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Abstract: Why isavertical column of gas at thermal equilibrium dlighly hotter at the bottom than a the top? My answer in this talk will be that time
runs slower in a deeper gravitational potential, and temperature is nothing but the (inverse) speed of time. Specifically, | will (i) introduce Rovelli's
notion of thermal time, (ii) use it to provide a &quot;principle& quot; characterization of thermal equilibrium in stationary spacetimes, and (iii)
effortlessly derive the Tolman-Ehrenfest relation. This approach contrasts with the & quot;constructive& quot; accounts of thermal equilibrium in
curved spacetimes given in the literature, and vindicates the time-temperature relationship cropping up in the Hawking-Unruh and
Kubo-Martin-Schwinger relations.
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Prologue: time and temperature

In differents parts of physics, a connection between time and
temperatures crops up:

» an accelerated observer in the vacuum measures a temperature

o

r -

Il

Tqu = ——
2nckr

)

Pirsa: 10110071 Page 3/82




Prologue: time and temperature

In differents parts of physics, a connection between time and
temperatures crops up:

8]

» an accelerated observer in the vacuum measures a temperature

[ ¥]
(]

{

i
|’|| -3
- |

TE—[T'- = V— o~
W L

o

Pirsa: 10110071 Page 4/82




Prologue: time and temperature

In differents parts of physics, a connection between time and
temperatures crops up:

» an accelerated observer in the vacuum measures a temperature

J-

=
2=

oy —

ﬁ:'—,ﬂ-l',
iy || Ay =y

6 s

» QFT correlation functions at thermal equilibrium are periodic in
imaginary time, with period
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» QFT correlation functions at thermal equilibrium are periodic in
imaginary time, with period

» Chern-Simons time in Euclidean quantum gravity is periodic with
the same period
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Introduction

| will argue, in the context of thermal equilibrium in stationary
spacetimes, that is useful to think of

“temperature as the speed of time

Specifically, | will
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» introduce the Connes-Rovelli notion of thermal time, and

Pirsa: 10110071 Page 13/82




Introduction

| will argue, in the context of thermal equilibrium in stationary
spacetimes, that is useful to think of

mperature as the speed of time

[4"]

Specifically, | will

» introduce the Connes-Rovelli notion of thermal time, and

» use it to derive the Tolman effect: temperature is not constant at
equilibrium in the presence of gravity.
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ne iman efect

Qutline

The Tolman effect
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ne oiman efect

Tolman's law

In 1930, Tolman realized that, within general relativity, in a stationary
gravitational field, temperature is not constant at equilibrium:

in stationary coordinates. In the Newtonian limit, this means that

VI g
T 2

with g the acceleration of gravity.

The lower, the hotter.
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ne oiman eect

Thermal equilibrium in stationary spacetimes |

To make sense of Tolman's law. one needs a characterization of thermal
equilibrium. In non-relativistic statistical mechanics, we know many:

» thermodynamically, by Kelvin's second law: no work from a single
heat source

» information-theoretically, by the maximization of entropy
» dynamically, by a stability condition w.r.t. perturbations

» stochastically, by the condition of detailed balance of microscopic
fluxes

» analytically, by the KMS condition
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dynamically, by a stability condition w.r.t. perturbations

stochastically, by the condition of detailed balance of microscopic
fluxes

analytically, by the KMS condition
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To make sense of Tolman's law. one needs a characterization of thermal
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thermodynamically, by Kelvin's second law: no work from a single
heat source

information-theoretically, by the maximization of entropy
dynamically, by a stability condition w.r.t. perturbations

stochastically, by the condition of detailed balance of microscopic
fluxes

analytically, by the KMS condition
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ne oiman efect

Thermal equilibrium in stationary spacetimes ||

Extensions of the notion of thermal equilibrium to stationary spacetimes
have been proposed. All use the Einstein mass-energy relation E = mc?
(‘heat has weight’), and

» a dynamical input (Einstein field equations) [Tolman

o ®

» a thermodynamical input (8S/9E = 1/T) [Balazs (58), Balazs-Dawson

. =i b=

» a study of relativistic Carnot cycles [Ebert. Gobe

-

These are ‘constructive’ accounts of thermal equilibrium in stationary
spacetimes. One would want a ‘principle’ one, that does not rely on the
kinematics of the thermal fluid (E = mc?).

There is one, using as only input that temperature is the speed of time.
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Mechanical and thermal time

Outline

Mechanical and thermal time
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Mechanical and thermal time

Time in non-relativistic physics

In non-relativistic physics, time plays both a dynamical and
thermodynamical role

» dynamics: time-reversible differential equations in t (Newton,
Lagrange or Hamilton)

» thermodynamics: time-irreversible PDE's in 7 (heat equation,
entropy balance equation).

We might called them mechanical time t and thermal time 7 respectively.

They coincide in non-relativistic physics, but their confusion generates
longstanding paradoxes (Loschmidt, Zermelo).
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Mechanical and thermal time

Time in relativistic physics

The coincidence of mechanical and thermal time breaks down in

relativistic physics.

o
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Time in relativistic physics

The coincidence of mechanical and thermal time breaks down in

ativistic physics.
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» special relativity: mechanical time is Lorentz covariant, thermal time
Is not
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Time in relativistic physics

The coincidence of mechanical and thermal time breaks down in

relativistic physics.

» special relativity: mechanical time is Lorentz covariant, thermal time
Is not

» curved spacetime: mechanical time (proper time) is local, and
metric-dependent; what is thermal time?
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Time in relativistic physics

The coincidence of mechanical and thermal time breaks down in

relativistic physics.
» special relativity: mechanical time is Lorentz covariant, thermal time
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metric-dependent; what is thermal time?
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Mechanical and thermal time

Thermal time: heuristics

Connes and Rovelli propose a fully relativistic notion of thermal time.

Heuristically, the passing of thermal time is associated to the ignorance
of the microscopic dynamics. This is represented by statistical states in
statistical mechanics. Hence
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Mechanical and thermal time

Thermal time: heuristics

Connes and Rovelli propose a fully relativistic notion of thermal time.

Heuristically, the passing of thermal time is associated to the ignorance
of the microscopic dynamics. This is represented by statistical states in
statistical mechanics. Hence

the thermal time flow is induced by a statistical state.
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Mechanical and thermal time

Thermal time: definition

A relativistic system can be described by a Poisson manifold A and a set
of constraints C € C™°(A). Let p be a statistical state on A such that

{;_J. C} ~ 0.

The thermal time flow on A induced by p is defined as the

Hamiltonian vector field of (—In p).

Connes has emphasized that there is a2 quantum version of this, the Tomita
modular flow on a von Neumann algebra.
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Mechanical and thermal time

Thermal time: example

As an limit example, consider a non-relativistic equilibrium state:

LN

P = Z_le_::H.

Then the thermal time flow matches the mechanical time flow, up to a
constant:
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Thermal time: example

As an limit example, consider a non-relativistic equilibrium state:
P = Z_le_:"H+

Then the thermal time flow matches the mechanical time flow, up to a
constant:

X np — X,_,r
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Mechanical and thermal time

Thermal time: example
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As an limit example, consider a non-relativistic equilibrium
P = Z_le_"’H+

Then the thermal time flow matches the mechanical time flow, up to a
constant:

/\A‘/ Inp — X"'

» This identity characterizes thermal equilibrium in this setting.
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Thermal time: example

As an limit example, consider a non-relativistic equilibrium state:
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Mechanical and thermal tme

Thermal time: example

As an limit example, consider a non-relativistic equilibrium state:
= e
»— Z 18 . H+

Then the thermal time flow matches the mechanical time flow, up to a
constant:

» T his identity characterizes thermal equilibrium in this setting.

» The (inverse) temperature 7 sets the relative scale of thermal time
w.r.t. mechanical time. Pictorially, the “speed of time”.
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Mechanical and thermal time

Thermal time: example

As an limit example, consider a non-relativistic equilibrium state:
= 4
P = 4 1E i H,

Then the thermal time flow matches the mechanical time flow, up to a
constant:

X— np — X."_r'l
» This identity characterizes thermal equilibrium in this setting.

» The (inverse) temperature 3 sets the relative scale of thermal time
w.r.t. mechanical time. Pictorially, the “speed of time”.
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Thermal time in siatonary spacetimes

Qutline

Thermal time in stationary spacetimes
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I hermal time in SIE00Nary spaCeEilmes

Thermal equilibrium in stationary spacetimes: heuristics

The identity
X_ Inp — ﬂ)(H

can be used to characterize thermal equilibrium in stationary spacetimes.
Roughly speaking, it says that

thermal time = 3 (mechanical time)

» [hermal time is defined in general, given a statistical state,

» mechanical time is proper time along stationary worldlines.

What is needed is a way to replace Xy by % along stationary worldlines.
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| nerMmal Time In SIEDoNaSTY SpacCeEnmes

Thermal equilibrium in stationary spacetimes: criteria

Thermal time is defined as a vector field on phase space, while proper
time is defined on spacetime. The bridge between the two is through
local observables A,. Example:

n, — density of a gas about the spacetime time point x.

Then the two criteria expressing the relationship between thermal and
proper time at equilibrium are
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Thermal equilibrium in stationary spacetimes: criteria

Thermal time is defined as a vector field on phase space, while proper
time is defined on spacetime. The bridge between the two is through
local observables A,. Example:

n, — density of a gas about the spacetime time point x.

Then the two criteria expressing the relationship between thermal and
proper time at equilibrium are

1. X_npAx = Leo A for some timelike Killing &7

=1

2. £, = 7= along stationary worldlines.

U=
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Thermal equilibrium in stationary spacetimes: criteria

Thermal time is defined as a vector field on phase space, while proper
time is defined on spacetime. The bridge between the two is through
local observables A,. Example:

n, — density of a gas about the spacetime time point x.

Then the two criteria expressing the relationship between thermal and
proper time at equilibrium are

1. X_mpAc = Leo A, for some timelike Killing £7

=7

2. £, = 7= along stationary worldlines.
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Thermal equilibrium in stationary spacetimes: criteria

Thermal time is defined as a vector field on phase space, while proper
time is defined on spacetime. The bridge between the two is through
local observables A,. Example:

n, — density of a gas about the spacetime time point x.

Then the two criteria expressing the relationship between thermal and
proper time at equilibrium are

1. X_npAx = Leo A for some timelike Killing &7

2. £, = 3= along stationary worldlines.

Li=2

This is the precise meaning of the statement that, at equilibrium,
temperature is the speed of time.
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Thermal equilibrium in stationary spacetimes: criteria

Thermal time is defined as a vector field on phase space, while proper
time is defined on spacetime. The bridge between the two is through
local observables A,. Example:

n, — density of a gas about the spacetime time point x.

Then the two criteria expressing the relationship between thermal and
proper time at equilibrium are

1. X_inpAx = Leo A for some timelike Killing £°

2. £, = 3= along stationary worldlines.

[#5]

This is the precise meaning of the statement that, at equilibrium,
temperature is the speed of time.
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Thermal time in siationary spaceiimes

The Tolman law

The Tolman law follows immediately. From

= ds’
we have that
1 ==
T o [|€p]l
and in stationary coordinates w.r.t. &,
1ol = |2¢]l = /&oo-

This derivation makes use of no dynamical or kinematical input (except
that spacetime is stationary).
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Thermal equilibrium in stationary spacetimes: criteria

Thermal time is defined as a vector field on phase space, while proper
time is defined on spacetime. The bridge between the two is through
local observables A,. Example:

n, — density of a gas about the spacetime time point x.

Then the two criteria expressing the relationship between thermal and
proper time at equilibrium are

1. X_npAc = Lo A, for some timelike Killing £7

2. £, = 7= along stationary worldlines.
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This is the precise meaning of the statement that, at equilibrium,
temperature is the speed of time.
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Thermal equilibrium in stationary spacetimes: criteria

Thermal time is defined as a vector field on phase space, while proper
time is defined on spacetime. The bridge between the two is through
local observables A,. Example:

n, — density of a gas about the spacetime time point x.

Then the two criteria expressing the relationship between thermal and
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(5]

This is the precise meaning of the statement that, at equilibrium,
temperature is the speed of time.
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Thermal tdme in siatdonary spacetimes

The Tolman law

The Tolman law follows immediately. From

d
L — J—.
A ds

we have that

= —1
and in stationary coordinates w.r.t. &,

||l‘._

p.[ r.| = m.:-00+

This derivation makes use of no dynamical or kinematical input (except
that spacetime is stationary).
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Thermal tdme in siatonary spacetimes

The lower, the slower. the hotter
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Thermal time in siationary spaceiimes

the slower. the hotter
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Thermal time in SLATIONAary spaCellimes

Conclusion

In our opinion, this argument shows that

» [here is well-defined notion of thermal time in general relativity.

» On a fixed stationary spacetime, it yields a natural and minimalist
characterization of thermal equilibrium.

» Tolman's law simply means that where proper time runs slower,

temperature is higher.

It sheds some new light on the elusive time-temperature relationship’
which pervades physics...
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and a wink.

and not just physics! In biology, the “thermal time hypothesis” refers
to the widely observed linear relationship between development rate and

temperature.
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Figure: Crop and insect growth rate versus temperature.
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Thermal time in siationary spacetimes

and a wink.
and not just physics! In biology, the “thermal time hypothesis” refers
to the widely observed linear relationship between development rate and

temperature.
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Figure: Crop and insect growth rate versus temperature.
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Thermal dme in siatonary spacetimes

and a wink.

and not just physics! In biology, the “thermal time hypothesis” refers
to the widely observed linear relationship between development rate and
temperature.
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Figure: Crop and insect growth rate versus temperature.

For crops and insects too, temperature is the speed of time!
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Thermal time in stationary spacetimes

and a wink.
and not just physics! In biology, the “thermal time hypothesis” refers
to the widely observed linear relationship between development rate and

temperature.
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Figure: Crop and insect growth rate versus temperature.
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For crops and insects too, temperature is the speed of time!
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I nEfMmal TIime N SE0oNary SpsCeEilmnes

Thermal equilibrium in stationary spacetimes: criteria

Thermal time is defined as a vector field on phase space, while proper
time is defined on spacetime. The bridge between the two is through
local observables A,. Example:

n, — density of a gas about the spacetime time point x.

Then the two criteria expressing the relationship between thermal and
proper time at equilibrium are

1. X_mpAc = Leo A, for some timelike Killing £7

2. £, = 3 along stationary worldlines.

This is the precise meaning of the statement that, at equilibrium,
temperature is the speed of time.
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Thermal time in SETU0oNary spaCeEilmes

Thermal equilibrium in stationary spacetimes: criteria

Thermal time is defined as a vector field on phase space, while proper
time is defined on spacetime. The bridge between the two is through
local observables A,. Example:

n, — densityv of a gas about the spacetime time point x.

Then the two criteria expressing the relationship between thermal and
proper time at equilibrium are

1. X_mpAx = Leo A, for some timelike Killing £7

2. £, = 7= along stationary worldlines.

This is the precise meaning of the statement that, at equilibrium,
temperature is the speed of time.
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Thermal time in stationary spacetimes

The Tolman law

The Tolman law follows immediately. From
- d
Sp e ——
ds

we have that

=
T & 4 IJ‘EI_;'“ =
and in stationary coordinates w.r.t
1ol = 119¢| = V&0

This derivation makes use of no dynamical or kinematical input (except
that spacetime is stationary).
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Thermal time in siatonary spacetimes

Thermal equilibrium in stationary spacetimes: criteria

Thermal time is defined as a vector field on phase space, while proper
time is defined on spacetime. The bridge between the two is through
local observables A,. Example:

n, — density of a gas about the spacetime time point x.

Then the two criteria expressing the relationship between thermal and
proper time at equilibrium are

1. X_npAc = Leo A, for some timelike Killing £7

2. £, = 7= along stationary worldlines.

[ e

This is the precise meaning of the statement that, at equilibrium,
temperature is the speed of time.
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Thermal time in SLETOoNary spaCeELlmes

Thermal equilibrium in stationary spacetimes: criteria

Thermal time is defined as a vector field on phase space, while proper
time is defined on spacetime. The bridge between the two is through
local observables A,. Example:

n, — density of a gas about the spacetime time point x.

Then the two criteria expressing the relationship between thermal and
proper time at equilibrium are

1. X_pAc = L¢e A, for some timelike Killing £7

2. £, = 5= along stationary worldlines.

L2

This is the precise meaning of the statement that, at equilibrium,
temperature is the speed of time.
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Mechanical and thermal time

Thermal time: example

As an limit example, consider a non-relativistic equilibrium state:
="
= £ 1e : H+

Then the thermal time flow matches the mechanical time flow, up to a
constant:

.-:{ in o — /‘%,'—rr -
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Mechanical and thermal time

Thermal time: example

As an limit example, consider a non-relativistic equilibrium state:
=T o
P = Z le z H.

Then the thermal time flow matches the mechanical time flow, up to a
constant:

X 100 = BXs.
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Mechanical and thermal time

Thermal time: example

As an limit example, consider a non-relativistic equilibrium state:
=T
p = P4 le 3 H.

Then the thermal time flow matches the mechanical time flow, up to a
constant:

» This identity characterizes thermal equilibrium in this setting.

» The (inverse) temperature 3 sets the relative scale of thermal time
w.r.t. mechanical time. Pictorially, the “speed of time”.

un
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