Title: Two Higgs doublet models/Baryogenesis and LHC Date: Dec 07, 2010 03:40 PM URL: http://pirsa.org/10120030 Abstract: TBA

DØ dimuon anomaly and electroweak baryogenesis

Jim Cline (McGill U. and PI) with Kimmo Kainulainen (Jyväskylä) and Mike Trott (PI) PI-ATLAS LHC day, 7 Dec. 2010

New source of CP violation?

DØ observes 3.2σ deviation from SM prediction of

$$a_{SL}^b = \frac{N_b^{++} - N_b^{--}}{N_b^{++} + N_b^{--}}$$

from semileptonic B decays

 $B_{d,s} \to \mu^{\pm} X$

 $(a_{sl}^d \text{ and } a_{sl}^s \text{ are respective}$ contributions from $B_{d,s}$)

 $B_s \rightarrow J/\psi \phi$ and $B^- \rightarrow \tau \nu$ also deviate from SM. Evidence for new CP violation beyond SM

DØ dimuon anomaly and electroweak baryogenesis

Jim Cline (McGill U. and PI) with Kimmo Kainulainen (Jyväskylä) and Mike Trott (PI) PI-ATLAS LHC day, 7 Dec. 2010

New source of CP violation?

DØ observes 3.2σ deviation from SM prediction of

$$a_{SL}^{b} = \frac{N_{b}^{++} - N_{b}^{--}}{N_{b}^{++} + N_{b}^{--}}$$

from semileptonic B decays

 $B_{d,s} \to \mu^{\pm} X$

 $(a_{sl}^d \text{ and } a_{sl}^s \text{ are respective}$ contributions from $B_{d,s}$)

 $B_s \rightarrow J/\psi \phi$ and $B^- \rightarrow \tau \nu$ also deviate from SM. Evidence for new CP violation beyond SM

A simple model

Two Higgs doublets (*H*, *S*) with minimal flavor violation (MFV) Trott, Wise 1009.2813

New Higgs S^0 FCNC couplings to b (and t) are CKM-suppressed:

 $y_b \overline{b}_L \left(H^0 \delta_{bi} + (\eta_D \delta_{bi} + \eta'_D V_{tb} V_{ti}^*) S^0 \right) q_R^i$

$$\sim {\eta'_D}^2 y_b^2 \frac{m_{S_R}^2 - m_{S_I}^2}{m_S^4} (V_{tb} V_{ti}^*)^2$$

same CKM structure as SM box diagram contribution

A simple model

Two Higgs doublets (H, S) with minimal flavor violation (MFV) Trott, Wise 1009.2813

New Higgs S^0 FCNC couplings to b (and t) are CKM-suppressed:

 $y_b \overline{b}_L \left(H^0 \delta_{bi} + (\eta_D \delta_{bi} + (\eta'_D V_{tb} V_{ti}^*) S^0 \right) q_R^i$

CP violating couplings

$$\sim \eta_D^2 y_b^2 \frac{m_{S_R}^2 - m_{S_I}^2}{m_S^4} (V_{tb} V_{ti}^*)^2$$

same CKM structure as SM box diagram contribution

New **CP** couplings

In addition to \mathcal{CP} Yukawa couplings η_U , η'_U , η_D , η'_D , scalar potential has new \mathcal{CP} couplings,

$$V = \lambda \left(H^{\dagger i} H_i - \frac{1}{2} v^2 \right)^2 + m_1^2 \left(S^{\dagger i} S_i \right)$$

+ $\left(\underline{m_2^2} H^{\dagger i} S_i + \text{h.c.} \right) + \lambda_1 \left(H^{\dagger i} H_i \right) \left(S^{\dagger j} S_j \right)$
+ $\lambda_2 \left(H^{\dagger i} H_j \right) \left(S^{\dagger j} S_i \right) + \left[\underline{\lambda_3} H^{\dagger i} H^{\dagger j} S_i S_j + \text{h.c.} \right]$
+ $\left[\underline{\lambda_4} H^{\dagger i} S^{\dagger j} S_i S_j + \underline{\lambda_5} S^{\dagger i} H^{\dagger j} H_i H_j + \text{h.c.} \right]$
+ $\lambda_6 \left(S^{\dagger i} S_i \right)^2$

of which 2 can be removed by field redefinitions.

Note: *H* is the "real Higgs," only $\langle H \rangle \neq 0$. New Higgses are $S_{R,I}^0$, S_{\pm} . There is no "tan β "; *H* and *S* both couple to all quarks.

CP and baryogenesis

People like to say that new *CP* is exciting because of baryogenesis. Electroweak baryogenesis might be testable at LHC. Can we put these together?

Necessary ingredients:

- new CP 🗸
- baryon violation B

SM provides anomalous **B** at high temperature through sphalerons

• getting out of thermal equilibrium ?

Electroweak Baryogenesis

- Sakharov: must go out of thermal equilibrium to make baryon asymmetry.
- Getting out of equilibrium can be achieved in a first order electroweak phase transition.

Phase transition is too weak in Standard Model, need new Higgs physics

How it works

At critical temperature T_c ~ 100 GeV, bubbles of true vacuum (⟨H⟩ ≠ 0) form and start expanding.
Particles reflect off wall in a CP violating way.
Baryon asymmetry forms inside the bubble.

- Sphalerons eat excess left-handed antiquarks in front of wall
- baryon asymmetry is created
- baryons diffuse back inside expanding bubble
- sphalerons must be ineffective inside bubble, otherwise baryons decay away: need $\langle H \rangle > T_c$

Electroweak baryogenesis has been previously considered in 2 Higgs doublet models. But our analysis is different:

 MFV couplings of quarks to Higgses instead of discrete symmetries to avoid FCNC's

 $\mathcal{L}_{\bar{q}Hq} = \bar{u}_R y_u QH + \bar{d}_R y_d QH^{\dagger}$ $+ \bar{u}_R (\eta_u y_u + \eta'_u y_u y_u^{\dagger} y_u) QS + \bar{d}_R (\eta_d y_d + \eta'_d y_d y_u^{\dagger} y_u) QS^{\dagger}$

• Explain dimuon + B decay anomalies

• Respect numerous particle physics constraints: R_b , EWPO, LEP/Tevatron mass limits, $b \rightarrow s\gamma$, neutron EDM, vacuum stability, Landau poles

Electroweak baryogenesis has been previously considered in 2 Higgs doublet models. But our analysis is different:

• *E.g.*, new contributions to R_b :

go like $|\eta_D|^2$; analogous contributions from S^{\pm} in loop go like $|\eta_U|^2$.

- Sphalerons eat excess left-handed antiquarks in front of wall
- baryon asymmetry is created
- baryons diffuse back inside expanding bubble
- sphalerons must be ineffective inside bubble, otherwise baryons decay away: need $\langle H \rangle > T_c$

Electroweak baryogenesis has been previously considered in 2 Higgs doublet models. But our analysis is different:

 MFV couplings of quarks to Higgses instead of discrete symmetries to avoid FCNC's

 $\mathcal{L}_{\bar{q}Hq} = \bar{u}_R y_u QH + \bar{d}_R y_d QH^{\dagger}$ $+ \bar{u}_R (\eta_u y_u + \eta'_u y_u y_u^{\dagger} y_u) QS + \bar{d}_R (\eta_d y_d + \eta'_d y_d y_u^{\dagger} y_u) QS^{\dagger}$

• Explain dimuon + B decay anomalies

• Respect numerous particle physics constraints: R_b , EWPO, LEP/Tevatron mass limits, $b \rightarrow s\gamma$, neutron EDM, vacuum stability, Landau poles

Electroweak baryogenesis has been previously considered in 2 Higgs doublet models. But our analysis is different:

• *E.g.*, new contributions to R_b :

go like $|\eta_D|^2$; analogous contributions from S^{\pm} in loop go like $|\eta_U|^2$.

Pheno constraints are stringent

We find it hard to satisfy particle physics constraints and get a strong phase transition.

1. Search grid in $\{m_h, m_1, \lambda_1, \lambda_2, \lambda_3\}$ space for strong phase transitions. Then filter with pheno constraints. All examples excluded by EWPO and dimuons $+R_b!$

2. Search grid for pheno-allowed points, then filter results on strong phase transition. Low m_h is favored.

m_h (GeV)	∦ start	# strong p.t.
115	210,000	92
120	195,000	49
130	171,000	25

CP and baryogenesis

People like to say that new *CP* is exciting because of baryogenesis. Electroweak baryogenesis might be testable at LHC. Can we put these together?

Necessary ingredients:

- new CP 🗸
- baryon violation B

SM provides anomalous **B** at high temperature through sphalerons

• getting out of thermal equilibrium ?

New **CP** couplings

In addition to \mathcal{CP} Yukawa couplings η_U , η'_U , η_D , η'_D , scalar potential has new \mathcal{CP} couplings,

$$V = \lambda \left(H^{\dagger i} H_i - \frac{1}{2} v^2 \right)^2 + m_1^2 \left(S^{\dagger i} S_i \right)$$

+ $\left(\underline{m_2^2} H^{\dagger i} S_i + \text{h.c.} \right) + \lambda_1 \left(H^{\dagger i} H_i \right) \left(S^{\dagger j} S_j \right)$
+ $\lambda_2 \left(H^{\dagger i} H_j \right) \left(S^{\dagger j} S_i \right) + \left[\underline{\lambda_3} H^{\dagger i} H^{\dagger j} S_i S_j + \text{h.c.} \right]$
+ $\left[\underline{\lambda_4} H^{\dagger i} S^{\dagger j} S_i S_j + \underline{\lambda_5} S^{\dagger i} H^{\dagger j} H_i H_j + \text{h.c.} \right]$
+ $\lambda_6 \left(S^{\dagger i} S_i \right)^2$

of which 2 can be removed by field redefinitions.

Note: *H* is the "real Higgs," only $\langle H \rangle \neq 0$. New Higgses are $S_{R,I}^0$, S_{\pm} . There is no "tan β "; *H* and *S* both couple to all quarks.

Page 20/65

Electroweak baryogenesis has been previously considered in 2 Higgs doublet models. But our analysis is different:

• *E.g.*, new contributions to R_b :

go like $|\eta_D|^2$; analogous contributions from S^{\pm} in loop go like $|\eta_U|^2$.

Besides light m_h , extra neutral and charged Higgses $S_{I,R}^0$, S_{\pm} are relatively light

Pheno constraints are stringent

We find it hard to satisfy particle physics constraints and get a strong phase transition.

1. Search grid in $\{m_h, m_1, \lambda_1, \lambda_2, \lambda_3\}$ space for strong phase transitions. Then filter with pheno constraints. All examples excluded by EWPO and dimuons $+R_b!$

2. Search grid for pheno-allowed points, then filter results on strong phase transition. Low m_h is favored.

m_h (GeV)	∦ start	# strong p.t.
115	210,000	92
120	195,000	49
130	171,000	25

Besides light m_h , extra neutral and charged Higgses $S_{I,R}^0$, S_{\pm} are relatively light

Pheno constraints are stringent

We find it hard to satisfy particle physics constraints and get a strong phase transition.

1. Search grid in $\{m_h, m_1, \lambda_1, \lambda_2, \lambda_3\}$ space for strong phase transitions. Then filter with pheno constraints. All examples excluded by EWPO and dimuons $+R_b!$

2. Search grid for pheno-allowed points, then filter results on strong phase transition. Low m_h is favored.

m_h (GeV)	∦ start	# strong p.t.
115	210,000	92
120	195,000	49
130	171,000	25

Besides light m_h , extra neutral and charged Higgses $S_{I,R}^0$, S_{\pm} are relatively light

Using phenomenology constraints only, no phase transition cut

Besides light m_h , extra neutral and charged Higgses $S_{I,R}^0$, S_{\pm} are relatively light

Using phenomenology constraints only, no phase transition cut

Besides light m_h , extra neutral and charged Higgses $S_{I,R}^0$, S_{\pm} are relatively light

Using phenomenology constraints only, no phase transition cut

Distribution of S_I^0 - S_R^0 mass splittings:

Using phenomenology constraints only, no phase transition cut

Distribution of S_I^0 - S_R^0 mass splittings:

S_I^0 - S_R^0 mass splittings, pheno constraints only:

Distribution of S_I^0 - S_R^0 mass splittings:

S_I^0 - S_R^0 mass splittings, pheno constraints only:

Distribution of S_I^0 - S_R^0 mass splittings:

S_I^0 - S_R^0 mass splittings, pheno constraints only:

S_I^0 - S_R^0 mass splittings, pheno constraints only:

Collider signatures

Parameter η'_D is large, $\sim 5 - 10$; appears in

$\eta'_D y_b \, \overline{b} Q S^\dagger$

Trott & Wise (1009.2813) suggest collinear gluon splitting + b quark fusion, followed by $S^0 \rightarrow b\overline{b}$, as main discovery channel at LHC.

Resulting 4b events have higher p_T , lower rapidity than ^{irse: 10120}SM background, plus resonance in one $b\overline{b}$ pair.

S_I^0 - S_R^0 mass splittings, pheno constraints only:

Collider signatures

Parameter η'_D is large, $\sim 5 - 10$; appears in

$\eta'_D y_b \, \overline{b} Q S^\dagger$

Trott & Wise (1009.2813) suggest collinear gluon splitting + b quark fusion, followed by $S^0 \rightarrow b\overline{b}$, as main discovery channel at LHC.

Resulting 4b events have higher p_T , lower rapidity than ¹¹⁵²¹ ¹¹²⁰ ³⁵ ³⁶ M background, plus resonance in one $b\overline{b}$ pair.

S^0 production cross section

From Trott & Wise (1009.2813)

2b-2t events

We also predict production of $t\overline{b} + S_{-}$

followed by $S_{-} \rightarrow b\overline{t}$.

Is this as promising as 4b channel, or more so?Is production cross section greatly suppressed?

Production via W, Z

What about

2b-2t events

We also predict production of $t\overline{b} + S_{-}$

followed by $S_{-} \rightarrow b\overline{t}$.

Is this as promising as 4b channel, or more so?Is production cross section greatly suppressed?

Production via W, Z

What about

2b-2t events

We also predict production of $t\overline{b} + S_{-}$

followed by $S_{-} \rightarrow b\overline{t}$.

Is this as promising as 4b channel, or more so? Is production cross section greatly suppressed?

S^0 production cross section

From Trott & Wise (1009.2813)

Pirsa: 10120030

Collider signatures

Parameter η'_D is large, $\sim 5 - 10$; appears in

$\eta'_D y_b \, \overline{b} Q S^\dagger$

Trott & Wise (1009.2813) suggest collinear gluon splitting + b quark fusion, followed by $S^0 \rightarrow b\overline{b}$, as main discovery channel at LHC.

Resulting 4b events have higher p_T , lower rapidity than ^{1158: 10120} M background, plus resonance in one $b\overline{b}$ pair.

S^0 production cross section

From Trott & Wise (1009.2813)

The challenge of baryogenesis

So far we only included necessity of strong phase transition, $\langle h \rangle / T_c > 1$.

Getting enough baryogenesis is even more rare.

Case study that yields observed baryon asymmetry:

 $m_h = 115, \ m_{S_R} = 318, \ m_{S_T} = 201, \ m_{\pm} = 219 \text{ GeV}$

Baryogenesis is sensitive to values of

 $\lambda_4 = 0.23I, \quad \lambda_5 = 0, \quad \eta_U = 0.125$

which impact complex t quark mass in bubble wall,

$$m_t(z) \cong rac{y_t}{\sqrt{2}} \left(h(z) + \eta_U s(z)
ight)$$

 $\frac{d}{dz} \operatorname{Im}(m_t(z))$ must be nonnegligible in bubble wall.

Potential barrier + top mass phase

Phase of $m_t(z)$ comes from $\langle s_I(z) \rangle$ induced by Im (λ_4) in bubble wall: $\arg(m_t(z)) \sim \eta_U s_I(z)/h(z)$

We saturate $|\eta_U| \leq 0.125$, the 1- σ upper limit from R_b . Plise: 101205 Uning λ_4 , λ_5 , $\arg(\eta_U)$ gives barely large enough

Potential barrier + top mass phase

Phase of $m_t(z)$ comes from $\langle s_I(z) \rangle$ induced by Im (λ_4) in bubble wall: $\arg(m_t(z)) \sim \eta_U s_I(z)/h(z)$

We saturate $|\eta_U| \leq 0.125$, the 1- σ upper limit from R_b . Plise: 101205 Uning λ_4 , λ_5 , $\arg(\eta_U)$ gives barely large enough

Why is it so difficult?

Naively, increasing Im(λ_5) increases Im($m_t(z)$) in bubble wall, good for baryogenesis.

Nonzero λ_5 makes it easier to explain dimuon anomaly with smaller η'_D , good for R_b

$$\begin{split} C^{\rm NP}(m_t) \ &= \ (\eta'_D)^2 \left(\frac{\sqrt{2}\,m_t}{v}\right)^4 \left[\frac{\lambda_3\,m_b^2}{m_s^4 - \lambda_3^2 v^4} + \frac{(\lambda_5^R)^2 \,v^2 \,m_b^2}{2 \,(m_s^2 + \lambda_3 \,v^2 - m_h^2) \,(m_s^4 - \lambda_3^2 \,v^4)} + \frac{(\lambda_5^R)^2 \,v^2 \,m_b^2}{2 \,(m_s^2 + \lambda_3 \,v^2 - m_h^2)^2 \,m_h^2}\right] \\ &+ \ (\eta'_D)^2 \left(\frac{\sqrt{2}\,m_t}{v}\right)^4 \left[-\frac{(\lambda_5^I)^2 \,v^2 \,m_b^2}{2 \,(m_s^2 - \lambda_3 \,v^2 - m_h^2) \,(m_s^4 - \lambda_3^2 \,v^4)} + \frac{(\lambda_5^I)^2 \,v^2 \,m_b^2}{2 \,(m_s^2 - \lambda_3 \,v^2 - m_h^2)^2 \,m_h^2}\right]. \end{split}$$

But λ_5 tends to kill delicate barrier in potential, making transition 2nd order:

$$V \sim V_H(H) + \frac{1}{2}m_1^2S^2 + \lambda_5SH(H^2 - v^2)$$

Integrating out S gives

$$V \sim V_H(H) - \frac{\lambda_5^2}{2m_1^2} H^2 (H^2 - v^2)^2$$

Pirsa: 10120030n anti-bump that cancels the positive barrier

Potential barrier + top mass phase

Phase of $m_t(z)$ comes from $\langle s_I(z) \rangle$ induced by Im (λ_4) in bubble wall: $\arg(m_t(z)) \sim \eta_U s_I(z)/h(z)$

We saturate $|\eta_U| \leq 0.125$, the 1- σ upper limit from R_b . Plise: 101205 Uning λ_4 , λ_5 , $\arg(\eta_U)$ gives barely large enough

The challenge of baryogenesis

So far we only included necessity of strong phase transition, $\langle h \rangle / T_c > 1$.

Getting enough baryogenesis is even more rare.

Case study that yields observed baryon asymmetry:

 $m_h = 115, \ m_{S_R} = 318, \ m_{S_T} = 201, \ m_{\pm} = 219 \text{ GeV}$

Baryogenesis is sensitive to values of

 $\lambda_4 = 0.23I, \quad \lambda_5 = 0, \quad \eta_U = 0.125$

which impact complex t quark mass in bubble wall,

$$m_t(z) \cong rac{y_t}{\sqrt{2}} \left(h(z) + \eta_U s(z)
ight)$$

Pirsa: 10120000 Im $(m_t(z))$ must be nonnegligible in bubble wall.

Why is it so difficult?

Naively, increasing Im(λ_5) increases Im($m_t(z)$) in bubble wall, good for baryogenesis.

Nonzero λ_5 makes it easier to explain dimuon anomaly with smaller η'_D , good for R_b

$$\begin{split} C^{\rm NP}(m_t) \ &= \ (\eta'_D)^2 \left(\frac{\sqrt{2}\,m_t}{v}\right)^4 \left[\frac{\lambda_3\,m_b^2}{m_s^4 - \lambda_3^2 v^4} + \frac{(\lambda_5^R)^2 \,v^2 \,m_b^2}{2 \left(m_s^2 + \lambda_3 \,v^2 - m_h^2\right) \left(m_s^4 - \lambda_3^2 \,v^4\right)} + \frac{(\lambda_5^R)^2 \,v^2 \,m_b^2}{2 \left(m_s^2 + \lambda_3 \,v^2 - m_h^2\right)^2 \,m_h^2}\right] \\ &+ \ (\eta'_D)^2 \left(\frac{\sqrt{2}\,m_t}{v}\right)^4 \left[-\frac{(\lambda_5^I)^2 \,v^2 \,m_b^2}{2 \left(m_s^2 - \lambda_3 \,v^2 - m_h^2\right) \left(m_s^4 - \lambda_3^2 \,v^4\right)} + \frac{(\lambda_5^I)^2 \,v^2 \,m_b^2}{2 \left(m_s^2 - \lambda_3 \,v^2 - m_h^2\right)^2 \,m_h^2}\right]. \end{split}$$

But λ_5 tends to kill delicate barrier in potential, making transition 2nd order:

$$V \sim V_H(H) + \frac{1}{2}m_1^2S^2 + \lambda_5SH(H^2 - v^2)$$

Integrating out S gives

$$V \sim V_H(H) - \frac{\lambda_5^2}{2m_1^2} H^2 (H^2 - v^2)^2$$

Pirsa: 10120030h anti-bump that cancels the positive barrier

Why is it so difficult?

Also, $\text{Im}(m_t) \sim \eta_U$ must be small due to neutron EDM and R_b constraints

Further challenges

Baryon asymmetry depends on network of Boltzmann equations for all species of particles near bubble wall

(Fromme, Huber, Seniuch, hep-ph/0605242)

 $3v_{w}K_{1,i}\mu'_{t,2} + 3v_{w}K_{2,i}(m_{t}^{2})'\mu_{t,2} + 3u'_{t,2}$ $-3\Gamma_{y}(\mu_{t,2} + \mu_{t^{e},2} + \mu_{h,2}) - 6\Gamma_{w}(\mu_{t,2} + \mu_{t^{e},2}) - 3\Gamma_{W}(\mu_{t,2} - \mu_{h,2})$ $-3\Gamma_{ss}[(1 + 9K_{1,i})\mu_{t,2} + (1 + 9K_{1,b})\mu_{h,2} + (1 - 9K_{1,t})\mu_{t^{e},2}] = 0$

 $\begin{aligned} & 3v_{\rm w}K_{1,b}\mu_{b,2}' + 3u_{b,2}' \\ & -3\Gamma_s(\mu_{b,2} + \mu_{t^{\rm c},2} + \mu_{b,2}) - 3\Gamma_W(\mu_{b,2} - \mu_{t,2}) \\ & -3\Gamma_{ss}[(1+9K_{1,2})\mu_{t,2} + (1+9K_{1,2})\mu_{b,2} + (1-9K_{1,2})\mu_{t^{\rm c},2}] = 0 \end{aligned}$

 $\begin{aligned} & 3v_{\rm w}K_{1,t}\mu_{t^{\rm e},2}' + 3v_{\rm w}K_{2,t}(m_t^2)'\mu_{t^{\rm e},2} + 3u_{t^{\rm e},2}' \\ & -3\Gamma_y(\mu_{t,2} + \mu_{b,2} + 2\mu_{t^{\rm e},2} + 2\mu_{b,2}) - 6\Gamma_m(\mu_{t,2} + \mu_{t^{\rm e},2}) \\ & -3\Gamma_{ss}[(1+9K_{1,t})\mu_{t,2} + (1+9K_{1,b})\mu_{b,2} + (1-9K_{1,t})\mu_{t^{\rm e},2}] = 0 \end{aligned}$

 $4v_w K_{1,\bar{a}} \mu'_{h,2} + 4u'_{h,2} \\ -3\Gamma_g (\mu_{t,2} + \mu_{b,2} + 2\mu_{F,2} + 2\mu_{h,2}) - 4\Gamma_h \mu_{h,2} = 0$

 $-3K_{4,t}\mu'_{t,2} + 3v_{w}\tilde{K}_{5,t}u'_{t,2} + 3v_{w}\tilde{K}_{6,t}(m_{t}^{2})'u_{t,2} + 3\Gamma_{t}^{tot}u_{t,2} = S_{t}$ $-3K_{4,b}\mu'_{b,2} + 3v_{w}\tilde{K}_{5,t}u'_{b,2} + 3\Gamma_{b}^{tot}u_{t,2} = 0$ $-3K_{4,t}\mu'_{t^{2},2} + 3v_{w}\tilde{K}_{5,t}u'_{t^{2},2} + 3v_{w}\tilde{K}_{6,t}(m_{t}^{2})'u_{t^{2},2} + 3\Gamma_{t}^{tot}u_{t^{2},2} = S_{t}$ $-4K_{4,b}\mu'_{b,2} + 4v_{w}\tilde{K}_{5,b}u'_{b,2} + 4\Gamma_{b}^{tot}u_{b,2} = 0.$ source term, $\theta = \text{Im}(m_{t})$:

Source term, $0 = \min(\operatorname{III}_{\mathfrak{t}})^{\prime}$ $S_{\mathfrak{t}} = -v_{\mathfrak{w}}K_{\mathfrak{s}}(m_{\mathfrak{t}}^{2}\theta_{\mathfrak{t}}^{\prime})^{\prime} + v_{\mathfrak{w}}K_{\mathfrak{s}}\theta_{\mathfrak{t}}^{\prime}m_{\mathfrak{t}}^{2}(m_{\mathfrak{t}}^{2})^{\prime}.$

To simplify network, FHS follow t_L , t_R , b_L , h (assuming all Higgses have same asymmetry).

Results depend upon how many species are explicitly Pirsa: 101260llowed; investigation in progress.

Solution of Boltzmann equations

Chemical potentials for t_L , \overline{t}_R , b_L , h near bubble wall:

Further challenges

Baryon asymmetry depends on network of Boltzmann equations for all species of particles near bubble wall

(Fromme, Huber, Seniuch, hep-ph/0605242)

 $\begin{aligned} & 3v_{w}K_{\mathbf{l},i}\mu_{t,2}' + 3v_{w}K_{2,i}(m_{t}^{2})'\mu_{t,2} + 3u_{t,2}'\\ & -3\Gamma_{y}(\mu_{t,2} + \mu_{te,2} + \mu_{h,2}) - 6\Gamma_{w}(\mu_{t,2} + \mu_{te,2}) - 3\Gamma_{W}(\mu_{t,2} - \mu_{h,2})\\ & -3\Gamma_{ss}[(1 + 9K_{\mathbf{l},i})\mu_{t,2} + (1 + 9K_{\mathbf{l},5})\mu_{b,2} + (1 - 9K_{\mathbf{l},i})\mu_{te,2}] = 0\\ & 3v_{w}K_{\mathbf{l},b}\mu_{b,2}' + 3u_{b,2}'\\ & -3\Gamma_{s}(\mu_{h,2} + \mu_{te,2} + \mu_{h,2}) - 3\Gamma_{W}(\mu_{h,2} - \mu_{1,2}) \end{aligned}$

 $-3\Gamma_{ss}[(1+9K_{1,t})\mu_{t,2} + (1+9K_{1,b})\mu_{b,2} + (1-9K_{1,t})\mu_{t^*,2}] = 0$

 $\begin{aligned} & 3v_{\rm w}K_{1,t}\mu_{t^{\rm e},2}' + 3v_{\rm w}K_{2,t}(m_t^2)'\mu_{t^{\rm e},2} + 3u_{t^{\rm e},2}' \\ & -3\Gamma_y(\mu_{t,2} + \mu_{b,2} + 2\mu_{t^{\rm e},2} + 2\mu_{h,2}) - 6\Gamma_m(\mu_{t,2} + \mu_{t^{\rm e},2}) \\ & -3\Gamma_{ss}[(1 + 9K_{1,t})\mu_{t,2} + (1 + 9K_{1,b})\mu_{b,2} + (1 - 9K_{1,t})\mu_{t^{\rm e},2}] = 0 \end{aligned}$

 $4v_w K_{1,5}\mu'_{h,2} + 4u'_{h,2} \\ -3\Gamma_y(\mu_{t,2} + \mu_{b,2} + 2\mu_{t',2} + 2\mu_{h,2}) - 4\Gamma_h\mu_{h,2} = 0$

 $\begin{aligned} -3K_{4,t}\mu'_{t,2} + 3v_{\mathbf{w}}\tilde{K}_{5,t}u'_{t,2} + 3v_{\mathbf{w}}\tilde{K}_{6,t}(m_{t}^{2})'u_{t,2} + 3\Gamma_{t}^{\mathrm{tot}}u_{t,2} &= S_{t} \\ -3K_{4,b}\mu'_{b,2} + 3v_{\mathbf{w}}\tilde{K}_{5,b}u'_{b,2} + 3\Gamma_{b}^{\mathrm{tot}}u_{b,2} &= 0 \\ -3K_{4,t}\mu'_{t^{c},2} + 3v_{\mathbf{w}}\tilde{K}_{5,t}u'_{t^{c},2} + 3v_{\mathbf{w}}\tilde{K}_{6,t}(m_{t}^{2})'u_{t^{c},2} + 3\Gamma_{b}^{\mathrm{tot}}u_{t^{c},2} &= S_{t} \\ -4K_{4,b}\mu'_{b,2} + 4v_{\mathbf{w}}\tilde{K}_{5,b}u'_{b,2} + 4\Gamma_{b}^{\mathrm{tot}}u_{b,2} &= 0. \end{aligned}$

source term, $\theta = \operatorname{Im}(m_t)$: $S_t = -v_w K_\theta (m_t^2 \theta'_t)' + v_w K_\theta \theta'_t m_t^2 (m_t^2)'.$

To simplify network, FHS follow t_L , t_R , b_L , h (assuming all Higgses have same asymmetry).

Results depend upon how many species are explicitly Pirse: 1012 foollowed; investigation in progress.

Solution of Boltzmann equations

Chemical potentials for t_L , \overline{t}_R , b_L , h near bubble wall:

Summary

- MFV 2HDM gives good account of new CP violation indicated in B mixing from DØ dimuons and deviations in $B_s \rightarrow J/\psi \phi$ and $B^- \rightarrow \tau \nu$.
- Same model can give baryogenesis; highly constrained.
- Unfortunately new phase in *B* mixing is not the one responsible for baryogenesis; model has 6 new *CP* phases.
- η_U should be as large as possible; more sensitive measurements of R_b might see a deviation
- Predict light Higgs and new Higgses $m_{S_I,S_R} \lesssim 450$ GeV, $m_{\pm} \lesssim 300$ GeV; these may become sharper
- 4b or 2b-2t discovery channels possible for LHC