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Abstract: : Inthistalk | will review the common appearance of torsion in solids as well as some new developments.

Torsion typically appears in condensed matter physics associated to topological defects known as dislocations. Now we are beginning to uncover
new aspects of the coupling of torsion to materials. Recently, a dissipationless viscosity has been studied in the quantum Hall effect. | will connect
this viscosity to a 2+1-d torsion Chern-Simons term and discuss possible thought experiments in which this could be measured. Additionally | will
discuss a new topological defect in 3+1-d, the torsional monopole, which does not require a lattice deformation to exist. If present, torsional
monopoles are likely to impact the behavior of materials with strong spin-orbit coupling such as topological insulators.
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Overview

Part 1: Dislocations as sources of torsion

Part 2: Torsional Response of Topological Insulators
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Crystal Dislocations
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Crystal Dislocations
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Let’s take a path in the lattice
3 steps right

3 steps up

3 steps left

3 steps down

This path 1s closed 1n the
reference state.
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Crystal Dislocations
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Let’s take a path 1n the lattice
3 steps right

3 steps up

3 steps left

3 steps down

This path 1s closed 1n the
reference state.
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Crystal Dislocations
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Let’s take a path in the lattice
3 steps right

3 steps up

3 steps left

3 steps down

This path 1s closed 1n the
reference state.
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Crystal Dislocations
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Let’s take a path in the lattice
3 steps right

3 steps up
3 steps left

3 steps down
This path 1s closed in the

reference state.

The amount of translation is the
Burgers vector and it 1s a vector of
topological charges. It doesn’t change
if you continuously deform the
dislocation.

Page 9/104




Crystal Dislocations and Aharonov-Bohm
Phases

Magnetic flux gives a U(1)
phase
U = explig)
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Crystal Dislocations

‘|' Let’s take a path in the lattice
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Crystal Dislocations and Aharonov-Bohm
Phases

Magnetic flux gives a U(1)
phase
U = explig)

Pirsa: 10110065




Crystal Dislocations and Aharonov-Bohm
Phases

Magnetic flux gives a U(1)
phase
U = expid]

Dislocation gives a translation
operator. Only equivalent to a phase if
the state 1s a momentum eigenstate.

pab“]

)

U=exp[h
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Crystal Dislocations and Aharonov-Bohm
Phases

Magnetic flux gives a U(1)
phase
U = expid]

Dislocation gives a translation
operator. Only equivalent to a phase if
the state 1s a momentum eigenstate.

U =exp [%Paba]
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exp [%Pabu] d’(Iﬂ) - Z o(p)exp [%Pa(l'a + ba)]
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Crystal Dislocations and Aharonov-Bohm
Phases

Gauge potential and Wilson loop

for electro-magnetic field:

B=VxA
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Crystal Dislocations and Aharonov-Bohm
Phases

Gauge potential and Wilson loop
for electro-magnetic field:

B=VXxA

U =exp [% fA . di" = exp [27mi® /Py
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Crystal Dislocations and Aharonov-Bohm
Phases

Gauge potential and Wilson loop
for electro-magnetic field:

B=VxA

U = exp [% f A. df] = exp [27i® /By

Gauge potential and Wilson loop
for dislocations:

B® =V xe°
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Crystal Dislocations and Aharonov-Bohm
Phases

Gauge potential and Wilson loop
for electro-magnetic field:

B=VxA

U = exp [% f A. df‘ = exp [21i® /By

Gauge potential and Wilson loop
for dislocations:

B® =V x e

U = exp [% fe“ : df] = exp [—%pab“]
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Crystal Dislocations and Aharonov-Bohm
Phases
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TR

1= Length

: — U = exp [% fe"’ : df] = exp [—%pab“]

Gauge potential and Wilson loop
for electro-magnetic field:

B=VxA

U =exp [% fA . df] = exp [27mi® /Py

Gauge potential and Wilson loop
1 for dislocations:

B* =V x e°
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Example: 2+1-d Topological Insulator
(QHE)

Take Dirac Hamiltonian in 2+1-d

- A | m ke — ik
Voa = Z ci(kzo™ + kyo? + mo*)c = Z 5 ( ik I—m. Y ) Cr
k k
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Example: 2+1-d Topological Insulator
(QHE)

Take Dirac Hamiltonian in 2+1-d

= | . ky — itk
B = Z FL(A'IJI + kyo? + mo*)cy = Z e ( 1 -Tik I—nz ’ ) Ch
k k = |
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Example: 2+1-d Topological Insulator
(QHE)

Take Dirac Hamiltonian in 2+1-d

E:t=:1:\/k§+k§+m2 m>0

%
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Example: 2+1-d Topological Insulator
(QHE)

Take Dirac Hamiltonian in 2+1-d

| i =:|:\/A:f.+k§+m2
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Example: 2+1-d Topological Insulator
(QHE)

Take Dirac Hamiltonian in 2+1-d

edge

Vacuum

Ei=:l:\/k§+k§+m2 m>0

j.

Bulk described by massive Dirac fermions, boundary described
wa10n06 by massless chiral fermions in one lower dimension, Clifford = raezew

aloaihen détsssossosmes sl con o lE




Electro-magnetic Response

Electromagnetic linear response:
L
Setr[Au] = — [ d*ze*PA,, A

efflAu] = = - uYAp
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Example: 2+1-d Topological Insulator
(QHE)

Take Dirac Hamiltonian in 2+1-d

edge

Vacuum

E:t=:l:\/k§.+k§+m2 m>0

3.3

Bulk described by massive Dirac fermions, boundary described
s SO by massless chiral fermions in one lower dimension, Clifford  reezon
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Electro-magnetic Response

Electromagnetic linear response:
-
Sesr[Au] = — [ d*ze™PA,, A

efflAu] = = Z€ ulvp
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Bound States on a flux in the QHE
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Bound States on a flux in the QHE

Gapless fermion spectrum on cut
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Bound States on a flux in the QHE

Gapless fermion spectrum on cut
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Bound States on a flux in the QHE

Gapless fermion spectrum on cut
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Bound States on Dislocations
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Gapless fermion spectrum on cut
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Bound States on Dislocations
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Bound States on Dislocations
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Gapless fermion spectrum on cut
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Bound States on Dislocations

Gapless fermion spectrum on cut
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Bound States on Dislocations

, S S Gapless fermion spectrum on cut
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Bound States on Dislocations

m(y) = me™X
*—0 0 _. Gapless fermion spectrum on cut
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Part 2: Topological Viscosity




Elasticity and Viscosity
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We begin with an elastic medium
in a reference state, and look at
perturbations around the reference
state.




Elasticity and Viscosity

We begin with an elastic medium
in a reference state, and look at
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state.
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Elasticity and Viscosity

We begin with an elastic medium
in a reference state, and look at
3 2 : :Emg : : perturbations around the reference
state.
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Elasticity and Viscosity

We begin with an elastic medium
in a reference state, and look at
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Elasticity and Viscosity

We begin with an elastic medium

in a reference state, and look at
2 ® : :Qu%ng ° g perturbations around the reference
@ O state.
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Elasticity and Viscosity

Formulate in terms of an effective action:

1 = e
Sessluis] = 3 / &z (i A7 ure + uign'? ke

Isotropic Viscosities:

. T P = These terms are symmetric under
Shear: dik0je + Oigdjk > G
Bulk: 0ijoke
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Elasticity and Viscosity

Formulate in terms of an effective action:

1 ” =
Sersluis] = 35 _/ @z (uig AT ure + uin'?  iee)

Isotropic Viscosities:

Shear i +6 s These terms are symmetric under
ke TOHEk ) > aa)

Bulk: 0;j0ke

This symmetry implies that the viscosity term cannot be derived
From an action (i.e. the term vanishes identically)

This makes sense since the viscosity is dissipative.
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Elasticity and Viscosity

Formulate in terms of an effective action:

1 7 S
Sessluis] = 35 _/ @z (uig A7 ure + uign'? e

Isotropic Viscosities:

=7 P A - These terms are symmetric under
Shear: 6;x6;¢ + Siedji g
Bulk: 6;i;j0ke

In 2d there 1s one more isotropic term we can write:
nijk! = 13 (Eiktsjt + Eité-jk + Ejk‘sil s Ejt‘sik)

This 1s anti-symmetric under
(1) -> (kI)
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Elasticity and Viscosity

Formulate in terms of an effective action:

1 = —
Sersluis] = 3 f @z (uij A7 upe + uijn'* iige)

Isotropic Viscosities:

= A o These terms are symmetric under
Shear: 6;x6;¢ + Siedj e
Bulk: 0;j0ke

In 2d there 1s one more isotropic term we can write:
NI = ng (%57 + 467" + *5% 4 '5°F)

This 1s anti-symmetric under

(1) = (k)
This 1s a non-dissipative viscosity called the QH viscosity or odd viscosity.
To be non-zero, time-reversal symmetry must be broken.
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Topological Viscosity

1 =
Selastic = § /dax nljkeuijaoukt

% = g (%67 + 7% 4 55 + S57F)

= E This has units of angular momentum density,
7?3 — €2 or momentum per length, or dynamic viscosity

The viscosity is known to be non-zero in quantum Hall

fluids. We want to also consider massive Dirac fermions
in 2+1-d which exhibit a QHE.
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Non-Dissipative Viscosity
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Non-Dissipative Viscosity
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Non-Dissipative Viscosity

Shear viscosity: Force tangent to motion
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Non-Dissipative Viscosity

Shear viscosity: Force tangent to motion

Non-dissipative viscosity: Force perpendicular to motion
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Calculating Viscosity

We will be considering massive fermions coupled to external
gravitational fields so we can just integrate out the fermions:

g— / B det(e) (iDuelr® — m) ¥ Stress Tensor response:

T; Ty
Dy, = 8, — iwpasE® === <
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Pi

Calculating Viscosity

We will be considering massive fermions coupled to external
gravitational fields so we can just integrate out the fermions:

g — / Pz det(e)d (iDyely® —m) ¥ Stress Tensor response:

T T
'Dl-‘ - a” — iwlmbE“" ——— ——
We find:

e

S(?rdf)[e , wp] /Tr[whdau+§whwhw]
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Calculating Viscosity

We will be considering massive fermions coupled to external
gravitational fields so we can just integrate out the fermions:

g — / B det(e) (iDuelr® — m) ¥ Stress Tensor response:

T Tia
D, = 8, — iwpas =™ i =

We find:
3d)ra a_ 03 2 7
S,g”[e ,wb]—?/Tr[wAdcu+-§wAwAw]+-—2—/e“ATa

T® =de® +w Ae
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Calculating Viscosity via Adiabatic
Transport

For gapped systems you can calculate
conductivities and other transport coefficients
y looking at the behavior of the ground state
der adiabatic deformations.

Hall) Conductivity is the response to E-M flux insertion
r twisting of boundary conditions (due to Faraday effect)

Pirsa: 10110065
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Calculating Viscosity via Adiabatic
Transport

For gapped systems you can calculate
conductivities and other transport coefficients
y looking at the behavior of the ground state
der adiabatic deformations.

Hall) Conductivity 1s the response to E-M flux insertion
r twisting of boundary conditions (due to Faraday effect)

For the viscosity we calculate the response to
deformations of the modular parameter of the torus

y yt

T T
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Topological Viscosity

* We will only look at the torsion term and to simplify the description
we focus on a flat background where we pick a gauge where the spin-
connection vanishes:

1
ngf = Em/dare””peﬂape:’,nnb
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Topological Viscosity

* We will only look at the torsion term and to simplify the description
we focus on a flat background where we pick a gauge where the spin-
connection vanishes:

1
Sett = Em/dare”""eﬂaye:’,nab

We can compare this to the quantum Hall response:
SerrlAu]l = ‘%, / d’ze'"PA,0,4,

Note that the coefficient of the first term must have units

of 1/[Length]*2 when compared to the dimensionless, quantized
Hall conductance. If we reinsert the physical units into the frame
field response we find:
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Topological Viscosity

* We will only look at the torsion term and to simplify the description

we focus on a flat background where we pick a gauge where the spin-
connection vanishes:

1
Seps = §q3/d31:e"”"e;“3yegnab

We can compare this to the quantum Hall response:
SerrlAu]l = fﬂf /da-"prApavAp

Note that the coefficient of the first term must have units
of 1/[Length]"2 when compared to the dimensionless, quantized
Hall conductance. If we reinsert the physical units into the frame

field response we find:
_ h (|m|»::)2 T h
B==\h B = e
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Topological Viscosity

We can calculate the stress-energy tensor and find:

T; = mae” (95eq — Boes)Mab = 113€” € as

T, = n3€” 8;€7map = 13B°Nas
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Topological Viscosity

We can calculate the stress-energy tensor and find:

T; = meij(ajeg - 306?)%1: = méijffﬂab ; _ me’ g
3=t E;
Ty = n3e” 8;enab = 13B°Nab o_"p
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Topological Viscosity

We can calculate the stress-energy tensor and find:

T = e (256 — et o = Tae €2

<,
[

Tf = ﬂgfij 3,-621735 = 7}356%& 0

-
I

Torsion Magnetic Field:
B¢ = — Z b‘(‘i)é(x == X(i))
i
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Topological Viscosity
We can calculate the stress-energy tensor and find:
T; = n3€e? (9j¢0 — Boes)Mab = N3 €] ab

Tf = ﬂgfij 3,;6?1735 = n;;anﬂb 0

Torsion Magnetic Field:
B* =—) bf;d(x —x())

The torsion magnetic field 1s simply tied to the dislocation density
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Magnetic Torsion Response

T'{? = ngﬁijaieg’qab — ﬂng’f]ab

This torsion response implies that momentum density in the a-th
direction 1s bound to a frame field flux i.e. a dislocation
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Magnetic Torsion Response

T2 = n3€" die2nap = n3B°Nab

This torsion response implies that momentum density in the a-th
direction 1s bound to a frame field flux i.e. a dislocation
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Magnetic Torsion Response

T2 = n3e' 9;€%nab = 13B°Nas

This torsion response implies that momentum density in the a-th
direction 1s bound to a frame field flux i.e. a dislocation

Pirsa: 10110065
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Electric Torsion Response

T, = n3e’ (8jeq — Boe’)Nab = N3€7 € N
How can we create a torsion electric field? Through the Faraday

effect. That is a time-dependent torsion magnetic field will
produce a torsion electric field.
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Electric Torsion Response

T, = n3€” (9jef — Ooe2)Nab = M3€ € Mab
How can we create a torsion electric field? Through the Faraday
effect. That is a time-dependent torsion magnetic field will

produce a torsion electric field.
- At




Electric Torsion Response

Alternative way: Thread a torsion flux through the cylinder.
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Electric Torsion Response

Alternative way: Thread a torsion flux through the cylinder.

\.
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Torsion in 3+1-d

* In 3+1-d we have the Nieh-Yan term which
simply implies there 1s a quantum Hall
viscosity on an axion domain wall.

f(sz)[e wb]—a4/R“b/\Rab+1;4/9 [TGAT{,—RG;,/\E“AEB]
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Torsion in 3+1-d

* In 3+1-d we have the Nieh-Yan term which
simply implies there 1s a quantum Hall
viscosity on an axion domain wall.

m[dm(e“nm
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Torsion in 3+1-d

* In 3+1-d we have the Nieh-Yan term which
simply implies there 1s a quantum Hall
viscosity on an axion domain wall.

m/deA(eMTa)

Again the coefficient of the torsion piece has units of 1/[Length]"2.

So topological insulators in 3+1-d should exhibit a quantum Hall
viscosity on the surface. It goes hand in hand with the QHE on the
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surface. ‘Axion visco-elasticity.’
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Part 3: Torsional Monopole




Heuristic Picture

666606666666

We begin in 3+1-d flat space m the first order
formalism:
e®, wh

To simphify the description we pick a
gauge where

0

_.a
—

Page 80/104




Mathematical Description

irsa: 10110065

What we want 1s a completely torsional defect which can exist with
or without space-time curvature. Only consider flat space for now.
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Mathematical Description

a
€u

Ingredients: a
gr W b

a
ub
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What we want 1s a completely torsional defect which can exist with
or without space-time curvature. Only consider flat space for now.
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Mathematical Description

a

ub

irsa: 10110065

€
7
Ingredients: |, a - Dre® =0
=
a Dwe“ =T

What we want 1s a completely torsional defect which can exist with
or without space-time curvature. Only consider flat space for now.
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Mathematical Description

a

irsa: 10110065

¢
7
Ingredients: |, a s Dre® =0
1
a Dwe“ =T
ub

w=glg! —dgg™

What we want 1s a completely torsional defect which can exist with
or without space-time curvature. Only consider flat space for now.

1
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Mathematical Description

With this setup we want to define a current:

*J=—Trp w/\dtu+gw/\w/\w—l"/\dl"—gl"hl"/\l"
472 3 3
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Mathematical Description

What we want 1s a completely torsional defect which can exist with
or without space-time curvature. Only consider flat space for now.

Eﬂ

7
Ingredients: |, a - Dre® =0
H
a Dwe“ ==
ub

w=glg! —dgg™*

Rm m— g-Rl"g_1
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Mathematical Description

With this setup we want to define a current:

3

irsa: 10110065

*JE%T[D (w/\dw+gwf\wf\w—1"f\dl"—gl"/\l"f\l")
47 3
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Mathematical Description

What we want 1s a completely torsional defect which can exist with
or without space-time curvature. Only consider flat space for now.

Eﬂ

7
Ingredients: |, a : Dre® =0
L
a Dwe"’ =™
ub

w=glg! —dgg™*

Rm — gRI"g_l
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Mathematical Description

With this setup we want to define a current:

#J=—Trp w/\dw—kgw/\wf\w—l"/\dl"—gl"hl"/\l"
472 3 3
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Mathematical Description

With this setup we want to define a current:

*JELTI‘D w/\dw+gw/\w/\w—l"/\df'—gl"/\1"/\l"
472 3 3

This current 1s conserved

1
d*J = ——Trp (Ry ARy~ Rr ARr) =0
nw
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Mathematical Description

With this setup we want to define a current:

*JELT[‘D w/\&u—l—ng\w/\w—l"/\dl"—gl"l\l"f\l"
472 3 3

This current 1s conserved

1
d*J = _—Trp (Ry ARy~ Rr ARr) =0
w

topologically stable and quantized:

1 = — =
Q= IQ#Q.[EﬂD (dgg~' Adgg™' Adgg™")

73(Spin(3,1)) = Z
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Pi

IIIII

Q=

We can give an explicit configuration with Q=1:

: 10110065

Mathematical Description

1 1
—= / Trp (dgg™" Adgg™" Adgg™")

oy

|

g = cos(x(r))1 + sin(x(r))
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Mathematical Description

Q=

-1 1
— / Trp (dgg™" A dgg™" Adgg™")

We can give an explicit configuration with Q=1:

g = cos(x(r))1 + sin(x(r)) —2
x|

Note that this is very different from similar structures seen in

Yang-Mills theory. There you expect that global gauge transformations

can change the charge. Here since the charge is related to the difference

of two Chern-Simons functionals global gauge transformations cancel. Thus

the charge is completely gauge invariant.
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Mathematical Description

With this setup we want to define a current:

*JELT[‘D w/\dw+gw/\w/\w—l"/\cﬂ"—gl"f\r/\r'
472 3 3

This current 1s conserved

1
an
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Mathematical Description

With this setup we want to define a current:

*Jz—TI‘D w/\dw+gw/\w/\w—l"/\cﬂ"—gl"f\l"/\l"
472 3 3

This current 1s conserved

1
d*J = ——Trp (Ry ARy~ Rr ARr) =0
nw

topologically stable and quantized:
Q= /E Trp (dgg™' Adgg™" Adgg™")

1272

W3(Spin(31 1)) -
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Mathematical Description

1
Trp (dgg=* A dgg=* A dgg™*
I%QL D (dgg 99 99~")

Q=

g = cos(x(r))1 + sin(x(r)) =2
x|
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We can give an explicit configuration with Q=1:
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Mathematical Description

Q=

— / Trp (dgg™" A dgg™" Adgg™")

We can give an explicit configuration with Q=1:

g = cos(x(r))1 + sin(x(r)) —2
x|

Note that this is very different from similar structures seen in

Yang-Mills theory. There you expect that global gauge transformations

can change the charge. Here since the charge is related to the difference

of two Chern-Simons functionals global gauge transformations cancel. Thus

the charge 1s completely gauge invariant.
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Torsion Monopoles in Solids

We can gauge transform our monopole solution so that the spin
connection becomes the Levi-Civita connection and all of the torsion

1s contained in the tetrad. When this 1s done we do not have to deform
the underlying lattice:

However, simple Schrodinger electrons won’t even feel the defect:

i _ €aPiPi _ 97Pip;

2m 2m
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Torsion Monopoles in Solids

The place to look for the effects of such defects is in matenals
which have strong spin-orbit coupling. This means that you want the
motion/momentum coupled to spin degrees of freedom:

e Dirac model/Topological
H = p;eiI"* + mI® e

— man.od Jga gb Luttinger model for common
H = PiPj e“eis S semi-conductors (spin 3/2)
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Possible Interference Effects
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Torsion Monopoles in Solids

The place to look for the effects of such defects 1s in matenials
which have strong spin-orbit coupling. This means that you want the
motion/momentum coupled to spin degrees of freedom:

FO Dirac model/Topological

B = piELFa +m e S

= Lutti model fi
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Possible Interference Effects




summary and Outiook

Interesting phenomena associated to the
coupling of torsion to matter may soon be
uncovered in condensed matter systems

What 1s needed:

Realistic proposals for experiments to measure the viscosity
and the monopoles

A microscopic understanding of how torsion contributes to
chiral anomalies
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