Title: Confessions of a Converted Lecturer

Date: Nov 30, 2010 07:00 PM

URL: http://pirsa.org/10110081

Abstract: I thought I was a good teacher until I discovered my students were just memorizing information rather than learning to understand the material. Who was to blame? The students? The material? I will explain how I came to the agonizing conclusion that the culprit was neither of these. It was my teaching that caused students to fail! I will show how I have adjusted my approach to teaching and how it has improved my students' performance significantly.

Pirsa: 10110081 Page 1/44

Confessions of a converted lecturer

My message

shift focus from "teaching" to helping students learn

Outline

Education

Outline

Education

Peer Instruction

Outline

Education

Peer Instruction

Results

lectures focus on delivery of information

Pirsa: 10110081

Page 8/44

education is not just information transfer

Pirsa: 10110081 Page 9/44

education is not just information transfer

Pirsa: 10110081 Page 10/44

education is not just information transfer

Pirsa: 10110081 Page 11/44

Pirsa: 10110081 Page 12/44

Pirsa: 10110081 R.R. Hake, *Am. J. Phys.* 66, 64 (1998)

only one quarter of maximum gain realized

Pirsa: 10110081 R.R. Hake, *Am. J. Phys.* 66, 64 (1998)

not transfer but assimilation of information is key

Pirsa: 10110081

Page 15/44

conventional problems misleading

Pirsa: 10110081 Page 16/44

conventional problems misleading

Calculate:

- (a) current in $2-\Omega$ resistor
- (b) potential difference between P and Q

Pirsa: 10110081 Page 17/44

are the basic principles understood?

Pirsa: 10110081 Page 18/44

are the basic principles understood?

When S is closed, what happens to:

- (a) intensities of A and B?
- (b) intensity of C?
- (c) current through battery?
- (d) potential difference across

A, B, and C?

(e) the total power dissipated?

conventional

80 60 40 20 0 2 4 6 8 10 score

conceptual

Pirsa: 10110081 Page 20/44

conventional

conceptual

Pirsa: 10110081 Page 21/44

are the basic principles understood?

When S is closed, what happens to:

- (a) intensities of A and B?
- (b) intensity of C?
- (c) current through battery?
- (d) potential difference across

A, B, and C?

(e) the total power dissipated?

conventional

conceptual

Pirsa: 10110081 Page 23/44

Pirsa: 10110081 Page 24/44

Pirsa: 10110081 Page 25/44

conventional problems misleading

Calculate:

- (a) current in $2-\Omega$ resistor
- (b) potential difference

between P and Q

Pirsa: 10110081 Page 26/44

are the basic principles understood?

When S is closed, what happens to:

- (a) intensities of A and B?
- (b) intensity of C?
- (c) current through battery?
- (d) potential difference across

A, B, and C?

(e) the total power dissipated?

Peer Instruction

Give students more responsibility for gathering information...

Pirsa: 10110081 Page 29/44

Peer Instruction

Main features:

pre-class reading

A User's Manual

Peer Instruction

ConcepTest:

- 1. Question
- 2. Thinking
- 3. Individual answer
- 4. Peer discussion
- 5. Revised/Group answer
- 6. Explanation

Pirsa: 10110081

Page 31/44

is it any good?

Pirsa: 10110081 Page 32/44

first year of implementing PI

Pirsa: 10110081 Page 33/44

first year of implementing PI

Pirsa: 10110081 Page 34/44

first year of implementing PI

Pirsa: 10110081 Page 35/44

Pirsa: 10110081 R.R. Hake, *Am. J. Phys.* 66, 64 (1998)

what about problem solving?

Pirsa: 10110081 Page 38/44

Pirsa: 10110081 Page 40/44

Pirsa: 10110081 Page 41/44

Summary

So better understanding leads to better problem solving!

Pirsa: 10110081 Page 42/44

Summary

So better understanding leads to better problem solving!

(but "good" problem solving doesn't always indicate understanding!)

Pirsa: 10110081 Page 43/44

Funding:

National Science Foundation

for a copy of this presentation:

http://mazur-www.harvard.edu

