa: 10120045

F=—Tr [ dAB-a - T [ aaw,

Thus it is given by 3 holonomy integral of the combination we identified as the gauge field
in the bulk

The free energy is identified in AdS/CFT with the on-shell bulk action

The correlators in field theory are given by variations of the free energy with respect to
the sources. B in our case

Alternatively, we can interprete the correlators as variations of the bulk on-shell action
with respect to the boundary values B.

In our case the correlators are thus given by variations of the holonomy integral

¥
-
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Vasiliev's theory vs RG
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Vasiliev theory of higher spin gauge theory in AdS is formulated using the same kinematic
language we used for the RG equations.

The dynamics is given by
dW + W=AW = 0. dB+W=B-B=sW =0.
supplemented by constraints relating B and W. (schematically)

~ 1+ B, dS +W=5+5S=W =0.

L
"
o
o
N
Ly
Ly
L
Ly

Here S is an auxiliary variable implememting the constraints. This formulation is
manifestly gauge invariant.

By rewriting the RG equations we obtained very similar equations.

However, the constraint is AW = B = a is not gauge invariant.

One can hope that either

» The RG eqguations are equivalent to Vasiliev's equations in some particular gzyge
» The RG equations can be made gauge invariant by adding an auxiliary field \./2
similar manner
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On-shell action and correlators

@ Remember that the free energy is given by

F=-Tr [dAB a S

Thus it is given by 3 holonomy integral of the combination we identified as the gauge field
in the bulk

The free energy is identified in AdS/CFT with the on-shell bulk action

The correlators in field theory are given by variations of the free energy with respect to
the sources, B in our case.

Alternatively, we can interprete the correlators as variations of the bulk on-shell action
with respect to the boundary values B.

In our case the correlators are thus given by variations of the holonomy integral
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Summary and outlook
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We have considered the ERGE for free scalar field theory in D dimensions with arbitrary
sources for “single trace” operators.
We have shown that thesse eguations can be interpreted as eguations of motion of higher
spin fields propagating in AdSp. ;.
The full on-shell action is given by a holonomy integral.
The equations one obtains from RG are for 3 gauge field W, and a scalar B. These
eguations enjoy the higher spin gauge symmetry and take the form of covariant constancy
and flatness conditions.
W.. and B are related by a constraint which breaks the gauge symmetry. Physically it
happens because we choose a3 cut-off prescription
Some research directions

» Fully gauge invariant implementation of the constraint.

*» |nteracting theories, e.g. the critical O(N) model.

» Relation to Vasiliev's theory

» Going beyond the vector models
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Vasiliev's theory vs RG
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Vasiliev theory of higher spin gauge theory in AdS is formulated using the same kinematic

language we used for the RG equations.

The dynamics is given by
dW + W=rW = 0. dB - W=B-B+W =0,
supplemented by constraints relating B and W, (schematically)

S«B=B=S,

Ly
]
L
)

v1+ B, dS +W==5+5=W =0.

Here S is an auxiliary variable implememting the constraints. This formulation is
manifestly gauge invariant.

By rewriting the RG equations we obtained very similar equations
However, the constraint is W = B = a is not gauge invariant.
One can hope that either
» The RG eguations are equivalent to Vasiliev's equations in some particular

» The RG equations can be made gauge invariant by adding an auxiliary field \./3

similar manner
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Summary and outlook

We have considered the ERGE for free scalar field theory in D dimensions with arbitrary
sources for “single trace” operators.

We have shown that these eqguations can be interpreted as equations of motion of higher
spin fields propagating in AdSp.. ;.

The full on-shell action is given by a holonomy integral.

The equations one obtains from RG are for 3 gauge field W, and a scalar B. These
equations enjoy the higher spin gauge symmetry and take the form of covariant constancy
and flatness conditions.

W.. and B are related by a constraint which breaks the gauge symmetry. Physically it
happens because we choose a cut-off prescription

Some research directions
» Fully gauge invariant implementation of the constraint.
*» |nteracting theories, e. g the critical O(N) model.
» Relation to Vasiliev's theory
» Going beyond the vector modeils.

Thank You !! \
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Summary and outlook

@ We have considered the ERGE for free scalar field theory in D dimensions with arbitrary
sources for “single trace” operators.

@ We have shown that these eguations can be interpreted as eguations of motion of higher
spin fields propagating in AdSp.. ;.

@ The full on-shell action is given by a holonomy integral.

@ The equations one obtains from RG are for a3 gauge field W, and 3 scalar B. These
equations enjoy the higher spin gauge symmetry and take the form of covariant constancy
and flatness conditions.

@ W. and B are related by a constraint which breaks the gauge symmetry. Physically it
happens because we choose a cut-off prescription

@ Some research directions
» Fully gauge invariant implementation of the constraint.
*» |nteracting theories, e.g. the critical O(N) model.
» Relation to Vasiliev's theory
» Going beyond the vector models.
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Summary and outlook
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We have considered the ERGE for free scalar field theory in D dimensions with arbitrary
sources for “single trace” operators.

We have shown that these equations can be interpreted as equations of motion of higher
spin fields propagating in AdSp. ;.

The full on-shell action is given by a holonomy integral.

The equations one obtains from RG are for a2 gauge field W, and a scalar B. These
eguations enjoy the higher spin gauge symmetry and take the form of covariant constancy
and flatness conditions.

W. and B are related by a constraint which breaks the gauge symmetry. Physically it
happens because we choose a cut-off prescription

Some research directions
» Fully gauge invariant implementation of the constraint.
* |nteracting theories, e g the critical O({N) model.
» Relation to Vasiliev's theory
» Going beyond the vector modeils.

Thank You !! ¥
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