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Abstract: We will discuss two topics. First we will revisit the asymptotic structure of classical de Sitter space. In particular we will construct charges
at future infinity (I°+) and obtain the asymptotic symmetry group drawing parallels with the BM S group of flat space. Secondly, move away from
the region 1"+ and study the space living near the cosmological horizon by considering large rotating Nariai black holes whose size tends to that of
the cosmological horizon. We will examine the resulting near (cosmological) horizon geometry and find an interesting asymptotic structure
containing the Virasoro algebra, suggestive of a holographic interpretation.
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Review de Sitter Space

de Sitter Space

Maximally symmetric cosmology supported by positive cosmological constant.
Possibly two-de Sitter eras in our Universe: (i) Inflation, (ii) Near future.

Poses an interesting theoretical problem of how holography is defined (if it is at
all!) in cosmological spacetimes.
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Review de Sitter Spacs

de Sitter Geometry

de Sitter space appears as a solution to Einstein gravity with a positive
: 3 g : . -
cosmological constant A = +3//“. lts metric in the global patch is

ds”

-y
F _—

— —d7? + cosh® 7dQ3

No single observer has access to the global patch. The spacetime accessible to
a single observer is given by the static patch

-

e e S
< (1 — ro)

We notice the appearance of a COSMOLOGICAL HORIZON at r = 1.

g, -
— F dﬂﬂ'_l

The conformal boundary is SPACELIKE, and lives at 7.
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Review de Sitter Space

Hawking Temperature, Entropy

Thus, the observers are immersed in a thermal bath of temperature

1
P

Es—

and there is a Gibbons-Hawking entropy associated to the static patch given by

Area
4G
When the number of spacetime dimensions exceeds THREE. one can have

asymptotically de Sitter black holes, whose entropy is always LESS than the
entropy of pure de Sitter.

Sas —

For THREE dimensions, one only has Lorentzian conical defects that are
asymptotically de Sitter. Interestingly, the quotients of the 3-sphere, i.e. the
spherical three-manifolds, are classified.
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Review de Sitter Space

dS/CFT1?

The ASYMPTOTIC SYMMETRY GROUP of three-dimensional de Sitter space
is two copies of the Virasoro algebra with central charge

3
2

Furthermore, boundary-to-boundary two-point functions of scalar fields were
found to behave as

Cd

Ly

: r F E
lim (o(r.x)ol{T .x)) ~ -
rrf—soo = ) be — |2
where h. =1+ /1 — m?#? is interpreted as the conformal weight of an

operator sourced by the bulk scalar.

The above was taken as evidence for a conjecture of a2 dS/CFT correspondence
with the Euclidean CFT living at Z7 (and/or Z7)
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Review de Sitter Space

Problems

The conjecture came with some unanswered questions.

The infinite asymptotic symmetries argument only holds for three-dimensions
so it cannot be used as non-trivial evidence in higher dimensions. In fact, the
story is significantly different in higher dimensions.

A two-dimensional CFT has an exponential asymptotic growth of states,
whereas there are NO dS3 BT /Z-like black holes. Even so, Cardy's formula
remarkably works for the de Sitter entropy on rotating conical singularities

I More recently, three-dimensional black holes have
with warped dS3 asymptotics

It is not clear how the two boundaries Z= come into play. particularly unlike
AdS, it is unclear what the boundary interpretation of the static patch thermal
density matrix is.
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Z7 IN FOUR-DIMENSIONS



Review de Sitter Space

Problems

The conjecture came with some unanswered questions.

The infinite asymptotic symmetries argument only holds for three-dimensions
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story is significantly different in higher dimensions.

A two-dimensional CFT has an exponential asymptotic growth of states,
whereas there are NO dS3 BT Z-like black holes. Even so, Cardy’s formula
remarkably works for the de Sitter entropy on rotating conical singularities

I More recently, three-dimensional black holes have
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AdS, it is unclear what the boundary interpretation of the static patch thermal
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T in Four-Dimensions

Asymptotic Expansion

Solutions to Einstein equations with positive cosmological constant can be
organized asymptotically in the Fefferman-Graham expansion

dS: _df}l - dXdX ( (0) 2 (2) © dX“-de .

= i = = J {rio_[li'u_ )
!..2 ”_}_ ."I';“ .@'_5,- .-'I =J]] Tt -, ”__ \ e'l S - . .

where I lives at n — 0.

In four-dimensions, unlike three, there exist propagating gravitons. Generic
initial conditions for the graviton lead to variations of g'? and g'¥.

(3) & 13 : c - (0) { E
Note that Trg; ) =V'g. =0, g, are functions of g% and g* for k > 3.

Sij ij

In AdS we can consistently switch off the g'? deformations, however this is not
the case in dSa.
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Asymptotic Expansion

Solutions to Einstein equations with positive cosmological constant can be
organized asymptotically in the Fefferman-Graham expansion

ds’ _d;;:' 5 dx' dx’ ( (0) 2 (2) e dx’ dx!

& TN& T---)

5

2 (3
72 : (U Sii )
V= "r)-_ Irl.'.-_ \

g\
where I lives at n — 0.

In four-dimensions, unlike three, there exist propagating gravitons. Generic
initial conditions for the graviton lead to variations of g'® and g'¥

(3) i (3) (k) - . (0) (3) E -
Note that Trg;” =V'g,” =0, g; ' are functions of g'Y and g for k > 3.

In AdS we can consistently switch off the g'® deformations, however this is not
the case in dSa.
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T 7 in Four-Dimensions

FG Preserving Diffeomorphisms

The Fefferman-Graham expansion is fully specified with the boundary data

(2'?. g¥)) and has a conformal structure in that it is defined up to conformal

o=
(D) (3)

. The conformal weights of o0 and gt ares —2 and
[ t:!'_;

transformations of g g

s = —1 respectively.

Furthermore, the Fefferman-Graham preserving diffeororphisms are given by:

7l

Ty

— ndo(x)

o Ui (Q)if o & =
' = @+ 5gMge(R) + ..

a

where the purely do diffeomorphisms give rise to scale transformations and the
o' diffeomorphisms are tangent to Z7.
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T in Four-Dimensions

Boundary Conditions

Given that gravitons in asymptotically dSs will generically deform both g'? and
g'? . we are led to propose that the appropriate boundary conditions for dSy are

all spacetimes obeying the Fefferman-Graham expansion, with boundary data
within the same conformal class identified

Notice that these boundary conditions differ from those of AdSs which freeze

g'? ie. Dirichlet boundary conditions. In AdSs we are allowed to do this
because g'? lives at spacelike infinity where we can freely impose boundary
conditions.

In 2 sense, our picture is more reminiscent of the asymptotically flat case where
gravitational radiation can also leak through the boundary...
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Qur task is to understand what the asymptotic symmetry group of dS; is.
From the geometric structure of Z™ we are already hinted at:

Easc = &' (x")d; .

i.e. diffeomorphisms tangent to 7. We would like to render diffeomorphisms
corresponding to conformal transformations of the boundary metric TRIVIAL,
given that they are maps between members of the same conformal class.

The infinite dimensional group is closer in spirit to the BMS group of
asymptotically flat space in four-dimensions than the finite dimensional group
of AdSs.
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T 7 in Four-Dimensions

Charges |

We must construct a set of ‘conserved’ quantities that allow boundary
conditions containing both dg‘? and 4g'*). Our construction follows from a
recent analysis by Compere and Marolf, in an attempt to render fluctuations of
the AdS boundary normalizable.

We begin with the regularized Lagrangian constructed in

1
167G

= ] —
/_H d‘ixv:_g{ﬁ — 2A\) — -G ,/I— d x /7K

Sr% —

=
_167(;,/;___‘:’1“’ JRH] —4+--].

Using covariant phase space techniques, one usually constructs a symplectic
form wex(dg1. dg2) out of the Einstein-Hilbert action and then defines charges
with respect an asymptotic symmetry £. In our case, such charges would

risa: 10gppoperge and are ill-defined. However, wegy is ambiguous up to 2 total derivasesss



T in Four-Dimensions

Charges ||

Following we can construct a set of finite and
integrable charges based on the following symplectic three-form:

Wmod = wWEH(0G1,082) + dwa(071-072).

The finite charge for an asymptotic symmetry £ is defined on a two-dimensional
cut on Z7 and given by:

iR S B e —— e LV 2 — % +i 5.0
0Qc =9 ( /'z d"x\/on & T; — = d"xvon Skl gydg;
\ . r-_"' / e r:*

Though finite, these charges are non-integrable and non-conserved as is the

case for the BMS charges. Wald and Zoupas have constructed a unique

boundary counterterm to render the charges integrable (but not conserved

since flux leaks through Z7).

One sees that the charges indeed vanish for diffeomorphisms which rescale g'?,
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Charges ||
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T in Four-Dimensions

Charges ||
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Wmed — -—‘EH(*igl- f.“‘g;} ¥ d-«—'cr(f;* 1. f‘;‘l}-
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- A ] : BY 1 - o — —
.,’ﬂQi._' —@ ( d Xy f""ﬂ Hj T ) = / d X\v.-'r”_'rﬂq\___‘_ E‘r’”gér

“J &L < Jay%
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T 7 in Four-Dimensions

Conservation Equation

The on-shell charges (corrected by the WZ term) are found to be:
g 3 — J_. = T = -
-— / d“x\/on & va — Qay, & € €xsc
J ax

These are the BROWN-YORK charges defined on a 2d submanifold J% of I
for the regularized Brown-York stress tensor T2' ~ gl? satisfying

if Sij
Wl =V i —8

The charges obey a CONSERVATION EQUATION:

_ _ =
Qc[0%2] - QeEil = 5 | dx\/g0 T Legf”

L.

This is reminiscent of the flux going through Z7 in flat space where T? would
be the Bondi news tensor, indicating the presence of gravitational radiation.
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T in Four-Dimensions

Conservation Equation

The on-shell charges (corrected by the WZ term) are found to be:

- @ i BY ——
Q= / dxvon&T; = Qpy, § €&asc
J a%

These are the BROWN-YORK charges defined on a 2d submanifold 9% of I™

for the regularized Brown-York stress tensor Tfy ~ g;'] satisfying
By VI —C
The charges obey a CONSERVATION EQUATION:
= r =
QE[UEE] = Q':_‘[‘-'*Ell = d x \ g“]' F L_.;-gﬂr_

= B

This is reminiscent of the flux going through Z7 in flat space where T? would
be the Bondi news tensor, indicating the presence of gravitational radiation.
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77 - Summary

We have found finite integrable charges at Z™ for all variations of the metric
preserving the Fefferman-Graham form.

The asymptotic symmetries associated to these charges are given by the
diffeomorphisms on &>, i.e. those tangent to Z7. Indeed charges with respect

to do %= 0 diffeomorphisms (which move Z7) vanish.

This is closer in analogy to the infinite dimensional BMS group which is the
ASG of flat space, than the finite dimensional ASG of AdSs.

We will now move on to an analysis of asymptotic symmetries near the
cosmological horizon...
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Kerr—de Sitter Black Holes

ROTATING BLACK HOLES IN DE SITTER SPACE



Kerr—de Sitter Black Holes

Kerr de Sitter Space

The general rotating black hole solution with positive cosmological constant is

given by
. A ' g _ 7 2 .'1: .
ds = —— (dt— :sm‘Hd-J} =l
= = : Ar
3 ) i’i‘u} .9 ' = r:—az X
E ﬁsm“H(adt— — dr)
&:-II 2 b=
where
5 g, ||"-2 1’32
A, = (P + 2 (1— d ) = )
< <
2
s - | - -
Apg =1+ —cos B, p " =r +3 cos #
[ 4

A, has four real roots, the two largest, r— and r., being the black hole and
Prsa 10zogsmMological horizons.
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Kerr—de Sitter Black Holes

Interesting Regions of Parameter Space

There are several regions in the parameter space of Kerr-de Sitter space worth
noting. Particularly we have:

EXTREMAL BLACK HOLES with vanishing temperature.

LUKEWARM BLACK HOLES with equal temperature to the cosmological
horizon.

ROTATING NARIAI BLACK HOLES with size equal to the cosmological
horizon.

There exist smooth Euclidean instantons corresponding to these geometries
. unlike most Euclideanizations of black holes in de Sitter which
have conical singularities. We will now focus on the rotating Nariai black holes.
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Kerr—de Sitter Black Holes

Thermodynamics

The mass, angular momentum and cosmological entropy of the Kerr-de Sitter
geometry are given by:

& — _E' O aM = w(rs + a°)

= Yo =2

and follow the usual first law of thermodynamics. These charges are defined at
17 via the regularized Brown-York stress tensor.

The first law of thermodynamics for Kerr-de Sitter black holes in the rotating
Nariai limit becomes:

dS. = _"i,r_er_-al. # " i— TL_l — 7nk.
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Kerr—de Sitter Black Holes

Scaling Limit of Rotating Nariai Black Hole

When we take the rotating Nariai limit r— — r., it is in fact possible to also
take a scaling limit with an infinite scaling geometry which we call the rotating
Nariai geometry.

(r—r.) ’

t' = b\t. =% " b Qgut. T =
Al re

.ﬁ_——r_

This leads to the following metric upon A — 0 and 7/ fixed:

A

==_— ) + ~(9) (do + krdt)” + a(8)ds’
r(m—r),

-

ds® = (#) (—r(— — r)dt’ +
In global coordinates we find:
ds® = [(#) ( —dt” + cosh” tdv® ) + ~+(8) (do + k sinh td’)” + a(8)ds”

with ¢» ~ o> +— 271,
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Kerr—de Sitter Black Holes

ASYMPTOTIC STRUCTURE OF ROTATING NARIAI



Kerr—de Sitter Black Holes

Scaling Limit of Rotating Nariai Black Hole

When we take the rotating Nariai limit r— — r., it is in fact possible to also

take a scaling limit with an infinite scaling geometry which we call the rotating
Nariai geometry.

I f : r —— r—] r
e T e A Qput. 7=
Ary re

.ﬂ_——r_

This leads to the following metric upon A — 0 and 7/ fixed:

;J_ \
85 =(0) (—r(r = N)de® + —Z— ) +(6) (do + krdk)? + a(6)d6”
r(r—r),

In global coordinates we find:

ds® = [(#) (—dt” + cosh® tdv® ) + ~(8) (d¢ + k sinh td’)” + a(0)d6”
with ¢ ~ i + 27
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Kerr—de Sitter Black Haoles

ASYMPTOTIC STRUCTURE OF ROTATING NARIAI






Kerr—de Sitter Black Holes

Scaling Limit of Rotating Nariai Black Hole

When we take the rotating Nariai limit r— — r., it is in fact possible to also

take a scaling limit with an infinite scaling geometry which we call the rotating
Nariai geometry.

4 I — r_] r .ﬁ: —
f! — DL, ¥ — {— Qo —Q — QBHI'. T == —8M8M8.
AE} re

This leads to the following metric upon A — 0 and 7/ fixed:

= ) + () (do + krdt)” + a(8)d8’

r(r—r),

ds®> =T () (—r(.— —r)dt® +

In global coordinates we find:

$.

ds> = I(6) ( —dt” + cosh’ rdr-'ili} +7(0) (do + ksinh tdvr)” + a(6)d6”

with ¢ ~ o + 27
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Kerr—de Sitter Black Holes

Scaling Limit of Rotating Nariai Black Hole

When we take the rotating Nariai limit r—- — r., it is in fact possible to also
take a scaling limit with an infinite scaling geometry which we call the rotating

Nariai geometry.
J"‘C = r_

r r‘ == r— F
t =b\t. = ¥1 o —o—thet =
[ S

This leads to the following metric upon A — 0 and 7/ fixed:

-

N
.

ds®> = [(#) (—r(.— — r)dt? + %) ++(8) (do + krdt)? + a(8)d6?
In global coordinates we find:
ds® = [(#) (—dt® + cosh” tdv:? ) ++(8) (do + k sinh tde)” + a(6)d#’
with ¥ ~ ¢ + 27, ==
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Kerr—de Sitter Black Holes

Geometry of Rotating Nariai

It is a de Sitter version of the NHEK geometry, i.e. an S? fibration over dS,.
Constant time slices of the global geometry have an S x S? topology.
There is an SL(2.R) x U(1) four-dimensional isometry group.

The parameter 7 is a near-extremality parameter which when non-zero allows
for the black hole and cosmological horizons to be preserved.

At constant polar angle # the geometry becomes that of warped de Sitter

space, which is a solution to topologically massive gravity with positive
cosmological constant. This maybe a simpler context to study rotating Nariai...
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Kerr—de Sitter Black Holes

Asymptotic Symmetries |

We would now like to explore the asymptotic symmetry group of the rotating
Nariai geometry

Recall that these are given by the set of diffeomorphisms obeying certain
boundary conditions quotiented by the trivial ones. By trivial we mean
diffeomorphisms with vanishing Barnich-Brandt charges at Z5,,.

We propose the following boundary conditions at Z5, (recall large r is a time
coordinate):

h!_—l'_' e F . h._‘-.,_j i hf_‘._':. e 1. h[r—! S h_’)H e hHF-f iy h,::r i ]_ Ir.
I 2 3
h{r e nHr M 1 F - h."."' T l F .

The diffeomorphisms preserving the above boundary conditions are given by:

. — D
o (

—0s + inrd;). ( = Ok.
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Kerr—de Sitter Black Holes

Asymptotic Symmetries ||

One can find the asymptotic symmetry group of the rotating Nariai geometry,
to be a single copy of the Virasoro algebra with REAL, POSITIVE central

charge:

12r2,/(1 — 3r2/2)(1 + rZ/ 2)
—1 + 6r2 /02 + 3808 '
As in Kerr/CFT the ASG comes from the U(1l) isometries. Notice further that

- r, ¢ - . = —
the central charge vanishes when rZ = (° /3, this is the non-rotating Nariai
geometry.

i —
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Kerr—de Sitter Black Holes

Asymptotic Symmetries |

We would now like to explore the asymptotic symmetry group of the rotating
Nariai geometry

Recall that these are given by the set of diffeomorphisms obeying certain
boundary conditions quotiented by the trivial ones. By trivial we mean
diffeomorphisms with vanishing Barnich-Brandt charges at Z5,,.

We propose the following boundary conditions at Z5,, (recall large r is a time
coordinate):

5

he ~ r°. hgeg~heg~1. hyg~hgg ~ hgg ~ hy ~ 1/r.

h[r M ht.lr T 1 J'"_.. h.r"lr' T l J'j
The diffeomorphisms preserving the above boundary conditions are given by:
_—ing

Gn = € (—0s +inrd;). (o= o.
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Kerr—de Sitter Black Holes

Asymptotic Symmetries ||

One can find the asymptotic symmetry group of the rotating Nariai geometry,
to be a single copy of the Virasoro algebra with REAL, POSITIVE central

charge:

12r2 /(1 —3r2/02)(1 + r2/¢2)
—1+6r2/62 +3r2¢ :

As in Kerr/CFT the ASG comes from the U(1) isometries. Notice further that

. . 2 - - . -
the central charge vanishes when rZ = ¢°/3, this is the non-rotating Nariai
geometry.

£ —

Pirsa: 10120039 Page 54/66



Kerr—de Sitter Black Holes

Asymptotic Symmetries |

We would now like to explore the asymptotic symmetry group of the rotating
Nariai geometry

Recall that these are given by the set of diffeomorphisms obeying certain
boundary conditions quotiented by the trivial ones. By trivial we mean
diffeomorphisms with vanishing Barnich-Brandt charges at Z5,,.

We propose the following boundary conditions at Z5,, (recall large r is a time
coordinate):

-

h‘:l'_' o J'r-_. h.'”_;. i h',‘_'.:;. o 1_. hrr:d o h_’)a’-_f e h.{—,.'r:_f Fd h.-_jr Fd ]_ r.

7 3
h[r e h".‘!." M 1 F . hr,l" T l =

The diffeomorphisms preserving the above boundary conditions are given by:

S (—0s + inrdy) . G = 0.

Sn — €
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Kerr—de Sitter Black Holes

Geometry of Rotating Nariai

It is a de Sitter version of the NHEK geometry, i.e. an S? fibration over dS,.
Constant time slices of the global geometry have an St x S? topology.
There is an SL(2.R) x U(1) four-dimensional isometry group.

The parameter 7 is a near-extremality parameter which when non-zero allows
for the black hole and cosmological horizons to be preserved.

At constant polar angle # the geometry becomes that of warped de Sitter

space, which is a solution to topologically massive gravity with positive
cosmological constant. This maybe a simpler context to study rotating Nariai...
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Kerr—de Sitter Black Holes

Scaling Limit of Rotating Nariai Black Hole

When we take the rotating Nariai limit r— — r., it is in fact possible to also
take a scaling limit with an infinite scaling geometry which we call the rotating
Nariai geometry.

(r—r.) '

r =B\t ¥ —=%X " 5 -— & Ot =
Al ry

.ﬂ_——r_

This leads to the following metric upon A — 0 and 7/ fixed:

-

ds’® = () (—r(f—r)dtl——drh | ;

) + (@) (do + krdt)” + o (0)do’

r(mr—r),

In global coordinates we find:

") ¥

dss — (o) ( _dt? + cosh’ tdﬁ_'z) + (@) (do + k sinh tdv')” + a(08)do”

with ¢ ~ o + 27
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Kerr—de Sitter Black Holes

Asymptotic Symmetries |

We would now like to explore the asymptotic symmetry group of the rotating
Nariai geometry

Recall that these are given by the set of diffeomorphisms obeying certain
boundary conditions quotiented by the trivial ones. By trivial we mean
diffeomorphisms with vanishing Barnich-Brandt charges at Z5,,.

We propose the following boundary conditions at Z5, (recall large r is a time
coordinate):

he ~ r°, hses~hep~1, hg~ hge ~ hgg ~ her ~ 1/r.

2 3
hfr i hl""." e 1 = hrr M l F .
The diffeomorphisms preserving the above boundary conditions are given by:
“'_\-n = E_r”rj ( _"'}_ = f-nr"-’]rl} = -.,__:t- — F-.Jil-l_
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Kerr—de Sitter Black Holes

Rotating Nariai/CFT Proposal

One is thus led to propose that the rotating Nariai geometry is
HOLOGRAPHICALLY DUAL to a two-dimensional Euclidean conformal field
theory.

Indeed, somewhat mysteriously, the cosmological entropy is given by the Cardy
formula

——

S%— e
3 'a

Notice further that this is a different class of dualities which is not continuously
connected to dS/CFT or Kerr/CFT. The natural test lies in a thorough analysis
of fields defined in this geometry.
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Kerr—de Sitter Black Holes

Beyond T; = 07

One can compute the change in cosmological entropy when we go away from
the Nariai limit. It is in fact POSITIVE.

From the point of view of the rotating Nariai/CFT proposal, leaving the Nariai
limit corresponds to adding some right moving energy which in turn also
increases the entropy as follows from Cardy:

2 2

5,: = %TLC;_ = s ?TECR,

so long as ¢ = cp > 0.

One can attempt to compute cg by studying the asymptotic symmetries of an
effective 2d theory of gravity obtained from a Kaluza-Klein reduction of a class
of 4d metrics containing the rotating Nariai metric.

This is work in progress, but looks promising.
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pamcular the picture is EXACTLY realized for a closely related family of
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Kerr—de Sitter Black Holes

SCALAR WAVES IN ROTATING NARIAI



Kerr—de Sitter Black Holes

Scalar Waves | - ANSAT~Z

One finds further evidence for the correspondence by studying free scalar
perturbations in the rotating Nariai background '

Vi =0.
We choose the following ansatz: ®(t.r.0.0) = e "““ "™ R(r)Yim(#).

Then the equations of motion SEPARATE and can be solved exactly in terms
of HYPERGEOMETRIC FUNCTIONS.

The large r, i.e. late time, behavior goes as:

h ]— . A 9 -
Sour ™ By fiatE L A 3

=5 5

Thus, conformal weights are COMPLEX (perhaps this implies principal series
irreps are the correct ones )
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Kerr—de Sitter Black Holes

Scalar Waves Il - QUASINORMAL MODES

Demanding that the waves have ingoing flux and the black hole horizon and
outgoing flux at the cosmological horizon, our spectrum becomes quantized
and takes the form:

m = 2xili(n+hMh)., n=0.1.23. ...
G — —ZTI'TE{n—hE), s—4UEFE> 1.

where Tg = 7/4x is the temperature of the cosmological horizon in the
rotating Nariai geometry and hy = hg = h_.

These have the form of the poles of a thermal retarded Green’s function in 2
CF T2 (upon identifying the various CFT quantities).
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Kerr—de Sitter Black Holes

Scalar Waves |l - IE,FN CORRELATORS

Boundary-to-boundary correlators at Zj,, take the form of the thermal
correlators in a two-dimensional CFT, upon imposing that the scalar modes are

purely ingoing at the black hole horizon.

We compute these using the AdS/CFT inspired prescription:

o2
)

{D g [i,‘(’ )Cj.;): ( JV) = .f{-,n (X )i;lr_”:l{ = ] Smal":E." [f__’G]

Explicitly, the late time behavior of the scalar is given by:
s (r_h_ g )

then the boundary-to-boundary correlator at 77 is found to be + which has
precisely the structure of a thermal correlator in a CFT,. Particularly, the poles
of the boundary-to-boundary correlators precisely agree with the quasinormal
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Kerr—de Sitter Black Holes

Scalar Waves |V - a-Vacua

As in pure de Sitter space, we can define a complex parameter worth of
quantum vacua for the free scalar field known as the a-vacua.

Three interesting vacua are:
» the |in) vacuum (defined by positive frequency modes at Z,, ).
» the |out) vacuum (defined by positive frequency modes at Z,,) and

» the |E) vacuum (defined by modes which are analytic in the lower
hemisphere of the Eucledeanized dS,).

Interestingly, the rotating Nariai geometry has cosmological particle creation for
scalars in ALL dimensions. We find

in|al . dou|in) = cosh” (mmk) csch” (7 /2) .

This vacuum structure is NOT given by an analytic continuation of the vacua
of free scalars in NHEK.
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Conduding Remarks

Conclusions and Challenges

Pirsa: 10120039

There is a rich structure residing at Z™ of dS4 which begs for an
Interpretation

Particularly, what is the quantum extension of the classical story, i.e. IR
divergences, bubble nucleation...

Rotating Black holes in de Sitter Space have a rich symmetry group in the
Nariai limit.

What is the non-zero Tg extension of our result? Can we apply
near-extremal Kerr/CFT techniques?

Is there a hidden (broken) conformal symmetry for more general rotating
de Sitter black holes?

Why does Cardy's formula work?
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