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Abstract: In thistalk | will discuss the applications of the gauge/gravity duality to the strongly coupled quark gluon plasma, focusing in particular on
the role of the shear viscosity to entropy ratio.

It has been argued that the lower bound on the shear viscosity to entropy density in strongly coupled plasmas can be understood in terms of
microcausality violation in the dual gravitational description.

However, since the transport properties of the system characterize its infrared dynamics, while the causality of the theory is determined by its
ultraviolet behavior, the link between the viscosity bound and microcausality should not be applicable in theories that undergo low temperature
phase transitions.

| will discuss an explicit holographic model confirming this fact, in which thereisa ™ decoupling” of UV from IR physics.
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Today’s talk based on:

= arXiv:0812 3572
= arXiv:0903.3244
= arXiv:0910.5159

. arXiv:1007.2963

In collaboration with:
(Michigan)

and some work in progress..
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In this program, it is particularly important to find

universal features that might hold in realistic systems
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Part I

The quark gluon plasma and
the shear wviscosity to entropy ratio
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Insight into the quark gluon plasma

creates hot and dense nuclear matter _ .

— probe QGP behavior (transport properties)

Can we use CETs to study properties of QCD?

N=48SYM at fimite T 1s not QCD but:

Some features gualitatively simalar to
QCD (forT~T_-3T)

(small bulk

viscosity away from T)

Some properties may be

such genernic relations might provide
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INPUT into realistic ssmulations of sQGP
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Elliptic Flow at RHIC

Off-central heavy-ion collisions at RHIC:

Amsotropic Flow
(large pressure gradient

in horizontal direction)

RHIC data favors r;f"S*: 5/4x (Heinz/Song 0909.1549)




Nearly ideal, strongly coupled QGP

Contrast to weak coupling calculations in thermal gauge

theories (Boltzmann egn) :

| 1
2 .

s Alogl/N\?




Nearly i1deal, strongly coupled QGP

Contrast to _weak coupling calculations in thermal gauge

theories (Boltzmann egn) :

_ 1 Weak Coupling
. — o

s Alogl/A\2

77ls<<1 -2 Strong Coupling Regime




Nearly i1deal, strongly coupled QGP

Contrast to weak coupling calculations in thermal gauge

theories (Boltzmann egn) :

Weak Coupling

1
T_) >1 Prediction

s Alogl/N\2




Nearly i1deal, strongly coupled QGP

Contrast to weak coupling calculations in thermal gauge

theories (Boltzmann egn) :

" 1 Weak Coupling

—~ > 1 Prediction
s Mlogl/\2 =

Strong coupling =2 natural setting for AdS/CFT applications
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Universal Viscosity/Entropy Ratio

For N=4 SU(N) SYM plasma:

planar 1limit, infinite ‘t Hooft coupling

ONVVERSAL

>\}N—‘-}DO

Result is in all gauge theories whose gravity
duals are dictated by

regardless of matter content, amount of SUSY, conformality

A simple dilute gas estimate seems to suggest a OM bound:
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Shear Viscosity/Entropy Bound

Conjectured lower bound for field theories at finite T

Fundamental in nature?

Lower than any observed fluid

RHIC wvalue i1s at most a few times
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Ratio 224_ is universal in Einstein R L=R- —F+...
s 4x 2n!

How does it change with higher derivative corrections?

I . R :
L'.=R—-WF:+.--+a-'R2+a'ER'5+ﬂ”R’+--.

Why include higher derivatives?

Natural from EFT point of view:

Einstein GR is only low—energy description of string theory

More “phenomenological” point of view:

corrections might bring observable gquantities closer to
measured values
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Modify graviton propagator
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Gibbons-Hawking term)
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However:
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arxiv:0910.5159
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Pathologies of higher derivative gravity

Higher derivatives :an lead to undesirable features:
Modify graviton propagator
ill-poised Cauchy problem (no generalization of
Gibbons-Hawking term)

Both issues re .ated to presence of four-derivative terms.

However:
patholocies show up only at the Planck scale

perturbative parameters —2

arxiv:0910.5159
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Part ITI

Black holes with higher derivatives
and
the violation of the wviscosity bound




Testing The Bound

Leading a’ correction on AdS: x S° (N = 4 SYM)
increased the ratio

g = i[1 +15¢(3A 32 + .. ]

47




Testing The Bound




Testing The Bound

Leading a’ correction on AdS: x S° (N = 4 SYM)
increased the ratio

m

g = %[1 + 153N + .. ]




Testing The Bound

Leading a’ correction on AdS: x S° (N = 4 SYM)
increased the ratio




Testing The Bound

Leading a’ correction on AdS: x S° (N = 4 SYM)
increased the ratio

Possible bound violations ? YES
Gauss—-Bonnet gravity



Testing The Bound

Leading a’ correction on AdS; x S° (N = 4 SYM)
increased the ratio

Possible hanind vigolations ? YES

Gauss—-Bonnet gravity

I= / &£z /=g [R 2A + iG—%LE(Rﬁ — 4R, R* + R, ,c R***°®)
lﬁ"l'Gﬁ




Testing The Bound

Leading a’ correction on AdS. x S° (N = 4 SYM)
increased the ratio

Possible hevind viglations ? YES

Gauss—-Bonnet gravity

lﬁ‘TI'G N

I= / Fz /=g [R 2A + LGELE(RE — 4R R™ + R, . R*™"")

come back to

this later




String Construction Violating Bound

Kats & Petrov larXiv:0712.0743)
= Type IIB on AdSs x SE/ZE

Decoupling limit of N D3’'s sitting inside 8 D7’'s coincident
on 07 plane

~ — R - v v
S = /dDr v —g (: — At R? + e Ry R*Y + 3 Ry po R” ’H)

—

[L—MD—4HD—J“;%]




String Construction Violating Bound
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= Type IIB on AdSs x SE/EE
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on 07 plane
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String Construction Violating Bound

etrov (axrXiv:0712.0743
= Type IIB on AdS; x S®/Z,

® Decoupling limit of N D3’'s sitting inside 8 D7’'s coincident
on 07 plane

— A .
S = /dDI v —a (— — A4 R® 4+ ca R, R" + c3 RMNR#FPJ)

.}H

small iolatton

Couplings =2 determined by (fundamental) matter content
of theory and semnsitive to 1/N corrections




Our interest in this story

at two-derivative level, it has no effect (universality)

with higher derivatives, i1s bound restored with sufficiently
large chemical potential?

one more parameter (chemical potential) to better fit data




Corrections to msat finite chemical potential

The setup: D=5 N = 2 gauged SUGRA (electrically charged black holes)

To leading order:

Eo——R— P+ — =" P F_ILA + 12y

ds* = H™2fdf* — H(fdr* +7%d93,) H(r)

A= .3“‘%+ B (1 2 ftr)




Corrections to msat finite chemical potential

The setup: D=0 N = 2 gauged SUGRA (electrically charged black holes)

To leading order:

Ey——R-—(F_+_ =T F_FaA | 12¢

H2fd — H(f'dr® +7%d9B,)  H(r) = 1+f3

o1
f(r) = k=5 + g




Corrections to @S at finite chemical potential

The setup: D=5 N = 2 gauged SUGRA (electrically charged black holes)

To leading order:

1 A / D2
mpr UFwFp)ﬁ'—lg + 129

In this theory higher derivative corrections start at R?
(sensitive to amount of SUSY)

AANT(RAR)

They include the
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SUSY R?2 terms in 5D

We are inferested in consistent string theory reductions
9
In principle one start from 10D and compactify (Sasaki-Einstein)

Instead make use of SUSY

SUSY completion of mixed CS term

AANTr(RAR)
coupled to arbitrary # of vector multplets

Off-shell formulation of N2, D=5 gauged SUGRA (superconformal

formalism). End Result W
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On-shell Lagrangian (minimal SUGRA)
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sera@physics.tamu.edu has 1 new message

[Researchers] [Talks] Condensed Matter Journal Club  Elipagetésfigzon
Condensed Matter Journal Club this Wed --;b afternoon 2 4:30 in M108. Dr. L..
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Use A4dS/CFT to relate c, to of dual CFT via:
Holographic trace anomaly

R—current anomaly
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Thermodynamics and Hydrodynamics
of R-charged black-holes

Now we have all the ingredients we need to compute n/s
We expect:

Einstein GR: area of event horizon
Higher derivative GR: Wald’s entropy formula

can be extracted from boundary stress tensor




Shear Viscosity
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Shear Viscosity
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Shear Viscosity
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Shear Viscosity
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effective description of dynamics of system
at large wavelengths and long time scales
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Bound Violation

2a(1 + Q)2 c—a3Q?-14Q - 21
electrically charged wL a 8(Q —2)

black holes _ :
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167 a 8(Q —2)

Bound violated for c—a > 0

R-charge makes violation worse

Viclation is small (independently of R-—charge) !




Violation is finite N effect

For N=4 SYM g —=c¢ =2 no R? corrections (a\(,lg__,x,t ‘3"’-)
c

c— a 1

In general ad = C = O(i\r?) only, and a s N




Violation is finite N effect

For N=4 SYM @ —=c¢ =2 no R? corrections (b\dS,«,{_ S:})
c

c— a 1

In general a = C = O(ﬁuﬂ) only, and = e N

Correction is 1/N \




Violation is finite N effect

For N=4 SYM @ — ¢ -2 no R? corrections (F-\GIS__, e S;')
c

c— a 1

In general a — C = O(E\T‘z) only, and = g ?

Correction is 1/N ___ﬁ‘hﬁhﬁw

These are not 1-loop corrections in the bulk (open
string effect instead)

Due to presence of fundamental matter




Viclation is finite N effect

For N=4 SYM g —=c¢ =2 no R? corrections (Adgqi S:’)

c— a 1

In general a4 = C = O(- 'TQ) only, and - o~ N

Correction is 1/N ———-ﬁhhhﬂy
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Having SUSY completion of higher derivative terms naively did
not play a role (but SUSY governs structure of couplings)
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Note:

In holographic models realized in string theory

the violation of the bound is necessarily

perturbative, and therefore always small.




Gauss—-Bonnet as a tog model

Black brane solutions known for finite GB ccu_pl:i_ng

(only second derivatives of metric fluctuations)
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Causality Violation and the Link to mn/s

ensures
small violation of the bound

GB example suggests

Such a link cannot be of fundamental nature

[S.C. ,A.Buchel arXiv:1007.2963]

We considered a slight modification of the GB model,
linking it to a theory with a superfluid phase transition




Idea is generic:

While transport properties are determined by the IR
features of the theory, causality is determined by the
propagation of UV modes (whose dynamics is not that of hydro)




IR vs. UV Physics

shear viscosity: coupling of effective hydro description
at low momentum and frequency
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IR vs. UV Physics

shear viscosity: coupling of effective hydro description
at low momentum and frequency

microcausality: determined by propagation of modes in UV

Iink only if same phase
of the theory extends

over all enerqgy scales
(e.g. no phase transitions
decoupling UV from IR)




Features of our model

= Plasma with 2°¢ order phase transition below
associated with:

= spontaneous breaking of glocbal U(1l)
m generation of condensate of an operator:

=0 T>F
=4, < ¥,

(Oc)

= Dual GR theory coupled to GB term, engineered so that:

e f fective ef fective = Uv

£0, IR.

ctation s

Because of phase transition, proposed connection between

microcausality violation and viscosity bound will be losf




Motivation

(cnn51stent truncation of Type IIB)
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ILow T T High T

unbroken phase
A =0

no higher derivatives
(Einstein GR with U (1)
gauge field)

electrically charged
AdS black hole




Tow T

broken symmetry phase

Ags # 0

Gauss—-Bonnet higher-
derivative corrections

Black hole develops
scalar hair

High T

unbroken phase
Ac =0

no higher derivatives
(Einstein GR with U (1)
gauge field)

electrically charged
Ads black hole
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The shear viscosity bound

expected from

universality

when A, is non-zero:
no micro-causality violation (scalar channel)

eta/s goes well below pure GB bound (finite Ag)
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How else can we obtain non-trivial eta/s behavioxr?

Can we better understand “jump” in eta/s, and possible
lower bounds on it, in the Wilsonian approach of
(relevant double trace deformations of CFT, triggering RG—Tflow)



In conclusion..

important to understand how much mileage we can get from
gravity setups to model interesting field theory systems
(and any potential constraints arising from consistency of
the theory)

useful for providing inputs into realistic simulations of
strongly coupled systems

For eta/s:
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derivative corrections the
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IR features of the theory, while causality/central charges are a
property of the UV.
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important for the general consistency of the plasma as a
relativistic field theory,

— whether 1t exists and what 1is
the physics that determines it —
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