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Abstract: The counter-intuitive phenomenain guantum mechanics are often based on the counter-factual (or virtual) processes. The famous example
is the Hardy paradox, which has been recently solved in two independent experiments. Also, the delayed choice experiment and one of quantum
descriptions of the closed time like curves can be also examples of the counter-intuitive phenomena. The counter-factual processes can be
characterized by the weak value initiated by Y akir Aharonov and his colleagues. In this talk, | will introduce the weak value from the probability
theory and the connection to the counter-factual processes in these examples.
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My research interest: “What is Time?”

My current goal 1s

How to understand
the time in quantum
mechanics?

1. How to construct the
time operator as the
observable?

1

Is there a connection
between the parameter
time "t and the
measured time (clock
time) “t"?
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My research approaches
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My research approaches

1. Change the definition / interpretation of the observable

= [Extension to the symmetric operator
= YS and A. Hosoya, J. Math. Phys. 49, 052104 (2008).

= Weak Measurement / Weak Value
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My research approaches

1. Change the definition / interpretation of the observable

= Extension to the symmetric operator
= YS and A. Hosoya, J. Math. Phys. 49, 052104 (2008).

= \Weak Measurement / Weak Value

2. Compare between the quantum and classical system

= Relationships between the quantum and classical random walks
= YS, K. Chisaki, E. Segawa, N. Konng, Phys. Rev. A 81, 062129 (2010).

Pirsa: 10110078 Page 8/153




International Workshop on

ical and Physical Foundations of
Discrete Time Quantum Walk ‘@Tokvo Tech

Date: March 29th-30th, 2011

Venue: Tokyo Institute of Technology, Japan
Deadline: Dec. 31st, 2010(oral), Feh. 28th, 201 1{poster)

— | 3/29 -30/2011

Yakir Aharonov i,Te I-Aviv University, [srael / Chmpman University, USA)
Stanley Gudder (University of Denver, USA)*
Luis Velazguez (Zaragoza University, Spain)*
Takuya Kitagawa (Harvard University, USA)*

Tokvo. Japan

Conference Scope
1. Mathematical Foundations of Discrete Time Guantum Walk
St stic Processiin Quamtum Probahility Theory
Limit Thegram
cation betwean | ocalization and Dedocalization

. Physn:al Foundations of Discrete Time Quantum Walk
2-1. Mapped to Schroedinger Equation and Dirac Equation
2-2. Non-local Effect, Entanglement, and Super-oscillation
2-3. Appilication to Quantome Information Science

Orzanizers
Marve Kanmo (Yokohama Natienal University)

Etsuo Segawa (Tokyo Institute of Technoiogy)
Yutaka Shikano (Tokyo Institute of Technology / Massachusetts Institute of Techmology, Chair)

Pirsa: 10110

Yutaka Shikano (shikano@th_phys._titech.ac_jpl



My research approaches

1. Change the definition / interpretation of the observable

= [Extension to the symmetric operator
= YS and A. Hosoya, J. Math. Phys. 49, 052104 (2008).
= Weak Measurement / Weak Value

2. Compare between the quantum and classical system

= Relationships between the quantum and classical random walks
= YS, K. Chisaki, E. Segawa, N. Konno, Phys. Rev. A 81, 062129 (2010).
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My research approaches

1. Change the definition / interpretation of the observable

= Extension to the symmetric operator
= YS and A. Hosoya, J. Math. Phys. 49, 052104 (2008).

= Weak Measurement / Weak Value

2. Compare between the quantum and classical system

= Relationships between the quantum and classical random walks
= YS, K. Chisaki, E. Segawa, N. Konno, Phys. Rev. A 81, 062129 (2010).

3. Construct the alternative framework. which includes
quantum mechanics

= [nformation-Theoretical Approach (G. M. D' Ariano, G. Chiribella ...)
= Micro-Macro Duality Approach (I. Ojima, R. Harada, H. Saigo, ...)
= Topos Approach (C. Isham, A. Doering, ...)
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My research approaches

1. Change the definition / interpretation of the observable

= Extension to the symmetric operator
= YS and A. Hosoya, J. Math. Phys. 49, 052104 (2008).

=  \WNeak Measurement / Weak Value

2. Compare between the quantum and classical system

= Relationships between the quantum and classical random walks
= YS, K. Chisaki, E. Segawa, N. Konno, Phys. Rev. A 81, 062129 (2010).

3. Construct the alternative framework. which includes
quantum mechanics
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=  Micro-Macro Duality Approach (I. Ojima, R. Harada, H. Saigo, ...)
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Today’s Outline

1. Why do we need the weak value?

= Motivation of the “theory of weak value” — related to the probability
theory

= Definition and applications of the weak values
= How to obtain the weak values — weak measurement

2. Counter-factual Processes

= Hardy's paradox
=  Quantum description of the closed time-like curves

3. Conclusion
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Today’s Outline
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= Motivation of the “theory of weak value” — related to the probability
theory

= Definition and applications of the weak values
= How to obtain the weak values — weak measurement
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When is the probability space defined?
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When is the probability space defined?

Hilbert space H

-

Observable A

'

Probability space

Case 1
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When is the probability space defined?

Hilbert space H Hilbert space H
Observable A Probability space
Probability space Observable A

Case 1 Case 2
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When is the probability space defined?

Hilbert space H Hilbert space H
Observtble A F’robabilitr space
. .
Probability space Observable A
Case 1 Case 2

Are they equivalent??




Definition of Probability Space

Event Space @
Probability Measure dP
Random Variable X: Q@ =K

The expectation value is

Ex[X] = / X(w)dP.
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Example

H = L*(R)

Position Operator

Momentum Operator

Ex(p, v) = (V|plv) = / Pl (p)dp

Pirsa: 10110078
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Example

H = L*(R)

Position Operator

Ex(z,v) .= (Y|z

) = / | ()| d
e s Not Correspondencey
Ex(p.¥) == (Wlplv) = [ pluhidp

Observable-dependent Probability Space
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Observable-independent Probability Space??
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Observable-independent Probability Space??

= \We can construct the probability space independently on the
observable by the weak values.

Def: Weak values of observable A

U5, AU, )]
A, = .
) IO )]

|Z> pre-selected state <ﬂ post-selected state

c C
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Expectation Value?

(A Hosovaand YS, J Phys. A 43, 385307 (2010))

Ex(A) = (V] AV
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Expectation Value?

(A Hosovaand YS, J Phys. A 43, 385307 (2010))

Ex(A) = (V|Aly)
= /([o(l-‘\0><0|aﬁ4‘l'>
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Expectation Value?

(A Hosoyvaand YS, J Phys. A 43, 385307 (2010))

Ex(A) = (V|Alv)
— /([O<U‘O><O“A‘Z“>
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Expectation Value?

(A Hosovaand YS, J Phys. A 43, 385307 (2010))

Ex(A) = (V|A|)

S / do (V|o) (o] AlY)

o / do (1]6) - (6| <C<’li‘;’>

= /do [{(]d)|* s(A)Y

U
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Expectation Value?

(A Hosovaand YS, J Phys. A 43, 385307 (2010))

Ex(A) = (¢|A|v)
— /‘([O<L"O><O‘A‘U>
— | aQ (V|o) - (o|v A,
= / do |(V|0) ‘2 s(A)y

= — ‘ <O‘ L> Fdo Is defined as the probability measure.

Born Formula = Random Variable=Weak Value
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Variance?

Var(A) = (Y|(A — (¥
- (L\42‘L> — (<L|4IL>)2
= /dO<L'H\O><oH\L-> _ (Ex(A))?

3 / do| (o) <?L“45> . <C<)C|i|‘;> (Ex(A))’

/ | ,(A)?[2dP — ( / O(A)SfdP)

dP = ‘ O‘ >[)do Probability measure is corresponded.

Al))? )

2

111111111111111111111111




Expectation Value?

(A Hosovaand YS, J Phys. A 43, 385307 (2010))

wlAlv)

/do (Vo) (0| AlW)

/do (W|o) - (o|v )<C<)HJL>>

— [ dol(wlo) o(a);

e — ‘ <O‘ L> |2dO Is defined as the probability measure.

Born Formula = Random Variable=Weak Value
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Variance?

Var(A) = (Y|(A — <L’4‘L>)2|L>
= (WIA%1) — (W] Al))
= /([O(L'IA‘OXO‘:HL') — (Ex(A))?

= f do|(o|v)]” - <?‘fi‘)§)> - <w;> (Ex(A))?

— [ lsta)zPap - (/ L >wp)

s ‘ O‘ >[ lc» Probability measure is corresponded.

2
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Definition of Weak Values

Def: Weak values of observable A

~  \JiiE AU (H)U
=
) i -(ff. o)

‘l) pre-selected state <H post-selected state

c C
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Definition of Weak Values

Def: Weak values of observable A

UG AU )]
B = AT )l

|3> pre-selected state <f \ post-selected state

; To measure the weak value. ..

Def: Weak measurement is called if a coupling constant
with a probe interaction is very small.

c C

(Y. Aharonov, D. Albert, and L. Vaidman, Phys. Rev. Lett. 60, 1351 (1988))
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Weak Measurement

(position of the paointer) is
g and its conjugate
operator is p.

m ‘ \  Probe system
Target system )

j the pointer operator
Observable A /)

Hine = gAPS(t)

‘(,l'> < 6_U_lp‘ >‘O>p State of the probe after measurement
(I —igAp)|i)|o), g1

(Fli)(T — g 1) wP)|0)p

e —19(A) u-p\@>p

2
=SS

2
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To measure the weak value

e — - \ Probe system

Target SyStem i the pointer operator
/

\ Observable A | (position of the pointer) is
~ ¥ q and its conjugate
operator is p.

Since the weak value of A is complex in general,

- Pa=1a)5 — (@) = gRe(A),
_10p := (p) 5 — (p): = 2¢gVar(p)Im(A).4

Ve assume the probe wave function = :
r the position be real-valued. Var(p) - Initial probe variance for the momentum

-

Weak values are experimentally accessible by the
shifts of expectation values for the probe observables.
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Applications of Weak Value

= Amplification (Magnify the tiny effect)
= Spin Hall Effect of Light
(O. Hosten and P. Kwiat, Science 319, 787 (2008))
= Stability of Sagnac Interferometer

(P. B. Dixon, D. J Starling, A N Jordan, and J C. Howell, Phys. Rev. Lett
102, 173601 (2009))

(D. I Starling P. B. Dixon. N. S. Willlams, A N. Jordan. and J. C. Howell.
Phys. Rev. A 82, 011802 (2010)(R))

= Negative shift of the optical axis
(K Resch, J S. Lundeen. and A M. Stemberg, Phys. Lett. A 324, 125 (2004))

= Quantum Phase (Geometric Phase) = “i e
(E. Sjoqvist. Phys. Lett. A 359, 137 (2006)) _ o e
(S. Tamate ef al.. New J. Phys. 11, 093025 (2009)) e

(YS and A Hosova. J. Phys. A43. 025304 (2010)) Guasrant

HWE QWP
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To measure the weak value

= = T = /f’ Probe system

Target SyStem \1 the pointer operator

Observable A A (position of the pointer) is

\/’/ \ g and its conjugate

operator is p.

Since the weak value of A is complex in general,

- Pa=T1a)5 — (g): = gRe(A).,
_op := (p) ;s — (p): = 2gVar(p)Im(A).,

Ve assume the probe wave function e .
r the position be real-valued. Va.r(p) - Initial probe variance for the momentum

—

Weak values are experimentally accessible by the
shifts of expectation values for the probe observables.
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Weak Measurement

i Probe system

Targ@t SyStem j the pointer operator
g

_x Observable A py (position of the painter) is
q and its conjugate

operator Is p.

Hint — g*‘iﬁoﬁ(f)

‘O‘>p =— <f e_égfm\i)‘0>p State of the probe after measurement
(fILI —igAp)li)|o), 91
<

fli)(I —ig(A)wD) O>P

e 19(A)wp

£

£

D) p
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Definition of Weak Values

Def: Weak values of observable A

n (FIU(ts, t)AU (8, ;)|7)
(A (FIU(tg, t:)0)

If> pre-selected state <f \ post-selected state

_-7 To measure the weak value. ..

Def: Weak measurement is called if a coupling constant
with a probe interaction is very small.

c C

(Y. Aharonov, D. Albert, and L. Vaidman, Phys. Rev. Lett. 60, 1351 (1988))
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Applications of Weak Value

= Amplification (Magnify the tiny effect)
= Spin Hall Effect of Light
(O. Hosten and P. Kwiat. Science 319, 787 (2008))
= Stability of Sagnac Interferometer

(P. B. Dixon. D. T Starling, A N Jordan. and J. C. Howell, Phys. Rev Lett
102. 173601 (2009))

(D. J Starling, P. B. Dixon. N. S. Wilhams, A N Jordan. and J. C. Howell.
Phys Rev. A 82, 011802 (2010)(R))
= Negative shift of the optical axis
(K Resch. J S Lundeen. and A M. Stemnberg, Phys Lett. A 324 125 (2004))
= Quantum Phase (Geometric Phase)

(E. Sjoqvist, Phys. Lett. A 359, 187 (2006)) :
(S. Tamate ef al.. New J. Phys. 11, 093025 (2009)) M%ije
(YS and A Hosova, J Phys. A 43, 025304 (2010)) it

HWE QWP
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Today’s Outline

2. Counter-factual Processes
= Hardy's paradox
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Hardy’s Paradox

Port B,

——

=
Positron

-zhegtron e
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Hardy’s Paradox

/J\Port- B,
E

—

€
Positron
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Hardy’s Paradox

Port B,
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Hardy’s Paradox

cannot simultaneously go
through the path |. That
Is, either always goes
through path O.

? Port B, 1. Electron and Positron

e‘.“
Positron
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Hardy’s Paradox

cannot simultaneously go
through the path |. That
Is, either always goes
through path O.

J Port B, 1. Electron and Positron

~ Pair Annihilation

e’
Positron
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Hardy’s Paradox

cannot simultaneously go
through the path |. That
Is, either always goes
through path O.

2. \When the electron goes
through the path O, the
electron does not affect
the path of the positron.

D Port B,

4 Port B, 1. Electron and Paositron

Pair Annihilation

e‘f‘
Positron

-zhegctron e -~
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Hardy’s Paradox

cannot simultaneously go
through the path |. That
Is, either always goes
through path O.

2. \When the electron goes
through the path O, the
electron does not affect
the path of the positron.

@ Port B,

J Port B, 1. Electron and Positron

_ Pair Annihilation

e’
Positron
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Hardy’s Paradox

cannot simultaneously go
through the path |. That
Is, either always goes
through path O.

2. \When the electron goes
through the path O, the
electron does not affect
the path of the positron.

D Port B,

3. Vice Versa.

4 Port B, 1. Electron and Positron

6‘.“
Positron
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Hardy’s Paradox

cannot simultaneously go
through the path |I. That
Is, either always goes
through path O.

2. \When the electron goes
through the path O, the
electron does not affect
the path of the positron.

B Port B,

3. Vice Versa.

? Port B, 1. Electron and Positron

Pair Annihilation
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Positron
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Hardy’s Paradox

cannot simultaneously go
through the path |. That
Is, either always goes
through path O.

2. \When the electron goes
through the path O, the
electron does not affect
the path of the positron.

D Port B,

3. Vice Versa.

4. Just only clicks BB, BD,
DE from the above
arguments.

J Port B, 1. Electron and Paositron

~ Pair Annihilation

8 |
Positron

-zhegtron e
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Hardy’s Paradox

Port B,

~ Pair Annihilation

e
Positron

-zhegtron e

1.

Electron and Positron
cannot simultaneously go
through the path |. That
Is, either always goes
through path O.

When the electron goes
through the path O, the
electron does not affect
the path of the positron.

D Port B,

3.
4. Just only clicks BB, BD,

Vice Versa.

DB from the above
arguments.

However, QM tells us the
click of DD. (prob. t#{23s




Important Remarks: Previous Studies

= | have not talked about the resolution of the Hardy
paradox using the weak value. Please see

= Y. Aharonov, A. Botero, S. Popescu, B. Reznik, and J. Tollaksen,
Phys. Lett. A 301, 130 (2002).

= Recently, this situation was experimentally realized.

= J S. Lundeen and A. M. Steinberg, Phys. Rev. Lett. 102, 020404
(2009).

= K. Yokota, T. Yamamoto, M. Koashi, and N. Imoto, New J. Phys.
11, 033011 (2009).

= These results seemed to be very attractive for everyone.

= Economist Mar. 5™ 2009.
= The Wall Street Journal May 5™ 2009.
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Why does the paradox be occurred?

(A Hosovaand YS, J Phys. A 43, 385307 (2010))
Before the annihilation point:

, (1) +|10) +101) +|00))




Why does the paradox be occurred?
(A Hosoyvaand YS, J Phys. A 43, 385307 (2010))
Before the annihilation point:

, (1) +|10) +[01) +|00))

—=_____—— Annihilation must be occurred.

1
) = /3 (HO) +101) + |00))

» By this state, the probability to click DD can be
calculated as 1/12.

» By the weak value analysis, this state can be used as
the pre-selected state.
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Why does the paradox be occurred?

(A Hosovaand YS, J Phys. A 43, 385307 (2010))
Before the annihilation point:

, (II1) +|10) +[01) +00))

—=______—=— Annihilation must be occurred.

1
[9) = /3 (1O) + |0I) +|00))

_I:l_ow to experir-nentally confirm this state?

» By the weak value analysis, this state can be used as
the pre-selected state.
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Only Information about...

~ Pair Annihilation

e’
Positron

-chectron e

N

. Electron and Positron

cannot simultaneously go
through the path |. That
Is, either always goes
through path O.

When the electron goes
through the path O, the
electron does not affect
the path of the positron.

D Port B,

i |

3. Vice Versa.
4.

Just only clicks BB, BD,
DE from the above
arguments.

However, QM tells us the
click of DD. (prob. t#{2s




Counter-factual argument

= For the pre-selected state, the following operators
are equivalent:

O(I-Jr-O) ~a) O ® d.
(I +0)0 ~vy id.® O

Analogously,
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Only Information about...

~ Pair Annihilation
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e |
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through the path |. That
Is, either always goes
through path O.

When the electron goes
through the path O, the
electron does not affect
the path of the positron.

D Port B,

3. Vice Versa.
4.

Just only clicks BB, BD,
DE from the above
arguments.

However, QM tells us the
click of DD. (prob. t#723




Counter-factual argument

= For the pre-selected state, the following operators
are equivalent:

O(I+O) ~a) O ® d.
(I +0)0 ~vy id.® O

Analogously,
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What is the state-dependent equivalence?

A=1HB
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Counter-factual argument

= For the pre-selected state, the following operators
are equivalent:

O(I+O) ~a) O ® d.
(I +0)0 ~vy id.® O

Analogously,
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What is the state-dependent equivalence?

A=1HB
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What is the state-dependent equivalence?

A=1HB
=) AlYp) = Bly) V|9)
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What is the state-dependent equivalence?

A=B
= Alp) = Blp) V|¢)

State-dependent equivalence
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What is the state-dependent equivalence?

A=1HB
@) Alp) = Bl) V|

State-dependent equivalence

Pirsa: 10110078  Page 78/153




What is the state-dependent equivalence?

A=B
= Alp) = Bl) V|¢)

State-dependent equivalence
A B
= (Y|(A—B)*[s)) =0
o{A)y =¢ (Bly VIo) .




Counter-factual argument

= For the pre-selected state, the following operators
are equivalent:

O(I+O) ~a) O ® d.
(I +0)0 ~vy id.® O

Analogously,
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Pre-Selected State and Weak Value

= \We take the post-selected state for DD.

InP(DD) := pp(I0)y — pp{I ®1id.) = 0.
InE(DD) := pp(OI)y — pp(id.@ I);, =0,

OutP(DD) := pp(O(I + 0))} — pp{O®1id.)y =0,
OutE(DD) := pp((I +0O)0),, — pp(id.  O),, = 0.
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Pre-Selected State and Weak Value

= \We take the post-selected state for DD.

mepDy) = pp
D (‘)I)U. — DD<3‘I_'[. S I>u' = U

InE(DD) = p
OutP(DD) .= pp
(;)!_IILE{DD) — DD

If the following conditions
1. InP(DD) =0 and InE(DD) =0, |
2. OutP(DD) =0 and OutE(DD) =0

lare satisfied if and only if the pre-selected state |¢) is given by]

L 10) + |01 + |00Y) |

| Y) =
sa: 10110078| ) \/3
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Pre-Selected State and Weak Value

= \We take the post-selected state for DD.

InP(DD) = pp(I0)y — pp{I®1id.)] =0,
InE(DD) := pp(OI)y — pp(id. @ I);, =0,
OutP(DD) .= pp(O(I +O))y; — pp(O®1id.);; =0,
OutE(DD) := pp((I + 0)O)y — pplid. ® O)} = 0.

If the following conditions I

1. InP(DD) =0 and InE(DD) =0, _ _
‘ Experimentally realizable!! H
2. QutP(DD) =0 and OutE(DD) =0

lare satisfied if and only if the pre-selected state |¢) is given byl

sa: 10110078 |¢>
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Today’s Outline

2. Counter-factual Processes

=  Quantum description of the closed time-like curves
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Pre-Selected State and Weak Value

= \We take the post-selected state for DD.

= | !

=1

InP(DD) = pp(I0)y — pp{I®1id.)}
InE(DD) := pp(Ol)y — pp(id. @ I)y
OutP(DD) := pp(O(I +0))y — pp{O& u!>
OutE(DD) := pp((I +0)0O), — pp(id. @

—e e e

O)

e ——0

If the following conditions

t-'_,’

*_(l10) + |0I) + |00Y))

| Y) =
sa: 10110078| > \/3

o

1. InP(DD) =0 and InE(DD) =0, _ _
‘ Experimentally realizable!! H
2. OutP(DD) =0 and OutE(DD) =0

lare satisfied if and only if the pre-selected state |¢) is given b_ﬁ
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Counter-factual argument

= For the pre-selected state, the following operators
are equivalent:

O(I + O) ~y O ® id.
(I +0)0 ~y id.® O

Analogously,
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Pre-Selected State and Weak Value

= We take the post-selected state for DD.
InP(DD) = pp(I0)y — pp{I®id.); =0,
OutP(DD) := pp(O(I +O))y — pp(O®1id.)y = 0.
OutE(DD) = DD(‘ I+ ()!()}3 — DD{"-’!- X ():5'3 — ().
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Counter-factual argument

= For the pre-selected state, the following operators
are equivalent:

O([+O) ~a) O ® d.
(I +0)0 ~vy id.® O

Analogously,
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Only Information about...

Pair Annihilation
6 |
Positron

-Etectron e

N

. Electron and Positron

cannot simultaneously go
through the path |. That
Is, either always goes
through path O.

When the electron goes
through the path O, the
electron does not affect
the path of the positron.

D Port B,

3. Vice Versa.
4.

Just only clicks BB, BD,
DE from the above
arguments.

However, QM tells us the
click of DD. (prob. t#{2
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This wiork was published in
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Haow can we abserve these joint weak values expenimentally ?

|UE}{U‘I‘M' =1
INO2)(NOz|w =0

Y. Aharonov, & Botero, 5. Fopescou, B. Remik, and J. Tollaksen,
Firys. Lett A 301, 130 (20027
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Weak Value and Hardy’s Paradox

initial state : |¢¥) = %(L\'Ol. Os) + |01, NO3) + |[NO1, NO>))
final state : |@) = %([NOI} —O))(INOs) — |05))
/
|01)(O1}w =1, 102)(O2], =1
J‘\r01><;\'01‘u; — 0-_. ‘4\r02><‘\*ozlu = U

O1,0:)(01,0), =0, |NO;, NO2)(NO1,NOs|,y = —

| O1, NO2)(O1,NO2|, =1, |[NO1,02)(NOy,02| =1
ll"a
-

How can we observe these joint weak values experimentally ?

Y. Aharonov, A. Botero, S. Popescu, B. Reznik. and J. Tollaksen,
Phys. Lett. A 301, 130 (2002).
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Weak Value and Hardy’s Paradox

initial state : |[¢¥) = L(\ NO1,03) + |01, NO32) + |[NO;1, NO3))

final state : |[@) = 5(|NO1) —|01))(|NO2) — |02))

( [01)(O1]w = 1, 102)(O32],, =1

]}"'Ol > <A"Ol ‘ i 0'.' ‘i\'02> <i\{r0‘2 I w — 0

m;\u —0, |NOy, NO3)(NO;, NOgly ==

O, \O""><Ol \'O«,lu = 1, ‘*\701-02><;\701-O?‘w =1
\
_I

How can we observe these joint weak values experimentally ?

Y. Aharonov, A. Botero, S. Popescu, B. Reznik, and J. Tollaksen,
Phys. Lett. A 301, 130 (2002).
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Weak Value and Hardy’s Paradox

This shde 1s created by Kazuhiro Yokota (Osaka Umv.)

initial state : [¢) = —=(|NO1,02) + |01, NO2) + |NO1, NO3))
) = 3(INOy) — |01))(INO2) — |O2))

final state : |@

10O =1, [0:)(Oslu =1

INO1)(NO1|w =0, |NO2)(NOs|y =0

|01,02)(01,03|, =0, |NOy, NO2){(NO;,NOs|, = —
|01, NO2)(O1,NO3|, =1, |NOy,02){NO;,03|, =1

Y. Aharonov, A. Botero, S. Popescu, B. Reznik, and J. Tollaksen,
Phys. Lett. A 301, 130 (2002).
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Weak Value and Hardy’s Paradox

This shde 1s created by Kazuhiro Yokota (Osaka Umv.)

‘\701 O?>+I01 \O)>+|\Ol j\JO“)H
final state :\o}:%(\.\Ol} 101))(INO3) — |O5))

P
|

initial state : |¢¥) =

|H
v-'I

01)(O1lw =1,  [02)(O2]w =1
INO1){NO1]y =0, |NO2){NOs|, =0

|Ol- OE><OI OE‘U; =0, |.\-01. .-'\TOQ><.\"F01? -'\-Oi‘w —
0y, NOoY O, NOslw =1, |NOy, O2)(NOy, Osl = 1

Y. Aharonav, A. Botero, S. Popescu, B. Reznik, and J. Tollaksen,
Phys. Lett. A 301, 130 (2002).
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Hardy’s Paradox

Port B,

R

e
Positron

-zhegtron e
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Important Remarks: Previous Studies

= | have not talked about the resolution of the Hardy
paradox using the weak value. Please see

= Y. Aharonov, A. Botero, S. Popescu, B. Reznik, and J. Tollaksen,
Phys. Lett. A 301, 130 (2002).

= Recently, this situation was experimentally realized.

= J S. Lundeen and A. M. Steinberg, Phys. Rev. Lett. 102, 020404
(2009).

= K. Yokota, T. Yamamoto, M. Koashi, and N. Imoto, New J. Phys.
11, 033011 (2009).

= These results seemed to be very attractive for everyone.

= Economist Mar. 5™ 2009.
= The Wall Street Journal May 5" 2009.
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What is the state-dependent equivalence?

A=B
= Alp) = Bl) V|¢)

State-dependent equivalence
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Today’s Outline

2. Counter-factual Processes

=  Quantum description of the closed time-like curves
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Closed Time-like Curve (CTC)

In general relativity. the solution
of the Einstein equation allows to
exist the closed time-like curve.
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Closed Time-like Curve (CTC)

In general relativity. the solution
of the Einstein equation allows to
exist the closed time-like curve.

But....

There exusts the paradoxical
situation.

Ex: Grandfather paradox
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Closed Time-like Curve (CTC)

In general relativity, the solution
of the Einstein equation allows to
exust the closed time-like curve.

But. ...

There exusts the paradoxical
situation.

Ex: Grandfather paradox

1: Alive
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Closed Time-like Curve (CTC)

In general relativity, the solution
of the Einstein equation allows to
exist the closed time-like curve.

But .

There exusts the paradoxical
situation.

Ex: Grandfather paradox

l O T | Killing the grandfather
1: Alive
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Quantum Description of CTC

(D. Deutsch, Phys. Rev. D 44 3197 (1991))

E
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Closed Time-like Curve (CTC)

In general relativity, the solution
of the Einstein equation allows to
exist the closed time-like curve.

But. ...

There exusts the paradoxical
situation.

Ex: Grandfather paradox

[ O T | Killing the grandfather
1: Alive
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Quantum Description of CTC

(D. Deutsch, Phys. Rev. D 44, 3197 (1991))
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Quantum Description of CTC

(D. Deutsch, Phys. Rev. D 44 3197 (1991))

0

0
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Quantum Description of CTC

(D. Deutsch, Phys. Rev. D 44, 3197 (1991))

p = (10X0] + [1)1) v p
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Quantum Description of CTC

(D. Deutsch, Phys. Rev. D 44, 3197 (1991))

p= (10X0] + [1X1) | b v p
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Post-selected CTC
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Post-selected CTC

[@4) = — (]00) + [11))
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Post-selected CTC

1
5 (100) +]11))

) =
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Post-selected CTC

1
2,) = (100) +12)
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Post-selected CTC

(100) + [11))
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Short Remarks

: Th[S Idea was first proposed by Benjamin Schumacher inspired by
tum telepc 1 (unpublished). This idea was talked by Charlie
Bennett In 2002

= This idea Is related to the quantum knot theory and the spin network
representation in quantum gravity.

= This work was published in
= Along with experimental demonstration of the grandfather paradox

S. Lloyd, L. Maccone, R. Garcia-Patron, V. Giovannetti, YS, S. Pirandola, L A.
Rozema, A. Darabi, Y. Soudagar, L. K. Shalm, and A.M. Steinberg,
arXiv:1005.2219.

= Path integral analysis (only theoretical work)
S. Lloyd, L. Maccone, R. Garcia-Patron, V. Giovannett], and YS,
arXiv:1007.2615.

= T[he above analysis is generally independent to the weak value.
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When do we know the post-CTC is successful?

(@
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When do we know the post-CTC is successful?

“time”

(@

1
|[@4) = /2 (100) + |11))
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When do we know the post-CTC is successful?

(@
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When do we know the post-CTC is successful?

“time” Q

(4] A

Wi

hat 1S

ha

1
D) = /2 (100) + [11))
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Weak Value Analysis




Weak Value Analysis

m
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Weak Value Analysis

m

(0, D, ) —0

m

(100) + [11))
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When do we know the post-CTC is successful?

“time” O

A




When do we know the post-CTC is successful?

“fime” O
(D4 | N
What 1s
happed?”’
,) = - (00) +[11))
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Weak Value Analysis

m m

(0, D0, ) =0 (. R0, ) . —1

1 1
D) = /2 (100) + [11)) D) = NG (100) + [11))
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Post-CTC = Counter-factual CTC

= From the “time” of the post-selected measurement, we
can construct the consistent framework.

= However, we have never measured the stuff in the black box.

= Therefore, this consistency framework can be taken as
the behavior of the closed time like curve.

= This framework can be also characterized by the weak value.
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Weak Value Analysis
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When do we know the post-CTC is successful?

“time” Q
(P4 | N
What 1s
happed?”
,) = . (|00) +[11))
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Weak Value Analysis




When do we know the post-CTC is successful?

“time” O
(P4 | A
What 1s
happed?”’
,) = - (/00) + [11))
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Post-CTC = Counter-factual CTC

= From the “time” of the post-selected measurement, we
can construct the consistent framework.

= However., we have never measured the stuff in the black box.

= Therefore, this consistency framework can be taken as
the behavior of the closed time like curve.

= This framework can be also characterized by the weak value.
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When do we know the post-CTC is successful?

“time” Q

A\

What 1s
happed?”




Post-CTC = Counter-factual CTC

irs

From the “time” of the post-selected measurement, we
can construct the consistent framework.

However, we have never measured the stuff in the black box.

Therefore, this consistency framework can be taken as
the behavior of the closed time like curve.

This framework can be also characterized by the weak value.
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Today’s Outline

N

3. Conclusion
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Conclusion

= | introduced the weak value to be motivate by the observable-
independent probability space.

= The weak value is a useful tool.
= Amplification of the tiny effect
= (Geometric Phase

= The weak value can characterize the counter-factual
argument.

= Hardy's paradox
= Quantum description of the closed time-like curve
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Open Questions?

= |s it possible to construct the “theory of the weak value” as
alternative approach of the standard quantum mechanics.

= |s it possible to construct the consistent theory only using the weak
value?

= Work in progress with Richard Jozsa, Graeme Mitchison, and Akio
Hosoya.

= |s the weak value represented as the “reality” (Sein /
Daseinsation (in A. Doering's quote))?
= How to understand the Kochen-Specker Theorem?

= |sthe “theory of the weak value” useful?

= How to understand mechanism of quantum speedup In quantum
computation?

= How to give a new aspect to the quantum field theory (work Iin
e on00rO@ress with Izumi Ojima)? BaGC 1aoiiss
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Time 1s open.

written by Lee Smolin to me

Thank you so much for your attention.
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Open Questions?

= |s it possible to construct the “theory of the weak value” as
alternative approach of the standard quantum mechanics.

= |s It possible to construct the consistent theory only using the weak
value?

= Work in progress with Richard Jozsa, Graeme Mitchison, and Akio
Hosaoya.

= |s the weak value represented as the “reality” (Sein /
Daseinsation (in A. Doering's quote))?
= How to understand the Kochen-Specker Theorem?

= |sthe “theory of the weak value™ useful?

= How to understand mechanism of quantum speedup in quantum
computation?

= How to give a new aspect to the quantum field theory (work Iin
e o00ErOgress with Izumi Ojima)? PageHAsiiss













Quantum Description of CTC

(D. Deutsch, Phys. Rev. D 44, 3197 (1991))

0

0

= (0%l + ) vp
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Quantum Description of CTC

(D. Deutsch, Phys. Rev. D 44 3197 (1991))

p = (10X0] + 1)1 v p
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Post-selected CTC
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Post-selected CTC

(100) + [11))
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