Title: Status of tau ID and reconstruction in ATLAS

Date: Dec 07, 2010 02:10 PM

URL: http://pirsa.org/10120029

Abstract: TBA

Pirsa: 10120029 Page 1/16

Current state of τ s in ATLAS

Saminder Dhaliwal

University of Toronto

December 7, 2010

utline

1. τ reconstruction and identification

- ▶ Reconstruction algorithms: two possible seeds
- Variables that go into identification methods

2. Observation of $Z \rightarrow \tau \tau$

- Object selection
- ► Event Selection
- Background estimation

Pirsa: 10120029 Page 3/16

roperties of τ s (in ATLAS)

- Heaviest lepton (mass of 1.78 GeV)
 - Only lepton that can decay both hadronically (65%) and leptonically (35%)
 - Of hadronic decays 77% have one final charged pion, 23% have three final charged pions

 Appear in final states of Higgs decay, supersymmetric processes and standard model processes

- Challenge in identifying hadronically decaying τ leptons is to distunguish them from hadronic jets, which are produced in processes with very large cross-sections
 - τ decay tends to be well collimated and the invariant mass of the visible decay products is usually smaller than those of jets
- ightharpoonup au lepton proper decay length is $87 \mu m$
 - Decay vertices can be resolved in the silicon tracker from the primary interaction vertex

Pirsa: 10120029 Page 4/16

reconstruction

- Reconstruction is seeded by either a track or a calorimeter cluster
- ▶ Track seeded \(\tau \) candidates
 - Track with p_T > 6 GeV
 - Must pass quality criteria on number of associated hits in the silicon tracker
 - Restrictions on impact parameter with respect to the interaction vertex
- ▶ Calorimeter seeded \(\tau \) candidates
 - Seeded from AntiKT jets
 - cone radius of seed is $\Delta R \leq \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$
- ▶ Those τ s with a seed jet and matched seed track within $\Delta R = 0.2$ are considered to have two valid seeds
- ▶ In generated $Z \rightarrow \tau \tau$ samples 70% of τ s have 2 valid seeds, 25% are calorimeter seeded and 5% have only a track seed
 - Considering only generated au s with $E_{ au}^{ au is} > 10$ GeV and $|\eta| < 2.5$

identification...

Primarily concerned with seperating hadroncially decaying au leptons from QCD jets

R_{EM} (Electromagnetic radius)

$$E_{T,j}^{EM} \sqrt{(\eta_i^{EM} - \eta_{calcuseed})^2 + (\phi_j^{EM} - \phi_{calcuseed})^2}$$

$$E_{T,j}^{EM}$$

- ► Sum over all cells within EM calorimeter (all but last layer)
- W_{Strip} (Transverse energy width in η strip layer)

$$\qquad \qquad \sqrt{\frac{E_{T,i}^{\rm strip}(\eta)i - \eta_{\rm calcaseed})^2}{E_{T,i}^{\rm strip}}}$$

- Sum over all strip cells
- fiso (Isolation in calorimeter)
 - ► Em Em ET,
 - i runs for cells in $0.1 < \Delta R < 0.2$
 - j runs for cells in $\Delta R < 0.4$
- ▶ Ratio of EM energy and total energy
- ► E_T over p_T of leading track

au identification

Pirsa: 10120029 Page 7/16

bservation of $Z \to \tau \tau$: Data and Event Selection

- Use GRL (good runs list) from WZ observation group combined with GRL from Tau Combined performance group
 - · Only include run information from stable beams with all subdetectors reporting no problems
- \blacktriangleright Events must pass either EF_e15_medium or EF_mu10 (we tag events using the electron/muon decay of a τ)

Electron Selection

- ▶ pT > 15 GeV
- ho $|\eta| < 2.47$ (exclude $|\eta|$ between 1.37 and 1.52
- Exclude bad OTX
- Apply robust tight electron selection
- ▶ Isolation: p_TCone40/p_T < 0.06</p>

Muon Selection

- ▶ p_T > 15 GeV
- $|\eta| < 2.4$
- $N_{pixhits} \ge 1$ and $N_{SCThits} \ge 1$
- Must be combined muon (track from ID meets muon spectrometer)
- ▶ Isolation: p_TCone40/p_T < 0.06</p>

Tau Selection

- ▶ pT > 10 GeV
- ▶ $|\eta| < 2.5$
- Exclude bad OTX
- Apply tight selection criteria
- ► Elec and Muon veto

Event Selection

- ▶ Dilepton veto
- $ightharpoonup | au_{charge}|=1$, NTracks =1 or 3
- Opposite sign \(\tau \) and lepton
- M_T(lep, MET) < 50 GeV
- $\rightarrow \sum cos(\Delta\phi) > -0.15$
- → 35 GeV < M_{vis} i 75 GeV

bservation of $Z \to \tau \tau$: Data and Event Selection

- Use GRL (good runs list) from WZ observation group combined with GRL from Tau Combined performance group
 - Only include run information from stable beams with all subdetectors reporting no problems
- \blacktriangleright Events must pass either EF_e15_medium or EF_mu10 (we tag events using the electron/muon decay of a τ)

Electron Selection

- ▶ p_T > 15 GeV
- $ightharpoonup |\eta| < 2.47$ (exclude $|\eta|$ between 1.37 and 1.52
- Exclude bad OTX
- Apply robust tight electron selection
- ▶ Isolation: p_TCone40/p_T < 0.06</p>

Muon Selection

- ▶ p_T > 15 GeV
- ▶ $N_{pixhits} \ge 1$ and $N_{SCThits} \ge 1$
- Must be combined muon (track from ID meets muon spectrometer)
- ▶ Isolation: p_TCone40/p_T < 0.06

Tau Selection

- ▶ pT > 10 GeV
- Exclude bad OTX
- Apply tight selection criteria
- Elec and Muon veto

Event Selection

- Dilepton veto
- $ightharpoonup | au_{charge}| = 1$, NTracks = 1 or 3
- ightharpoonup Opposite sign au and lepton
- ► M_T(lep, MET) < 50 GeV</p>
- $ightharpoonup \sum cos(\Delta\phi) > -0.15$
- → 35 GeV < M_{vis} i 75 GeV

bservation of $Z \to \tau \tau$: Data and Event Selection

- Use GRL (good runs list) from WZ observation group combined with GRL from Tau Combined performance group
 - ► Only include run information from stable beams with all subdetectors reporting no problems
- \blacktriangleright Events must pass either EF_e15_medium or EF_mu10 (we tag events using the electron/muon decay of a τ)

Electron Selection

- ▶ p_T > 15 GeV
- $ightharpoonup |\eta| < 2.47$ (exclude $|\eta|$ between 1.37 and 1.52
- Exclude bad OTX
- Apply robust tight electron selection
- ▶ Isolation: p_TCone40/p_T < 0.06</p>

Muon Selection

- ▶ p_T > 15 GeV
- $N_{pixhits} \ge 1$ and $N_{SCThits} \ge 1$
- Must be combined muon (track from ID meets muon spectrometer)
- ▶ Isolation: p_T Cone40/ p_T < 0.06

Tau Selection

- ▶ pT > 10 GeV
- Exclude bad OTX
- Apply tight selection criteria
- Elec and Muon veto

Event Selection

- Dilepton veto
- $ightharpoonup | au_{charge}| = 1$, NTracks = 1 or 3
- ▶ Opposite sign τ and lepton
- M_T(lep, MET) < 50 GeV
- $ightharpoonup \sum cos(\Delta\phi) > -0.15$
- → 35 GeV < M_{vis} i 75 GeV

bservation of $Z \to \tau \tau$: W suppression

$$M_T = \sqrt{2E_T^{lep}E_T^{Miss}(1-cos\Delta\phi(lep,E_T^{Miss}))}$$

Pirsa: 10120029 Page 11/16

bservation of $Z \to \tau \tau$: Background Estimations (1st step: W Normalization)

- QCD is not expected to be well modelled in MC
- Use data driven methods to estimate QCD
- Currently using two complemntary methods
- ▶ Both approaches use 4 regions and EWK contributions are corrected for in each region
- ▶ Use W rich control region to normalize to data to correct for over estimation of tau fake rate in MC
- Use MC predictions for Z and top backgrounds

W Normalization

- ullet Use a W control region with inverted W suppression cuts: $M_T > 50$ GeV and $\sum cos \Delta \phi < -0.15$
- ▶ Compare data and MC. Agrees well before tauID, after TauID we get a normalization factor K_W . This is used to correct W MC predictions in QCD estimation ($K_W = 0.6$)

Pirsa: 10120029 Page 12/16

bservation of $Z \to \tau \tau$: Background Estimations

Tau ID/Isolation

	Low Isolation	High Isolation
Tight Tau	A	В
Loose Tau (upto dilepton veto)	-	D
(upto dileptori veto)	-	U

$$N_A=N_B*R_{QCD}$$
 $R_{QCD}=rac{N_C}{N_D}$ Assume R_{QCD} is independent of Tau ID

OS SS/Isolation

	Low Isolation	High Isolation
OS	A	В
SS	C	D

$$N_A = N_C * R_{OS/SS}$$

 $R_{OS/SS} = \frac{N_B}{N_D}$
Assume $R_{OS/SS}$ is independent of isolation

bservation of $Z \to \tau \tau$: Electron channel results

- ► EF_e15_medium (8.32 pb⁻1)
- ► N_{Data} = 29
- $N_{EWK} = 4.4 \pm 0.8 \text{ (stat)}$
- OS/SS Method
- $N_{QCD} = 1.8 \pm 2.0 \text{ (stat)}$
- $N_{Z\to \tau\tau} = 22.8 \pm 2.2 \text{ (stat)}$
- ▶ TauID Method
- $N_{QCD} = 6.1 \pm 0.7 \text{ (stat)}$
- $N_{Z \to \tau \tau} = 20.9 \pm 1.3 \text{ (stat)}$

Pirsa: 10120029 Page 14/16

bservation of $Z \to \tau \tau$: Muon channel results

- ► EF_mu10 (8.53 pb⁻1)
- ► N_{Data} = 46
- $N_{EWK} = 3.5 \pm 0.4 \text{ (stat)}$
- OS/SS Method
- $N_{QCD} = 2.2 \pm 2.3 \text{ (stat)}$
- $N_{Z \to \tau \tau} = 40.3 \pm 2.3 \text{ (stat)}$
- ► TauID Method
- $N_{QCD} = 4.4 \pm 0.6 \text{ (stat)}$
- $N_{Z \to \tau \tau} = 33 \pm 1.7 \text{ (stat)}$

Pirsa: 10120029 Page 15/16

ummary and Conclusions

- \blacktriangleright 'Advanced' τ analysis at the LHC (from start of running)
- Observation of $W \to \tau \nu$ has been observed at ATLAS
- ▶ Publication of $Z \rightarrow \tau \tau$ in ATLAS is in progress
- ullet Will soon start using multivariate techniques for au identification
- Standard model cross section measurements to come soon...

Pirsa: 10120029 Page 16/16