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Introduction

Supersymmetry:

¢ Candidate solution to the hierarchy problem of the
electroweak theory.

e Naturally arises in string theory.

This makes it interesting to study susy breaking in a variety of
contexts — in particular the exploration of new mechanisms.
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Introduction

Gauge-gravity duality:
Ti'FZN/ vV—gR
oM M

Allows for the approximate solution of a variety of quantum field
theories at strong coupling through the study of classical gravity

equations.
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Introduction

The field theory is dual to a warped throat geometry:

—

r=rmin r=0o

By the gauge-gravity correspondence string theory on a 10d
non-compact warped throat geometrizes the renormalization group
flow of a 4d field theory. If i is the RG scale then:

p=r/lZ

where r is the radial coordinate of the throat.
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Introduction

Gravity dual of supersymmetry breaking:

Because the SUSY breaking is spontaneous by considerations in
QFT the susy breaking effects should fall off as some power of 1/r
away from the tip.

Thus the gravity dual of a field theory with a supersymmetry
breaking vacuum (metastable or otherwise) is dual to a
supersymmetric warped throat with a super-symmetry breaking
region localized near the bottom.
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The field theory is dual to a warped throat geometry:

x

r=rmin r=0o

By the gauge-gravity correspondence string theory on a 10d
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flow of a 4d field theory. If i is the RG scale then:
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Introduction

Gravity dual of supersymmetry breaking:

Because the SUSY breaking is spontaneous by considerations in
QFT the susy breaking effects should fall off as some power of 1/r
away from the tip.

Thus the gravity dual of a field theory with a supersymmetry
breaking vacuum (metastable or otherwise) is dual to a
supersymmetric warped throat with a super-symmetry breaking
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Introduction

What are such objects good for?

Warped model building from a top-down (microscopic) context:

® MOdEIS Of partiCIE thSlCS (Gherghetta et al; Benini, Dymarsky, Franco, Kachru, DS,

Verlinde; ...) (Kachru, DS, Trivedi)

® Inﬂatlon.(ﬂaumann, Dymarsky, Kachru, Klebanovw, Maldacena, McAllister, ...)

So this is one reason to motivate this kind of a construction.
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Introduction

A second, related reason:

Throats can be compactified in a number of ways. A given throat
may arise in a multitude of flux compactifications.

Vary
Gﬁmm Fiuxes, Branes,
<= Topology.
P e

r=ruv

So for each new metastable throat that we can construct we will
have a mini-landscape of string vacua.

This should give a partial classification of string vacua.
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Introduction

A second, related reason:
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Introduction

(The statement that the same throat (up to corrections which
vanish towards the interior) can arise in a multitude of different
flux compactifications is the statement that the same field theory

can be wedded with quantum gravity in a number of ways.)

*k
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Introduction

(The statement that the same throat (up to corrections which
vanish towards the interior) can arise in a multitude of different
flux compactifications is the statement that the same field theory

can be wedded with quantum gravity in a number of ways.)
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Introduction

Currently there is already one class of examples which are strong
candidates. This involves placing anti-branes at the bottom of an
otherwise supersymmetric warped throat. (kachru, Pearson & Veriinde '01)

Currently there is no understanding of this in terms of FT (all
arguments on the gravity side).

This is a very interesting problem about which | won't say too
much more about in this talk.
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Introduction

Instead | will construct examples of warped throats with susy
breaking whose existence can be argued from FT theory.

Constructing such new classes may be interesting because it may
yield different phenomenology (low energy spectra may turn out to
be different).

(also theoretically interesting.)

But why should this have any hope of working?
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Introduction

For this to work we need the following set-up:

In region B supergravity is valid.
In region A perturbative quantum field theory is valid.
The supersymmetry breaking occurs deep within region A.
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Introduction

How to proceed?
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Duality Cascades

A large class of supersymmetry breaking configurations in string
theory can be achieved by placing a small number of fractional
branes at non-isolated singularities.(Buican. Malyshev and Veriinde '08)

Locally A-D-E

l

/\T/

Enhancement.
Place D-branes here.

Give rise to quiver gauge theories with metastable susy breaking
vacua.
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Duality Cascades

An example of a field theory constructed in such a manner:

G |U(My), UM;); U(Ms)s
® | adj 1 1
X, X| O, 1 03, 01
Y ¥ FL) 0,0 1
Zz1 1 EEEL-  FEI
W =Te{dYY} — Tr{dXX} + TH{ZZXX — ZZY Y} — £Tx{® — ZZ}. (1)

It arises at the so-called " suspended-pinch-point singularity”
(SPP). (actually a deformation thereof.)
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Duality Cascades

An example of a field theory constructed in such a manner:

G |U(My), UM;3); U(Ms)s
® | adj 1 1
X X! B 1 03, 0
Y ¥ Fiir i 1
ZZ1 1 0,0 0,0
W=Tr{dYY} - Tr{dXX} + Te{ZZXX — ZZYY} — £Tx{® — ZZ}. (1)

It arises at the so-called " suspended-pinch-point singularity”
(SPP). (actually a deformation thereof.)

irsa: 10120042

Page 43/143



Duality Cascades

A large class of supersymmetry breaking configurations in string
theory can be achieved by placing a small number of fractional
branes at non-isolated singularities. Buican, Malyshev and Veriinde '08)

Locally A-D-E

l

/\T/

Enhancement.
Place D-branes here.

Give rise to quiver gauge theories with metastable susy breaking
vacua.

Pirsa: 10120042 Page 44/143



Duality Cascades

An example of a field theory constructed in such a manner:

G |U(My), UM;); U(Ms)s
® | adj 1 1
X, X| o0 1 03, O
Y¥| B 00,0 1
ZZ1 1 ELEE ELT
W=Tr{dYY} - Tr{dXX} + TH{ZZXX — ZZY Y} — £Tx{® — ZZ}. (1)

It arises at the so-called " suspended-pinch-point singularity”
(SPP). (actually a deformation thereof.)
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Duality Cascades

When M; > M> + M3 , the F-term constraint:

) . .
-5 =YY -XxX-¢=0, (2)

cannot be satisfied due to a mismatch of ranks, and thus SUSY is
broken.
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Duality Cascades
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Duality Cascades

When M; > M> + M3 , the F-term constraint:

ow - ~
— =YY XX —-§£= 2
cannot be satisfied due to a mismatch of ranks, and thus SUSY is

broken.

The resulting vacuum is "stabilized” by a one-loop effective
potential (all scalars which are not Goldstones get a positive mass
squared at one loop) when the couplings are weak. (intriigator, Seiberg &

Shih '07)
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Duality Cascades

Having weakly coupled field theory descriptions, these
constructions are not directly dual to weakly curved geometries.
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Duality Cascades
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Duality Cascades

Having weakly coupled field theory descriptions, these
constructions are not directly dual to weakly curved geometries.

However, such models provide "target models” to realize as the
endpoint of a cascade. The latter is engineered to have a
description in terms of supergravity above some scale much larger
than the scale of supersymetry breaking and a calculable field
theory description below it.

The ranks gradually decrease until the effective 't Hooft coupling is
small and the dual geometry becomes highly curved.
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Duality Cascades

In the ultra-violet, we start with the model:

G |U(N), U(N + M,;); U(N + M;);
& | adj 1 1
XX an 1 0,0
Y.Y| OO 00,5 1
ZZl 1 0,0 0,5

with N >> M, M5.

W =Tr{®Y Y} — Te{®XX} + nTr{ZZXX — ZZYY} — £Tr{® — ZZ}. (3)
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Duality Cascades

An example of a field theory constructed in such a manner:

G |U(My), UM;); U(Ms)s
® | adj 1 1
XL 1 03, O
Y¥I Fin 00,0 1
ZZ1 1 LIl O
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(SPP). (actually a deformation thereof.)
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Duality Cascades

In the ultra-violet, we start with the model:

G |U(N), UN + M;); U(N + M;);

® | adj 1 1
X, X| oD 1 0,0
Y,Y| OO0 0,0 1
ZZ] 1 0,0 0,5

with N >> M>, M5.

W =Tr{®YY} — Te{®XX} + nTr{ZZXX — ZZYY} — £Tx{® — ZZ}. (3)
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Duality Cascades

In the ultra-violet, we start with the model:

g

)
xXx
Y,Y
ZZ
with N >> My, M5.

W =Tr{®YY} — Te{®XX} + nTr{ZZXX — ZZYY} — £Tx{® — ZZ}.

U(N), U(N + M,); U(N + M;);

adj] 1 1

0,0 1 0,0

0.0 0,0 1
1 0,0 0,0

(3)

As we flow towards the infrared, the ranks should gradually reduce
due to a sequence of dualities to the small rank version which is
itself weakly coupled and known to harbor a supersymmetry

breaking vacuum.
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Duality Cascades

In the ultra-violet, we start with the model:

)
x>
Y,Y
ZZ
with N >> My, M5,

W =Tr{®YY} — Te{®XX} + nTr{ZZXX — ZZYY} — €Tr{® — ZZ}.

irsa: 10120042

adj

0,0

0.0
1

G .U(N)l U(N +M;), UN + M;);

1 1

1 0,0
0,0 1
0,0 0,0

(3)
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Duality Cascades

In the ultra-violet, we start with the model:

G |U(N), U(N + M,), U(N + M;);
® | adj 1 1
X, X| oD 1 0,0
Y.Y| OO0 0,0 1
ZZl 12 0,0 0,3
with N >> My, M5.
W =Tr{®YY} — Te{®XX} + nTr{ZZXX — ZZYY} — £Tx{® — ZZ}. (3)

As we flow towards the infrared, the ranks should gradually reduce
due to a sequence of dualities to the small rank version which is
itself weakly coupled and known to harbor a supersymmetry

breaking vacuum.
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Duality Cascades

However, this does not apply when the gauge coupling hitting the
singularity is one under-which the adjoint is charged, as Seiberg

duality does not hold.

Furthermore, the generic cascade is bound to hit such strong
coupling singularities every O(1) cascade steps, and all cascades
based on non-isolated singularities seem to have this feature.(argurio et

al; Franco et al; DS)

Therefore in order to derive the low energy field theory and prove
that it harbors a metastable vacuum, these strong coupling
singularities in the adjoint nodes must be understood.
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Duality Cascades

Basic strategy of solution:

to the infrared to the infrared

Because supersymmetric gauge theories undergo no phase
transitions - we can study the fate of the adjoint coupling
singularities in the QFT regime. **
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Duality Cascades

This is due to the self-similar nature of duality cascades. When a
gauge coupling hits a strong coupling singularity one performs a
Seiberg duality, bringing the theory back to a similar form, except
with reduced ranks.

G \UN"—M3); UWN")2 UN" — M)s
-~ .

1 adj 1
.2 0,0 1 0,0
B A 0,0 0,0 1
¥ 1 0,0 0,0
W =Tr{®YY} — Tr{dXX} + Tr{zzXX — 2zY Y} + £€Tr{® — 2z} (4)

Here: N = N — M>.
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Duality Cascades

In the ultra-violet, we start with the model:

G |U(N), UN + M;); U(N + M;);
® | adj 1 1
X, X| o0 1 0,0
Y.Y| OO0 00,5 1
ZZI 1 0,0 0,5

with N >> My, M5.

W =Tr{®Y Y} — Te{®XX} + nTr{ZZXX — ZZY Y} — £Tx{® — ZZ}. (3)
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Duality Cascades

This is due to the self-similar nature of duality cascades. When a
gauge coupling hits a strong coupling singularity one performs a
Seiberg duality, bringing the theory back to a similar form, except
with reduced ranks.

G |UN"— Mz); UWN")2 UNN" — M)s
P :

1 adj 1
z2 0,0 1 0,0
X, X 0,0 0,0 1
Er 1 0,0 0,0
W=Tr{®YY} — Tr{®dXX} + Tr{zzXX — zzY Y} + £Tr{® — zz}. (4)

Here: N = N — M>.
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Duality Cascades

Basic strategy of solution:

QFT SUGRA
Regime Regime

to the infrared to the infrared

Because supersymmetric gauge theories undergo no phase
transitions - we can study the fate of the adjoint coupling
singularities in the QFT regime. **
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Duality Cascades

In the ultra-violet, we start with the model:

G |U(N), UN + M;); U(N + M;);
® | adj 1 1
X, X| ob 1 0,0
Y.Y| OO 0,5 1
ZZ] 1 0,0 0,3
with N >> M>, M5.
W =Tr{d¥Y Y} — Te{®XX} + nTe{ZZXX —ZZY Y} — £Tx{® — ZZ}. (3)

As we flow towards the infrared, the ranks should gradually reduce
due to a sequence of dualities to the small rank version which is
itself weakly coupled and known to harbor a supersymmetry

breaking vacuum.
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Duality Cascades

Having weakly coupled field theory descriptions, these
constructions are not directly dual to weakly curved geometries.

However, such models provide " target models” to realize as the
endpoint of a cascade. The latter is engineered to have a
description in terms of supergravity above some scale much larger
than the scale of supersymetry breaking and a calculable field
theory description below it.

The ranks gradually decrease until the effective 't Hooft coupling is
small and the dual geometry becomes highly curved.
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Duality Cascades

When M; > M> + M3 , the F-term constraint:

ow - ~
— =YY - XX —-§¢= 2
cannot be satisfied due to a mismatch of ranks, and thus SUSY is

broken.

The resulting vacuum is "stabilized” by a one-loop effective
potential (all scalars which are not Goldstones get a positive mass
squared at one loop) when the couplings are weak. (intriigator, Seiberg &

Shih '07)

Pirsa: 10120042 Page 74/143



Duality Cascades

In the ultra-violet, we start with the model:

G |U(N), UN + M,;); U(N + M;);
d | adj 1 1
X, X| oD 1 0,0
Y.Y| OO0 0,5 1
ZZI ) 0,0 0,5

with N >> My, M5,

W =Tr{OY Y} - Te{®XX} + nTr{ZZXX — ZZYY} — £Tx{® — ZZ}. (3)
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Duality Cascades

In the ultra-violet, we start with the model:

G |U(N), UN + M;); U(N + M;);

® | adj 1 1
X, X| ob 1 0,0
Y.Y| 00 0,0 1
=X 1 0,0 0,5

with N >> My, M5,

W =Tr{®Y Y} — Te{®XX} + nTr{ZZXX — ZZY Y} — £Tx{® — ZZ}. (3)

As we flow towards the infrared, the ranks should gradually reduce
due to a sequence of dualities to the small rank version which is
itself weakly coupled and known to harbor a supersymmetry
reaking vacuum.
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Duality Cascades

In the ultra-violet, we start with the model:

G \U(N), UN + M,), U(N + M5);
® | adj 1 1
X X of 1 0,0
Y.Y| 00 0,0 1
Z,Z| 1 0,0 0,5

with N >> My, M5.

W =Tr{®YY} — Tr{®XX} + nTr{ZZXX — ZZYY} — £Tx{® — ZZ}. (3)

As we flow towards the infrared, the ranks should gradually reduce
due to a sequence of dualities to the small rank version which is
itself weakly coupled and known to harbor a supersymmetry
breaking vacuum.
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Duality Cascades

This is due to the self-similar nature of duality cascades. When a
gauge coupling hits a strong coupling singularity one performs a
Seiberg duality, bringing the theory back to a similar form, except
with reduced ranks.

G |UN"— Mz); UN")2 UN" — My)s
> .

1 adj 1
Zy z D,ﬁ 1 ﬁsi-_-l
X X 0,0 0,3 1
) 1 0,0 0,0
W =Tr{®¥YY} — Tr{®&XX} + Tr{zzXX — 2zY ¥} + £Tr{® — 3z}. (4)

Here: N = N — M.
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Duality Cascades

In the ultra-violet, we start with the model:

G |U(N), UN + M;); U(N + M;);
® | adj 1 1
X X! e 1 0,0
Y.Y| 00 0,5 1
ZZX: 1 0,0 0,5

with N >> M>, M5.

W =Tr{dY Y} - Te{OXX} +7Tr{ZZXX — ZZY Y} — £Tx{®d — ZZ}. (3)

As we flow towards the infrared, the ranks should gradually reduce
due to a sequence of dualities to the small rank version which is
itself weakly coupled and known to harbor a supersymmetry
breaking vacuum.
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Duality Cascades

This is due to the self-similar nature of duality cascades. When a
gauge coupling hits a strong coupling singularity one performs a
Seiberg duality, bringing the theory back to a similar form, except
with reduced ranks.

G |UN"— Mz); UWN")2 UN" — Mi)s
- .

1 adj 1
2,2 0,0 1 0,0
X, X 0,0 0,0 1
) 8 1 0,0 0,0
W =Tr{dYY} - Tr{OXX} + Tr{zzXX — zzY Y} + £Tr{® — zz}. (4)

Here: N = N — M>.
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Duality Cascades

In the ultra-violet, we start with the model:

G |U(N), UN + M;); U(N + M;);
® | adj 1 1
X X on 1 0,0
Y.Y| 00 0,0 1
X} 1 0,0 0,5

with N >> My, M5,

W =Tr{®dYY} — Tr{®XX} + nTe{ZZXX — ZZYY} — £ETx{® — ZZ}. (3)

As we flow towards the infrared, the ranks should gradually reduce
due to a sequence of dualities to the small rank version which is
itself weakly coupled and known to harbor a supersymmetry
breaking vacuum.
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Duality Cascades

This is due to the self-similar nature of duality cascades. When a
gauge coupling hits a strong coupling singularity one performs a
Seiberg duality, bringing the theory back to a similar form, except
with reduced ranks.

G |UN"—Mz); UWN")2 UN" — M)s
P .

1 adj 1
Zy z D,ﬁ 1 E,D
2 X 0,0 0,0 1
re 1 0,0 0,0
W =Tr{®YY} — Tr{®XX} + Tr{zzXX — zzY Y} + £Tr{® — 2z}. (4)

Here: N = N — M.
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Duality Cascades

In the ultra-violet, we start with the model:

G |U(N), UN + M;); U(N + M;);
® | adj 1 1
b ® {S3i3 1 0,0
Y.Y| OO 0,0 1
zx: 1 0,0 0,5

with N >> My, M5.

W =Tr{®¥V Y} — T{®XX} + nTr{ZZXX —ZZYYV} —£T{® - ZZ}.  (3)

As we flow towards the infrared, the ranks should gradually reduce
due to a sequence of dualities to the small rank version which is
itself weakly coupled and known to harbor a supersymmetry
breaking vacuum.
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Duality Cascades

This is due to the self-similar nature of duality cascades. When a
gauge coupling hits a strong coupling singularity one performs a
Seiberg duality, bringing the theory back to a similar form, except
with reduced ranks.

G |UN"—M3z); UWN")2 UNN" — M)s
7~ .

1 adj 1
Zy 2 D,ﬁ 1 ij!EI
X X 0,0 0,0 1
Y ¥ 1 0,0 0,0
W =Tr{®YY} — Tr{®XX} + Tr{zzXX — zzY Y} + £Tr{® — 2z}. (4)

Here: N = N — M>.
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Duality Cascades

However, this does not apply when the gauge coupling hitting the
singularity is one under-which the adjoint is charged, as Seiberg
duality does not hold.
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Duality Cascades

However, this does not apply when the gauge coupling hitting the
singularity is one under-which the adjoint is charged, as Seiberg

duality does not hold.

Furthermore, the generic cascade is bound to hit such strong
coupling singularities every O(1) cascade steps, and all cascades
based on non-isolated singularities seem to have this feature.(argurio et

al; Franco et al; DS)
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Duality Cascades

This is due to the self-similar nature of duality cascades. When a
gauge coupling hits a strong coupling singularity one performs a
Seiberg duality, bringing the theory back to a similar form, except
with reduced ranks.

G |UN"—M3); UWN")2 UN" — Mi)s
= :

1 adj 1
<y zZ D,ﬁ 1 ﬁ,El
XX 0, O 0,0 1
) A 1 0,0 0,0
W =Tr{®YY} — Tr{®XX} + Tr{zzXX — zzY Y} + £Tr{® — 2z}. (4)

Here: N = N — M>.
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Duality Cascades

In the ultra-violet, we start with the model:

g

)
xx
Y,Y
2
with N >> My, M5.

W =Tr{®YY} — Te{®XX} + nTr{ZZXX — ZZYY} — €Tr{® — ZZ}.

U(N), U(N + M;); U(N + M;);

adj] 1 1

0,0 1 0,0

0.0 0.0 1
1 0,0 0,0

(3)

As we flow towards the infrared, the ranks should gradually reduce
due to a sequence of dualities to the small rank version which is
itself weakly coupled and known to harbor a supersymmetry

breaking vacuum.
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Duality Cascades

This is due to the self-similar nature of duality cascades. When a
gauge coupling hits a strong coupling singularity one performs a
Seiberg duality, bringing the theory back to a similar form, except
with reduced ranks.

G |UN"—M3), UWN")2 UN" — Mi)s
P .

1 adj 1
2,2 0,0 1 0,0
X'!' X ﬁ! D D,ﬁ 1
e 1 0,0 0,0
W=Tr{dYY} — Tr{®dXX} + Tr{zzXX — zzY Y} + £Tr{® — zz}. (4)

Here: N = N — M>.
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Duality Cascades

However, this does not apply when the gauge coupling hitting the
singularity is one under-which the adjoint is charged, as Seiberg
duality does not hold.
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Duality Cascades

However, this does not apply when the gauge coupling hitting the
singularity is one under-which the adjoint is charged, as Seiberg

duality does not hold.

Furthermore, the generic cascade is bound to hit such strong
coupling singularities every O(1) cascade steps, and all cascades
based on non-isolated singularities seem to have this feature.(argurio et

al; Franco et al; DS)
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Duality Cascades

This is due to the self-similar nature of duality cascades. When a
gauge coupling hits a strong coupling singularity one performs a
Seiberg duality, bringing the theory back to a similar form, except
with reduced ranks.

G |UN"—M;); UWN")2 UN" — My)s
P :

1 adj 1
<y zZ D,ﬁ 1 ﬁsa
2 X 0,0 0,0 1
Yy 1 0,0 0,0
W =Tr{d¥Y} — Tr{®XX} + Tr{zzXX — 2zY ¥} + £Tr{® — 32}. (4)

Here: N = N — M>.
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Duality Cascades

However, this does not apply when the gauge coupling hitting the
singularity is one under-which the adjoint is charged, as Seiberg

duality does not hold.

Furthermore, the generic cascade is bound to hit such strong
coupling singularities every O(1) cascade steps, and all cascades
based on non-isolated singularities seem to have this feature.(argurio et

al; Franco et al; DS)

Therefore in order to derive the low energy field theory and prove
that it harbors a metastable vacuum, these strong coupling
singularities in the adjoint nodes must be understood.
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Duality Cascades

Basic strategy of solution:

QFT SUGRA
Regime Regime

to the infrared to the infrared

Because supersymmetric gauge theories undergo no phase
transitions - we can study the fate of the adjoint coupling
singularities in the QFT regime. **
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Duality Cascades

Result: Approximate the strongly coupled adjoint node by N=2
SQCD on its Coulomb branch.
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Duality Cascades

Result: Approximate the strongly coupled adjoint node by N=2
SQCD on its Coulomb branch.

This could have been expected, as there is suggestive N' = 2
structure in quiver gauge theories arising at non-isolated
singularities. This is easily seen in SPP:

W =Tr{®oYY} - Tr{®XX} + Tr{ZZXX — ZZYY} — £Tr{® — ZZ}. (5)

The adjoint node formally has the matter content of an N’ =2
theory, and the adjoint has the usual NV = 2-like cubic
superpotential couplings to the rest of the theory.
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Duality Cascades

This leads to the prescription that the strong coupling singularity
of an adjoint node at a cascade in a general non-isolated
singularity is dealt with by approximating the strongly coupled
adjoint node by N=2 SQCD on its Coulomb branch.
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Duality Cascades

Result: Approximate the strongly coupled adjoint node by N=2
SQCD on its Coulomb branch.

This could have been expected, as there is suggestive N = 2
structure in quiver gauge theories arising at non-isolated
singularities. This is easily seen in SPP:

W=Tr{®YY} — Tr{®XX} + Tr{ZZXX — ZZYY} — £Tr{® — ZZ}. (5)

The adjoint node formally has the matter content of an N’ =2
theory, and the adjoint has the usual AV = 2-like cubic
superpotential couplings to the rest of the theory.
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Duality Cascades

When M; > M> + M3 , the F-term constraint:

W >
—g =YY -XX-¢=0, (2)

cannot be satisfied due to a mismatch of ranks, and thus SUSY is
broken.
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Duality Cascades

A large class of supersymmetry breaking configurations in string
theory can be achieved by placing a small number of fractional
branes at non-isolated SingUIEritiES.(Buican. Malyshev and Verlinde '08)

Locally A-D-E

l

/\T/

Enhancement.
Place D-branes here.

Give rise to quiver gauge theories with metastable susy breaking
vacua.
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Duality Cascades

When M; > M> + M3 , the F-term constraint:

) A ;
—g =YY -XxX-¢=0, (2)

cannot be satisfied due to a mismatch of ranks, and thus SUSY is
broken.
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Duality Cascades

An example of a field theory constructed in such a manner:

G |U(My), UM;); U(Ms)s
® | adj 1 1
X, X| O, 1 03, 1
EFTF EERI 0,0 1
ZZF 1 FEET CLP
W =Te{dYY} — Tr{dXX} + TH{ZZXX — ZZY Y} — £Tx{® — ZZ}. (1)

It arises at the so-called " suspended-pinch-point singularity”
(SPP). (actually a deformation thereof.)
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Duality Cascades

A large class of supersymmetry breaking configurations in string
theory can be achieved by placing a small number of fractional
branes at non-isolated singularities. Buican. Malyshev and Veriinde '08)

Locally A-D-E

l

/\T’/

Enhancement.
Place D-branes here.

Give rise to quiver gauge theories with metastable susy breaking
vacua.
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Duality Cascades

An example of a field theory constructed in such a manner:

G |U(My), UM;3); U(Ms)s
® | adj 1 1
X, X| OO 1 03,0
Y¥] Fi EEE] 1
ZZ1 1 ELEL-  FEE
W =Tr{dYY} - Tr{dXX} + TH{ZZXX — ZZY Y} — £Tx{® — ZZ}. (1)

It arises at the so-called " suspended-pinch-point singularity”
(SPP). (actually a deformation thereof.)
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Duality Cascades

When M; > M> + M3 , the F-term constraint:

W g
-5 =YY -XX-¢=0, (2)

cannot be satisfied due to a mismatch of ranks, and thus SUSY is
broken.
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Duality Cascades

Basic strategy of solution:

QFT SUGRA
Regime Regime

to the infrared to the infrared

Because supersymmetric gauge theories undergo no phase
transitions - we can study the fate of the adjoint coupling
singularities in the QFT regime. **
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Duality Cascades

Result: Approximate the strongly coupled adjoint node by N=2
SQCD on its Coulomb branch.

This could have been expected, as there is suggestive N = 2
structure in quiver gauge theories arising at non-isolated
singularities. This is easily seen in SPP:

W=Tr{®YY} - Tr{®XX} + Tr{ZZXX — ZZYY} — €Tr{® — ZZ}. (5)

The adjoint node formally has the matter content of an N’ = 2
theory, and the adjoint has the usual NV = 2-like cubic
superpotential couplings to the rest of the theory.
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Duality Cascades

This leads to the prescription that the strong coupling singularity
of an adjoint node at a cascade in a general non-isolated
singularity is dealt with by approximating the strongly coupled
adjoint node by N=2 SQCD on its Coulomb branch.
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Duality Cascades

Having weakly coupled field theory descriptions, these
constructions are not directly dual to weakly curved geometries.
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Duality Cascades

A large class of supersymmetry breaking configurations in string
theory can be achieved by placing a small number of fractional
branes at nDn—iS{]latEd SingUIEritiES.(Buican, Malyshev and Verlinde '08)

Locally A-D-E

l

/\T‘/

Enhancement.
Place D-branes here.

Give rise to quiver gauge theories with metastable susy breaking
vacua.
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Duality Cascades

This is due to the self-similar nature of duality cascades. When a
gauge coupling hits a strong coupling singularity one performs a
Seiberg duality, bringing the theory back to a similar form, except
with reduced ranks.

G |\UN"— M3); UWN")2 UNN" — My)s
P .

1 adj 1
Zy zZ D,ﬁ 1 E,D
X, X 0, 0,0 1
ry 1 0,0 0,0
W =Tr{®YY} — Tr{®XX} + Tr{zzXX — 2zY Y} + £Tr{® — 2z}. (4)

Here: N = N — M.
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Duality Cascades

However, this does not apply when the gauge coupling hitting the
singularity is one under-which the adjoint is charged, as Seiberg
duality does not hold.
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Duality Cascades

However, this does not apply when the gauge coupling hitting the
singularity is one under-which the adjoint is charged, as Seiberg

duality does not hold.

Furthermore, the generic cascade is bound to hit such strong
coupling singularities every O(1) cascade steps, and all cascades
based on non-isolated singularities seem to have this feature.(argurio et

al; Franco et al; DS)

Therefore in order to derive the low energy field theory and prove
that it harbors a metastable vacuum, these strong coupling
singularities in the adjoint nodes must be understood.
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Duality Cascades

This leads to the prescription that the strong coupling singularity
of an adjoint node at a cascade in a general non-isolated
singularity is dealt with by approximating the strongly coupled
adjoint node by N=2 SQCD on its Coulomb branch.
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Duality Cascades

This leads to the prescription that the strong coupling singularity
of an adjoint node at a cascade in a general non-isolated
singularity is dealt with by approximating the strongly coupled
adjoint node by N=2 SQCD on its Coulomb branch.

Earlier work on SUGRA side. (argurio, Benini, Bertolini, Closset & Cremonesi)

*%

In asymptotically free N=2 SQCD theories, the strong coupling
singularity is resolved by the spontaneous breakdown of the gauge
group to a conformal or infra-red free subgroup.
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Duality Cascades

Seiberg-Witten (N = 2 SU(2) SYM):

where u ~ Tr ¢°.

N=2 SQCD has rich Coulomb branch, with special monopole
points.
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Duality Cascades

In the generalization to SU(N.) the coulomb branch is locally
CNe—1 and is coordinatied by:

i =(Tr ¢°, Tr ¢°,...) (6)

And N=2 SQCD has rich a Coulomb branch, with special
monopole points, just as in Seiberg-Witten, except more
complexity. There is also a Seiberg-Witten curve:

Nc
y? =[x — ¢:)* + an2Ne=NexNe (7)

=1

Remarkably, in a large class of examples, it can be shown that the
deformation to the N=1 theories we are interested in introduces
only trivial corrections to this curve. Thus the flat moduli
directions and the special monopole points survive in the N=1
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Seiberg-Witten (N = 2 SU(2) SYM):

where u ~ Tr ¢°.

N=2 SQCD has rich Coulomb branch, with special monopole
points.
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Duality Cascades

In the generalization to SU(N.) the coulomb branch is locally
CNe—1 and is coordinatied by:

e, e, ) (6)

And N=2 SQCD has rich a Coulomb branch, with special
monopole points, just as in Seiberg-Witten, except more
complexity. There is also a Seiberg-Witten curve:

N
y? = [ J(x — ¢:)* + an2Ne=NexNe (7)

=1

Remarkably, in a large class of examples, it can be shown that the
deformation to the N=1 theories we are interested in introduces
only trivial corrections to this curve. Thus the flat moduli
directions and the special monopole points survive in the N=1

Pirsa: 1otzhaeory Page 119/143



Duality Cascades

Seiberg-Witten (N = 2 SU(2) SYM):

where u ~ Tr ¢°.

N=2 SQCD has rich Coulomb branch, with special monopole
points.
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Duality Cascades

In the generalization to SU(N.) the coulomb branch is locally
CNe—1 and is coordinatied by:

= (T ¢",Tr ¢°,...) (6)

And N=2 SQCD has rich a Coulomb branch, with special
monopole points, just as in Seiberg-Witten, except more
complexity. There is also a Seiberg-Witten curve:

N
y? = [ J(x — ¢:)* + an2Ne=NexNe (7)
=1

Remarkably, in a large class of examples, it can be shown that the
deformation to the N=1 theories we are interested in introduces
only trivial corrections to this curve. Thus the flat moduli
directions and the special monopole points survive in the N=1
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Duality Cascades
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In the generalization to SU(N,) the coulomb branch is locally
CNe—1 and is coordinatied by:

i=(Tr ¢°,Tr ¢°,...) (6)

And N=2 SQCD has rich a Coulomb branch, with special
monopole points, just as in Seiberg-Witten, except more
complexity. There is also a Seiberg-Witten curve:

N
¥ = | Jor — @) + anENe Ny (7)
—1

Remarkably, in a large class of examples, it can be shown that the
deformation to the N=1 theories we are interested in introduces
only trivial corrections to this curve. Thus the flat moduli
directions and the special monopole points survive in the N=1



Duality Cascades

Let’'s take it from the top again. In the ultra-violet, we start with

the model:
G |U(N), UN + M;), U(N + M3);
® | adj 1 1
X X oi 1 0,0
Y.Y| OO 00,5 1
ZE 1 0,0 0,0

with N >> My, Ms.

W=Tr{®YY} — Tr{®XX} + Tr{ZZXX — ZZYY} — £Tr{® — ZZ}.
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Duality Cascades

Let's take it from the top again. In the ultra-violet, we start with

the model:
G |U(N), UNN + M;), U(N + M;);
® | adj 1 1
X Xl oi 1 0,0
Y.Y| 00D 0,5 1
ZZl 1 0,0 0,0

with N >> My, Ms.

W =Tr{®YY} — Tr{®XX} + Tr{ZZXX — ZZYY} — £Tr{® — ZZ}.

When a coupling associated with an adjoint-less node hits strong
coupling we perform a Seiberg dualtiy.
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Infrared Model

Infrared Model:

After many steps:

G \U(P),U(P—M); U(0)3
® | adj 1 1
Y. ¥l Bin 0,8 1
W=Te(0VY}—eTr(0} + 3 {evl — vielel} (9)
I k
The condition: =

cannot be satisfied due to a mismatch of ranks.
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Geometric picture

The final geometric picture of the metastable warped throat:

Fractional D3s,
tensionless fractional Dls

Moduli are fractional D3s, monopoles are wrapped D3s, leading to
fractional D1s. The fractional D3 positions are constrained by an
enhancon mechanism - dual to the "removal of the origin” in
Seiberg-Witten.
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The final geometric picture of the metastable warped throat:
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fractional D1s. The fractional D3 positions are constrained by an
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Geometric picture

The final geometric picture of the metastable warped throat:

Fractional D3s,
tensionless fractional Dls

Moduli are fractional D3s, monopoles are wrapped D3s, leading to
fractional D1s. The fractional D3 positions are constrained by an
enhancon mechanism - dual to the "removal of the origin” in
Sgiberg-Witten.
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Infrared Model

Infrared Model:

After many steps:

G U(P),UP —M); U(0)3
& | adj 1 1
Y,Y| OO 0,8 1
W=Te{o¥ ¥} —eTr(o} + 33 {evl —vielel} 9)
I k
The condition: T

cannot be satisfied due to a mismatch of ranks.

The non-Abelian sector is stabilized by a one-loop effective
potential (all scalars which are not Goldstones get a positive mass
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Duality Cascades

This produces a theory of identical form, except with reduced

ranks:
G |[UN"— M), UWN") UN" — M;)3
® 1 adj 1
2,z 0,0 1 0,0
X X 0,0 0,0 1
ry 1 0,0 0,0
W=Tr{®dYY} — Tr{®dXX} + Tr{zzXX — 2zY Y} + £€Tr{® — zz}. (8)

Here: N = N — M>.

When an adjoint node approaches strong coupling choose a point
on the Coulomb branch. It turns out that there is a unique choice
which is stable in the supersymmetry breaking vacuum.
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Geometric picture

The final geometric picture of the metastable warped throat:

Fractional D3s,
tensionless fractional Dls

Moduli are fractional D3s, monopoles are wrapped D3s, leading to
fractional D1s. The fractional D3 positions are constrained by an
enhancon mechanism - dual to the "removal of the origin” in
Seiberg-Witten.
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Infrared Maodel

What of the moduli? Can’t these give rise to runaways? They care
of themselves:

9)4%

I

oY,

The resulting monopole condensation gaps the entire Abelian
sector. Thus this sector is stable against runaways. **

=& — =0, (11)
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Infrared Model

Infrared Model:

After many steps:

G \U(P), UP—M); U(0)3
® | adj 1 1
Y,Y| OO 0,8 1
W=T{oVY} —eTr{o} + > > {&v} — wLeLEL} (9)
I k
The condition: n

cannot be satisfied due to a mismatch of ranks.

The non-Abelian sector is stabilized by a one-loop effective
potential (all scalars which are not Goldstones get a positive mass
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Infrared Model

What of the moduli? Can’t these give rise to runaways? They care
of themselves:

— =&e —£=0, (11)

The resulting monopole condensation gaps the entire Abelian
sector. Thus this sector is stable against runaways. **
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Infrared Model

Infrared Model:

After many steps:

G |[U(P), UP— M), U(0);
® | adj 1 1
Y,Y| OO0 0,0 1
W=Tr{o¥Y} —eTr{0} + 3 > {¢v} — vieiel} (9)
] k
The condition: W
%:yy_g:o: (10)

cannot be satisfied due to a mismatch of ranks.

The non-Abelian sector is stabilized by a one-loop effective
potential (all scalars which are not Goldstones get a positive mass
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Infrared Maodel

What of the moduli? Can’t these give rise to runaways? They care
of themselves:

oW

/

oY,

The resulting monopole condensation gaps the entire Abelian
sector. Thus this sector is stable against runaways. **

=& — =0, (11)
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Conclusions & QOutlook

Conclusions

e We discussed applications of warped throats with localized
susy breaking (pheno, string compactification).

e Gave field theory arguments for existence of such throats.
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Geometric picture

The final geometric picture of the metastable warped throat:

Fractional D3s,
tensionless fractional Dls

Moduli are fractional D3s, monopoles are wrapped D3s, leading to
fractional D1s. The fractional D3 positions are constrained by an
enhancon mechanism - dual to the "removal of the origin” in
Seiberg-Witten.
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Conclusions & QOutlock

Conclusions

e We discussed applications of warped throats with localized
susy breaking (pheno, string compactification).

e Gave field theory arguments for existence of such throats.
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Conclusions & Qutlook

Conclusions

e Interesting to apply to warped model building.
¢ |nteresting hidden/dark sectors?

e Continuation to strong coupling (relation to anti-branes)?
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