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Abstract: We discuss the coupling of fermions to holographic superconductors in 3+1 and 4+1 (bulk) dimensions. We do so from a top-down
perspective, by considering the reduction of the fermionic sector in recently found consistent truncations of type 11B and D=11 supergravity on
squashed Sasaki-Einstein manifolds, which notably retain a finite number of charged (massive) modes. The truncations in question also include the
string/M-theory embeddings of various models which have been proposed to describe systems with non-relativistic scale invariance via holography.
We show that the lower-dimensional effective action for the fermion modes includes certain interactions that had been discussed in bottom-up
constructions, as well as a variety of new couplings that may be relevant for applications of holographic techniques to the study of condensed matter
systems
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Motivation

@ In recent years, there has been an increasing interest in applying
holographic techniques to construct models which capture basic

features of various condensed matter systems.

@ Ultimately, we would like to access the strong-coupling regime of
systems which can be engineered in the lab ("real life").

@ It is fair to say that this goal has not been attained so far (lattice
models?, d-wave superconductors?, etc).

@ More modestly, we can still aim to describe generic properties of
theories in the same universality class of a quantum critical point.
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@ These efforts have been largely of a phenomenological nature,
where different configurations of bulk matter fields are devised to
model particular phenomena.

» Abelian bulk gauge fields give raise to chemical potential, charge
density, magnetic fields, etc. in the dual field theory.

» Charged scalars model (s-wave) superfluids/superconductors.

» Non-Abelian gauge fields model p-wave superconductors.

@ One of the first examples of these applications was the "HHH"
holographic superconductor (Hartnoll, Herzog, Horowitz, 2008)

G 1 = _ 2
L31 ZR‘ILL—Q“_ZFEDFE —[Va@—;qAa@|2—|—ﬁ¢2_

@ Below a certain critical temperature T, there are "hairy” black hole
solutions with a non-trivial profile for ¢ (Gubser, 2008). This has the
interpretation of a scalar operator condensing in the dual field
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@ These efforts have been largely of a phenomenological nature,
where different configurations of bulk matter fields are devised to
model particular phenomena.
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@ These efforts have been largely of a phenomenological nature,
where different configurations of bulk matter fields are devised to
model particular phenomena.

» Abelian bulk gauge fields give raise to chemical potential, charge
density, magnetic fields, etc. in the dual field theory.
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Mutivatinn

@ We will focus on fermions, because of their interest in CM systems
(e.g. strongly interacting cold fermion gases, BCS
superconductivity, etc.)

@ So far, fermions have been added to the existent holographic
models in an ad hoc way.

@ Early examples include minimally coupled Dirac fermions in the
extremal RN-AdS black hole background (Faulkner et. al., 2009).
They found:

» Fermi surfaces.
» Emergent scaling behavior in the IR, of non-Fermi liquid type.

» Features resembling the strange metal region in the phase diagram
of the cuprate ("high 7T.") superconductors.
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@ (Chen, Kao, Wen, 2009) computed the spectral function of fermion
operators dual to bulk Dirac fermionsinthe T =0
superconducting ground-state of the H® model (Horowitz, Roberts).

@ Similarly, a Majorana coupling was introduced in the same
background (Faulkner et. al., 2009)

S = Spirac + / d4xv —g (6 ﬁ*g_chg ¥ h~C)

In the T = 0 limit of the superconducting phase, this coupling
introduces stable gapped quasiparticles in the spectrum.

@ (Gubser, Rocha, Talavera, 2009) studied minimally coupled Dirac
fermions in a T = 0 superconducting AdS, domain wall
background (bosonic sector obtained from top-down model).
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@ The bosonic models of holographic superconductivity in (2 + 1)
and (3 + 1) dimensions have been successfully embedded in
String/M-theory.

@ This has been also done for the duals of systems with
non-relativistic conformal symmetry at both zero and finite
temperature.

@ The question we set ourselves to answer is: can we consistently
add fermion modes to these compactifications? A: yes!

@ These dimensionally reduced theories will display a rich structure.
Moreover, even in bottom-up models we can gain useful guidance
from looking at top-down constructions.
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Outline

e Consistent bosonic truncations
@ D = 11 supergravity
@ Type |IB supergravity
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Some SUGRA jargon

@ A truncation entails throwing away a certain number of modes
arising in the compactification.

@ If these are not sourced by the modes we kept, we call the
truncation consistent.

@ Equivalently, a consistent truncation is such that any solution of
the lower-dimensional theory can be uplifted to a solution of the
higher-dimensional theory we started with.

@ For example, say that compactifying from D =11 to d = 4 yields a
theory containing a U(1) gauge field and a real scalar h such that

the eomfor his
d(xdh) + FAF=0

@ In such a situation it is nof consistent to set h = 0. If we do so, we
“"ffeed to restrict to configurations for which F A F = 0.
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Gansistem bosonic fruncations |

@ Consistent truncations are hard to come by, even when the
compactification manifold is a sphere.

@ Part of the supergravity lore is that it is inconsistent to keep a finite
number of massive (charged) modes. Hence, most of the work in
KK compactifications of 10 and 11-dimensional supergravity has
been done by truncating to the massless sector.

@ In this talk we will focus on KK compacitifications of D = 11
supergravity on squashed Sasaki-Einstein seven-manifolds (SE&7),
and type |IB supergravity on squashed SEs.

@ They consistently retain a finite number of charged modes, and
have enough room to accommodate holographic superconductors
and systems with non-relativistic scale invariance.
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@ They consistently retain a finite number of charged modes, and
have enough room to accommodate holographic superconductors
and systems with non-relativistic scale invariance.
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Sasaki-Einstein manifolds
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Cnnsistent bosonic truncations |

Breathing and squashing

@ The metric ansatz in the KK reductions we study is of the form

KK metric ansatz
ds? = W) dsf (M) + e2Y ¥ ds?(KE) + €2V ™) (n + A (x) )

@ For D = 11 we consider dim(M) = 4 (reduction on SE7). In
D = 10 we take dim(M) = 5 (reduction on SEs).

@ U(x) — V(x) is the squashing mode, and W/(x) is proportional to
the breathing mode. The pure SEcasehas U=V =0 (W = 0).

@ Archetypal examples: S° = CP, x U(1), S” = CP5 x U(1). Upon
squashing, the isometry gets reduced: SU(4) — SU(3) x U(1) for
S°, and Spin(8) — SU(4) x U(1) for S”.
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Consistent bosonic fruncations :

@ What about fluxes? = the consistency is ensured by truncating to

modes which are singlets under the structure group of the KE
pase.

@ The KE;, base is endowed with a Kahler form J =dA/2 and a
holomorphic (n, 0)-form ¥ which are SU(n) singlets:

J=e'ree+enet+..., I=(e'+ieAN(eEl+ie*)A...

@ Lifting from the KE base to the SE, the relevant (n, 0)-form carries
U(1) charge: Q = &Y.

@ Hence, the ansatz for the fluxes consists in building the most
general forms of the given rank such that their "legs” in the
" ifiternal directions are given by (7. J, Q).



Consistent bosonic truncations S22 8 B0 2151207

D = 11 supergravity

@ The general SU(3)-singlet 4-form F, in D = 11 sugra has the form
(Gauntlett, Kim, Varela, Waldram, 2009)

Fa=fvoll?) + Hs A(n+ A1)+ Ha Ad+dh AJ A () + Ar) + 2hS
[

+ X(??+A1)/\Q—4

(dX — 4iA X) A Q +c.c.

@ So we have a real boson h, a charged boson X, the U(1) gauge
field A, a second U(1) gauge field B,, and an axion dual to Hs.
The bosonic eom imply f = 6e(+1 + A% + | X|2/3).

@ The content is consistent with the bosonic sector of N = 2 gauged
supergravity in d = 4, coupled to one vector multiplet and one
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Relation to flux compactifications

@ Viewing the SE; manifold as KEg x U(1), one can imagine
reducing from M-theory to type lIA.

@ The truncation then has the structure of a llA reduction on a
six-dimensional manifold of SU(3) structure. Generically this
yields N = 2 (ungauged) sugra coupled to a tensor multiplet and a
vector multiplet.

@ However, in our case we also have the background 4-form flux,
the twisting of the U(1) fiber, and the non-closure of the (3, 0)
formon KEg: dX = 4iAN L.

@ These features lead to the gauging of the d = 4 theory.
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@ The f = +6e" + ... theory has an N = 2 supersymmetric AdS
vacuum which uplifts to an AdS, x SE7 solution (dualto N =2
SCFT in d = 3). A possible further truncation of this theory yields
minimal gauged N = 2 sugra.

@ Reversing the orientation in the internal manifold, i.e.
f=—6e" + ..., the resulting theory has a non-supersymmetric
AdS vacuum which uplifts to the so-called "skew-whiffed”
AdS,; x SE7 solution.

A further truncation of this theory yields (Gauntlett, Sonner,
Wiseman, 2009)

M-theory holographic superconductor

1 — —— s =
i6r ) Q{H 5% (1 31X2)2
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Consistent bosonic truncations

@ The f = +6e" + ... theory has an N = 2 supersymmetric AdS
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@ Reversing the orientation in the internal manifold, i.e.
f=—6e" + ..., the resulting theory has a non-supersymmetric
AdS vacuum which uplifts to the so-called "skew-whiffed”
AdS,; x SE7 solution.
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M-theory holographic superconductor < FAF=01">
—

S8 - 1p G |DXP— & (1-§1XP)
o— 167rG]d Xy gl — 35, P — A LxP?
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Type |IB supergravity

@ In type |IB, the SU(2)-invariant ansatz for the fluxes reads
(Gauntlett, Varela, 2010)

Fs)y = 46+ Zvoll®) 1 2 W+ s oA J + Ky AJAJ

+[2670nd - 267 K + Ko A | A (0 + Ar)

+ -e"'(w"‘u)*LE/\Q+L2/\Q/\(T;—|—A1)—|—C.C.]

F(S) = G3+ G AMM+A)+GIAJ+GgJdA (n+ Aq)
+[N1 /\Q+NOQ/\(T)—|—A1)—I—C.C.}

Hzy = H3+HaA(n+A))+HiANJ+Hod A(n+ A1)
—|—[M1 AQ+MDQA(n+A1)+c.c.}
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@ The bosonic spectrum is consistent with N = 4 gauged
supergravity in d = 5, coupled to two vector multiplets (Cassani,
Dall’ Agata, Faedo; Gauntlett, Varela; Liu, Szepietowski, Zhao, 2010)
(see Skenderis, Taylor, Tsimpis, 2010 also.)

@ This theory has an AdSs vacuum that breaks N =4 — N =2
spontaneously, and uplifts to a class of AdSs x SEs solutions (dual
to N=1SCFTsin d = 4). It also has an AdSs vacuum which
preserves no-supersymmetries.

@ A further truncation of this theory yields the type [IB holographic
superconductor (Gubser, Herzog, Pufu, Tesileanu, 2009)

Type |IB holographic superconductor

1 1
— e pv — QY pAo

—8(1—4|Y2)2 DDY|2 _ (3/2L?) (1 _ 6| le)}



The fermionic sector

Qutline

0 The fermionic sector
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Singlet spinors

@ As we have discussed, we have to find a basis of SU(n) singlet
spinors to expand the various fermion modes.

@ The KE base might not admit a spin structure (e.g. CP?).
However, being Kahler, we can always define a spin® bundle.

@ Of crucial importance to us, the "gauge-covariantly constant”
spinors ¢ are sections of the spin® bundle satisfying

Gauge-covariantly constant spinors

(VEE = feAa,) (y) =0

where e is the "charge".
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The fermionic sector |

@ An integrability condition allows one to identify the U(1) charge
operator acting on the spinor states as Q ~ iJ.

@ In general, the operator Q ~ iJ has two SU(n) singlet
eigenvalues, corresponding to = with charge e = £=(n+ 1)/2.

@ For example, for a KEg base they are the SU(3) singlets in the
4 © 4 of Spin(6) = SU(4).

@ In the absence of squashing, the fact that =.(y) are
gauge-covariantly constant implies that e (y, x) = €®Xe-(y) are
Killing spinors of the corresponding SE.

@ From this point of view, it seems natural to use these spinors to
-+ oe@NStruct the reduction ansatz for the squashed case.
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D = 11 supergravity

@ Since the 11-d gravitino is Majorana, the ansatz reads

KK ansatz for the 11-d gravitino

Wa(X, ¥, x) = Ya(X) ® £4(y)€®X + ¢§(x) ® =_(y)e 2
Vo (X, ¥, X) = MX) @ 7o e+ (y)e5X

W5(x, ¥, x) = —A6(x) ® vac_(y)e %X

We(x, ¥, x) = ¢(X) @ e (¥)€*X + °(x) ® e_(y)e~ X

@ All in all we have a 5-d Dirac gravitino ¥4, and two spin-1/2 Dirac
fields A and ¢ (and their charge conjugates). As usual, it is
necessary to take linear combinations of these modes and an

P onggppropriate rescaling in order to have diagonal kinetic ternys: s



The fermionic sector |

@ In the present case,
1

2= /2 [’wa — 57573(90 + 61)

n=e"?(p+2))
¢ =6e"/2)

@ Reducing the 11-d SUSY variation of the gravitino, we identify 7
as the gaugino and ¢ as the hyperino.

@ Reducing the eom for the 11-d gravitino, we constructed an
effective 4-d action, to quadratic order in the fermions, which fits in
the general form of N = 2 gauged supergravity as given by
(Andrianopoli et. al., 1996).

@ The full action is complicated, but we will discuss some of its

e 102/155

" "features that are probably relevant for holographic applicatiéns.
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lType |IB supergravity
@ We now have a chiral 10-d gravitino ¥, and a chiral 10-d dilatino

A of opposite chirality. The ansatz reads

KK ansatz for type |IB fermions

= = 3 ; =
Wa(x,y,x) = v57 () @ es(y)e2 X @ u_ + ¢

() @c_(y)e 2 X u_
Wa(x, ¥, x) = p)(x) ® Yacs(y)e2X @ u_

Va(x, ¥, x) = p)(X) ® vae—(y)e 2 X @ u_

Vi(x,y,x) = ¢ (x) @ e (y)e2X @ u_ + ¢ (x) @ e_(y)e s X @ u_

Mx,y,x) = X (x) @ e (y)ee* @ u. + X (x) @ e_(y)e 2 X @ u.
@ Unlike the D = 11 case, there is no reality condition on the D = 10

. Jermions. For example, A\(*) and A\(~) are now independent.Dirac
fermionsind =5



The fermionic sector

@ As before, we take linear combinations and rescale the fields to
obtain diagonal kinetic terms:

$(H) _ gW/2) ()

(£) _ w2 | (&) _ 1 () a3
a e [’V& 3fa (w-' +4p )]

£E) — 4eW/2 (%)
n() = 2gW/2 (p(i) ¥ g{_.;,(:))

@ By examining the susy variations of these modes and matching
with the general structure of N = 4 gauged supergravity ind =5
((Dall’ Agata,Herrmann, Zagermann, 2001; Schoén, Weidner, 20086), for
example) we learn that »(*) sit in the N = 4 gravity multiplet.

@ These modes could be assembled into four symplectic-Majorana
spinors, in the 4 of USp(4) ~ SO(5). The remaining spin-1/2
fermions £(=), A\(=) can then be arranged into an SO(2) doublet of

=*USp(4) quartets, appropriate to the pair of vector multiplets” ™™



The fermionic sector ;

@ |t is hard to display the full effective d = 5 action here. However,
there are various possible further truncations.

@ Examples include the minimal gauged N =4 sugraind =5 and
the type |IB holographic superconductor truncation.

@ Quite interestingly, for the superconductor model we found a
consistent truncation of the fermion sector which retains a single

spin-1/2 mode:
A fermion truncation in the type |IB holographic superconductor
3 2—-6|Y?+YDY

e 1 DY)-.
Eaa—— Yiiginti) SR ET o 3\ ()
00 2 >t 2 F 1 _avp
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@ We have constructed top-down models that describe the coupling

of fermions to the bosonic configurations that are relevant for
AdS/CMT applications.

@ For the type |IB holographic superconductor, we found a simple
consistent truncation of the fermion sector containing a single
spin-1/2 mode.

@ In general, including the mixing of the spin-1/2 fermions with the
gravitino might have interesting effects from the point of view of
holography.

@ Our effective Lagrangians can provide guidance for bottom-up
models = new couplings that may be relevant for
"phenomenology” (e.g. Pauli couplings to gauge fields, derivative
couplings to charged scalars, etc.).

@ Other possible directions include: fermion correlators in the
"={fieories dual to Schrodinger spacetimes, four-fermion ternis, "&tc.
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models = new couplings that may be relevant for
"phenomenology” (e.g. Pauli couplings to gauge fields, derivative
couplings to charged scalars, etc.).

@ Other possible directions include: fermion correlators in the
"={fteories dual to Schrodinger spacetimes, four-fermion ternis,“&tc.
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