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Abstract: A picture can be used to represent an experiment. In this talk we will consider such pictures and show how to turn them into pictures
representing calculations (in the style of Penrose's diagrammatic tensor notation). In particular, we will consider circuits described probabilistically.
A circuit represents an experiment where we act on various systems with boxes, these boxes being connected by the passage of systems between
them. We will make two assumptions concerning such circuits. These two assumptions allow us to set up the duotensor framework (a duotensor is
like a tensor except that each position is associated with two possible bases). We will see that quantum theory can be formulated in this framework.
Each of the usual objects of

guantum theory (states, measurements, transformations) are special cases of duotensors. The framework is motivated by the objective of providing a
formulation of quantum theory which is local in the sense that, in doing a calculation pertaining to a particular region of spacetime, we need only
use mathematical objects that pertain to this same region. Thisis, | argue, a prerequisite in atheory of quantum gravity.

Reference for thistalk: http://arxiv.org/abs/1005.5164
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relude. Formalism-locality

Motivated by considerations from Quantum Gravity, we wish to have the
following property

Formalism locality: A formalism for a physical theory is said
to have the property of “formalism locality” if we can do
calculations pertaining to any region of spacetime employing
only mathematical objects associated with that region.

Note that this is a property of the way a theory is formulated.

arbitrary region of space time < arbitrary fragment of a circuit
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Incomplete list of related work:

» S. Abramsky and B. Coecke, work on quantum picturalism
(categories).

¥

L. Hardy, “Reasonable axioms for quantum theory”,
quant-ph/0101012.

» L. Hardy, “Foliable operational structures for general probabilistic
theories”, arXiv:0912 4740 (2009).

» G. Chiribella, G. M. D'Ariano, P. Perinotti, “Probabilistic theories
with purification”, arXiv:0908.1583 (2009)

» Causal set work by R. Sorkin

» Quantum causal histories approach of F. Markopoulou and related
work by Blute, lvanov, and Panangaden

» Time symmetric quantum theory work by Y. Aharanov and
collaborators

¥

R. Oeckl, work on General boundary quantum field theory
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art |. Operational descriptions.

Language used when theorists and experimentalists talk to each other.
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perations - take 1

= A:iba

An operation, A. corresponds to one use of an apparatus and has the
following features.

» [nputs and outputs. Come in various types, a, b, ...
» A setting, s(A).
» An outcome, Xa.

If the outcome is x5 then we say operation A “happened”.
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perations - take 2 (with coarse graining)

— A:‘:Em

f": | Iﬁ“a

abb
An operation, A. corresponds to one use of an apparatus and has the
following features.
» Inputs and outputs. Come in various types, a, b, ...
» A setting, s(A).
» An outcome set, o(A).

If xa € o(A) then we say operation A “happened”.
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lires

Qutputs can be connected to inputs by wires.

£ — bacs decr
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Wiring rules.

» One wire: At most one wire can be connected to any given input or
output.

» Type matching: Wires can connect inputs and outputs of the same
ype.
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lires

Qutputs can be connected to inputs by wires.
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Wiring rules.

» One wire: At most one wire can be connected to any given input or
output.

» Type matching: Wires can connect inputs and outputs of the same
ype.
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ragments

b a Fragment E
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Fragments have
» A setting, s(E)
» An outcome set, o(E)
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IrCuiIts

Circuits have no open inputs or outputs.

Circuit H

Circuits are special cases of fragments.

Page 15/71

Pirsa: 10120034




art |l. Probabilities.
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robabilities - notation

We write

Prob(A|B)

as shorthand notation for
Prob(xA co(A)|sw(AB).xg € {](B))

We will always take A, B, C, ...to be non-overlapping in such expressions
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ssumption 1

Assumption 1 The probability, Prob(A), for any circuit, A
(this has no open inputs or outputs), is well conditioned - it is
determined by the operations and the wiring of the circuit alone
and is independent of settings and outcomes elsewhere.

Prob] | *"‘ is well conditioned
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robabilities factorize over circuits

It follows from Assumption 1 that
Prob(AB) = Prob(A)Prob(B)

for circuits A and B

assumption.)
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he p(-) function

We define the function p(-) as follows
p(aA+ 3B +...) == aProb(A) + 5Prob(B) +...

for circuits A, B, .... and real numbers a, 3, .. _(these can be negative).

irsa: 10120034 Page 20/71




quivalence relations

Equivalence: We write
expression; = expression,
if
p(expression, E) = p( expression,E)

for any fragment E that makes the contents of the argument on
both sides of this equation into a linear sum of circuits.

Equivalence is a weaker notion than equality.
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xample of equivalence

Have
aA®t + 3B* =~ (C* +6D™

if
p([aA® + BB™]E,,) =p(]yC* +6D™|E,,) forall E,
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nother example of equivalence

In general, we have
A =Prob(A) for any circuit A
Proof: For any circuit E

p(AE) = p(A)p(E) = p(Prob(A)E)
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wo general types of equivalence

1. Each expression is a real number plus a linear combination of
CIrcuits:
a+ A+ B+---=0+eC+(D+...

where A, B, .... C_D, ..., are all crcuits.

2. Each expression is a linear combination of fragments
A+ B+---=7C+0D+ ...

where A, B, ..., C, D, ..., are all fragments having the same causal
structure.
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%art l1l. The tango
|

The simple tango

The advanced tango
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iducial preparations

Fiducial preparations

d

q.v = X where a; =1 to K,

For any preparation A*

e sl

We define

Pirsa: 10120034

a

A

[

Page 32/71




iducial preparations

Fiducial preparations

a
g.v < o X* where a; =1 to K,

For any preparation A*
E a

K=" K% —> EI

1l
]
4

We define

a
::q.v — ;1&7
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iducial effects

Fiducial effects

[\ ea

| — X' where a;=1 to K,

a

For any effect for a system of type a

B, =B, X% <« [B] = £x*B]
_ |
d

We define

A‘r‘%ﬁi - IXB
a
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he simple tango

d = d =
[i} <o/ EaY

Using the linearity of the p(-) function we have

/\ e 1]
a
[V

where we define the hopping metric

A. {'E &. (l
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ack and white dots

We define

— = = o ::HC‘

Hence
T} <etec 7] - [A} {7 - Nty
We have

ce— = = —@C
Hence, we can insert and delete pairs of black and white dots as we like.
Consistency requires
» 0—O to be the inverse of &
» 0—@ to be equal to the identity
» @9 to be equal to the identity
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he steps of the simple tango

Pi

=1

Hence

IIIII

: 10120034
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ack and white dots

We define

:::-H o B| =ee|D]

Hence

T} cetec (7] - [} H - [ E - @

We have

Hence, we can insert and delete pairs of black and white dots as we like.
Consistency requires

» 95 to be the inverse of @
» O—® to be equal to the identity
» @O to be equal to the identity
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he steps of the simple tango

[ e [F] - [

Hence

Prob( alE) = IAIL|B
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ssumption 2

Assumption 2: Operations are fully decomposable. \We assume that
any operation can be written as

In words we will say that any operation is equivalent to a linear
combination of operations each of which consists of an effect for each
input and a preparation for each output.
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uotensor with all white dots

Inserting black and white dots (with black next to the fiducial elements)

A - Sss vy

Therefore

(with all white dots) provides the weights in the sum over fiducial
elements.
This is an example of a duotensor.
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uotensor with all white dots

Inserting black and white dots (with black next to the fiducial elements)

Therefore
odAEs

(with all white dots) provides the weights in the sum over fiducial

elements.

This is an example of a duotensor.
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¥

¥

Have map

¥
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/hat are duotensors?
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corresponds to
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Like tensors except that each index is associated with two bases.

They transform like tensors but with respect to two bases.
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Can change colours of dots using e and c—©
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All white dots gives coefficients in sum over fiducials

All black dots gives fiducial probabilities

7e1AF85 - Prob
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he advanced tango
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All white dots gives coefficients in sum over fiducials

?

A :-:f = Prob

o
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he advanced tango
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he advanced tango
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he advanced tango
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he advanced tango
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Recall

. The hopping
' metric

This implies

(I

|
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equals
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First and last step

4

=

Clearly works for any circuit.
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Hence

XN
Prob| EﬁE i a:: { EI
a - —y
? ; dcC

The diagram for the mathematical calculation looks the
same as the diagram for the operational description.
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eleportation tango (in honour of Oxford group)

First note

ot

(easy to prove).
We have

E= A* %I 4‘7 =

b |

il

Maths and physics can inhabit the same diagram.
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reaking circuits up into fragments

]

[A]
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orresponding duotensor calculation

break up =

a b
I ~
i E
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Can break a circuit up into arbitrary fragments as we wish. Can do
duotensor calculation for each fragment and then put them back together
again.

May be interested in probabilities for one fragment alone . ..
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ramework has Formalism-locality

We simply quote the result:

The probability ratio
Prob(E][i])

Prob(E[j])

where E[i] and E[j] are two fragments corresponding to different
outcome sets for the same experiment is

» well conditioned if and only if the corresponding duotensors, E|:]
and E[;j], are proportional, and

» equal to the constant of proportionality & in E[i]| = kE[;] (if well
conditioned).

Hence we have formalism-locality.
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ploading physical theories into framework

Physical theories can be uploaded into framework if the physical situation
they pertain to can be described with operations and wires and
Assumptions 1 and 2 are satisfied.

To upload a physical theory we need
1. A choice of fiducial effects and preparations for each system type.

2. An expression for the fiducial probabilities for each possible
operation (these are the proabilities with fiducial preparations on the
inputs and fiducial effects on the outputs). This gives us the
duotensor with all black dots.

3. An expression for the hopping metric #—e for each system type. The
entries in this are the probabilities of the fiducial preparations
followed by the fiducial effects. We can invert e to get .
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Can upload
CLASSICAL PROBABILITY THEORY

and

QUANTUM THEORY
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ploading Quantum T heory

1. Have X® for a; =1 to N2, etc.
2. Fiducial probabilities given by'

| d
: 55 ';__ = Trace | P(Xg 22 £)S(ASE 2 PO, |

.
3. Hopping metric is given by

e—o = Trace (P(X21) P(o, X))

Lwhere

PXgs—19) = P(XP) @ P(XZ)®@---@ P(X;‘;E)
P(X3%:2,) = P(aX™) ® P(5X7) ® - ® P(cX™)
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ow to foliate and why not to

Consider foliating the circuit
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ow to foliate and why not to

Consider foliating the circuit
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Corresponds to

} 110 : .
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Have to pad calculation with identities.
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Could simply drop the identities

el o e =1
" e o E] e |

’
( . |
)\

B . \mp”

which does not result from a foliation.
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Foliation can be done but, generically, results in unnecessary padding of
calculation with identities.
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immary

Have two different worlds

» The world of physics (operational descriptions)

» The world of mathematics (duotensor calculations)
Have hybrid statements

» Assumption 1

» Assumption 2

which allow these two worlds to tango.
Can have hybrid diagrams having physics and maths in the same diagram.

Classical Probability Theory and Quantum Theory fit naturally into this
framework.
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Iscussion

¥

Physics to mathematics correspondence principle. For any
physical theory, there exists a small number of simple hybrid
statement that enable us to translate from the physical description
to the corresponding mathematical calculation such that the

mathematical calculation (in appropriate notation) looks the same
as the physical description (in appropriate notation).

Can we make use of

May be related to the cups and caps of Abramsky, Coecke, .. ..

Can we go beyond finite situation. Assumption 2 may be
generalisable.

Quantum Gravity?
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