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Abstract: Vacuum expectation value of the square of the quantum field operator of massless or light scalar field is calculated in the De Sitter
space-time. The suggested method of calculation is different from the standard one used in the 80th. The calculations are heavily based on the De
Sitter covarinace of the relevant quantities. The found result is significanlty

different for the old one for the massless field but coinsides with the classical result for light massive field. Possible explanation of the dicrepancy
by a spontaneous breaking of De Sitter invariance or by finite duration of the (quasi) De Sitter stage is discussed.
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Content of the talk:

Calculations of (¢?) in the DeSitter
space-time by two different methods
give coinciding results for small but
non-zero mass, while they have the
same magnitude but differ by sign for
=0

This may point to breaking of DS in-
variance by quantum effects or to prob-
lems with UV renormalization.




A scalar field with the action:

1 4 = a
S=o [ dz/—g(VapV ¢—

2 2
—m?p? — ERc;:") :
Equation of motion in FRW metric:

$— Ap/a*+3Hp+m*p+ERp=0.
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Energy-momentum tensor operator:

1

1 ..

_£ (Va Vb =— g(],b VC VC) 992.
NB: Tg i1s covariantly conserved:
Vng — =

The conservation is assumed to be, re-

C"‘I"‘lﬁﬂ‘i‘ﬂf‘l l"\‘l? ﬂ"l‘lﬂ““"‘lm n'Fpnni'c- NTI*\ ' S a Ve & sl




irsa: 10100071

Energy-momentum tensor operator:

1
Tab S _;gab (VC(-P VC@ — 'm2(192)

2
__g (V(I Vb = gab VC VC) (192'

1

NB: Tg is covariantly conserved:
VbTé) =1F.

The conservation is assumed to be re-
spected by quantum effects. No anoma-
lies here.




NB: Tg is covariantly conserved:

Vch? —4

The conservation is assumed to be re-
spected by quantum effects. No anoma-
lies here,
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Vacuum expectation value of the energy
momentum tensor of ¢ in DS is pro-

portional to metric tensor:
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Vacuum expectation value of the energy
momentum tensor of ¢ in DS is pro-
portional to metric tensor:

(Tab> ren —

M -
&

—
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Gab =
6472

3 3
d’(z%*V>'+%b<2'—L’

—

2 m2_(£_é)R

)

12m=2
| R




momentum tensor of ¢ in DS is pro-
portional to metric tensor:

— Sab § 1 2 1 .
<Tab>'ren = 6dn2 {m —m e (£ = 6) R

o () rnl o
_ (2 ”) (2""’)_ "Rl
1 N - N

e e

2 6 2160
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m°|l&E—— | R >
6 18

(Dowker, Critchley, 1976; Bunch, Davie
— 1978). Here % is the logarithmic dé¥iva;




Vacuum expectation value of the energy
momentum tensor of ¢ in DS is pro-
portional to metric tensor:

(Tab> ren —

Gab
6472

=
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momentum tensor of ¢ in DS is pro-
portional to metric tensor:

6472

Tatbren = gty {m? [m? — (€~ () A

1
2(¢ —
m (5 o

(Dowker, Critchley, 1976; Bunch, Davic
= 1978). Here % is the logarithmic dé¥fiva

E 3
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2
m —— | R
(E 6) 18 :
(Dowker, Critchley, 1976; Bunch, Davie

1978). Here v is the logarithmic deriva-
tive of the Gamma-function and

2_9 1 19 = £
e — :
== 4 R
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For m — 0 and & = 0, the energy-
momentum tensor becomes:

gapH? ( 3 1 1 )

1
1

32 960 32

The first term is the standard non-
anomalous term in the energy density
at m = 0. The other two terms are
anomalous. The second term survives
in the conformal limit, while the third
disappears only for £ = 1/6 and does
not vanish for m =0 and &€ = 0. ™~

Tab =

2




Vacuum expectation value of the energy
momentum tensor of ¢ in DS is pro-

portional to metric tensor:

(Tap)ren = — {m2 m2 e (E —
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<Tab>-ren = e {mQ —m2 = (E = 1) R

6472 ]
*(z+)+*3—%) - &)
_l ({:_1)2R2 | R2 -

2 6 2160

2( 1) m*R

m-“|l€&E—— | R >

(Dowker, Critchley, 1976; Bunch, Davie
1978). Here ¢ is the logarithmic deriva-
tive of the Gamma-function and

E 2 _9 m’
rsa: 10100071 = - I 12 — E *
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For m — 0 and & = 0, the energy-
momentum tensor becomes:

gopH? ( 3 1 1 )

J
i

32 960 32

The first term is the standard non-
anomalous term in the energy density
at m = 0. The other two terms are
anomalous. The second term survives
in the conformal limit, while the third
disappears only for £ = 1/6 and does
not vanish for m =0 and £ = 0. ™
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For m — 0 and & = 0, the energy-
momentum tensor becomes:

gapH? ( 3 1 1 )

1
I

32 960 32

The first term is the standard non-
anomalous term in the energy density
at m = 0. The other two terms are
anomalous. The second term survives
in the conformal limit, while the third
disappears only for £ = 1/6 and does
not vanish for m = 0 and £ = 0.

T . —
ab =3




Quantum average value of cp2 in De
Sitter space-time is singular when
m — 0. In particular, for £ = 0 and

= m? < H?:

(p?) = =
87r2m2

(Bunch, Davies, 1978).
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Quantum average value of <p2 in De
Sitter space-time is singular when

m — 0. In particular, for £ = 0 and
m? < H 2.

M 3H*?
o 8mw2m?2’

(Bunch, Davies, 1978).
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If m = 0 from the very beginning:

(o2 H3t
p o } -
. 472
Vilenkin and Ford, Starobinsky, Linde

(all 1982).

Our result is the same with opposite
sign. (992) is not positive definite due
to UV renormalization, as e.g. (G’ﬁ_y)

in QCD.
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If m = 0 from the very beginning:

(o2) H5t
" C 4An2’
Vilenkin and Ford, Starobinsky, Linde

(all 1982).

Our result is the same with opposite
sign. (¢?) is not positive definite due
to UV renormalization, as e.g. (wa)

in QCD.
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The usual (old) result is derived by

straightforward quantization:

d3 1
o(t, x) =]( 2 [fp(t)e"’pma,;—%—h.c._

27{.)3/2
where the mode functions are:

2
fp(t) = e1(p) Hy /g(p'n) + e2(p)Hy /)g(pn
where 7 is the conformal time.

In the limit of large p the flat space
expression should be recovered, so

c1(p — o0) — 0.
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straightforward quantization:

d3p -1 '
where the mode functions are:

fp(t) = 01(p)H9(,})2(pn) + 02(P)H§,%(m

where 7 is the conformal time.

In the limit of large p the flat space
expression should be recovered, so
c1(p — o0) — 0.




1 H k :
fo(t) = - (1 | z_ )e(tk/H)’

where kK = pexp ( — Ht).
Hence

—— d°k = -
# >_/2(27r)3k (1 | k?)'

The first infinite term is the flat space
contribution and is subtracted.
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iH kY
folt) = —— (1 - )e(zk/ﬂ),

where kK = pexp ( — H1).
Hence

> d°k H?
¥ >_/2(27r)3k (1 ' k2)'

The first infinite term is the flat space
contribution and is subtracted.
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Long wave modes, UV and IR cutoft:
H? /H d’k H3t

In terms of physical momentum
p=kexp(— Ht):

H2 Ht H3t
(992) = din (p) = ——.
472 J o H 472
The result sits on small p and/or k,

for which ¢; may be nonzero and c¢9
different from its flat space limit.” ™

(¢?) =
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Long wave modes, UV and IR cutoff:

(o2 — H? /H d’k H
e 1673 H exp(—Ht) k3 42

In terms of physical momentum
p =kexp(— Ht):

H2 Hti H3t
(992>:[ din (p) = —.

472 J o H A2
The result sits on small p and/or k,

for which ¢; may be nonzero and c»
different from its flat space limit.
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1673 H exp(—Ht) k3 472

In terms of physical momentum
p=kexp(— Ht):

H2 Ht H3t
(%) = din (p) = —.

472 J ¢ H A2
The result sits on small p and/or k,

for which ¢; may be nonzero and c»
different from its flat space limit.

(%) =

H? /H d3k H3t
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Alternative derivation using equation

of motion for f = (¢)? (AD, Pelliccia,
2005):

VaoV2e? =20V oV + 2V 00V %p.

Hence

(VaVe+m? +ER)f =2(VapV2y)
—wf —ERT

Almost closed equation, except for
(V)2 term.
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eriiactive aerivation using equaction
of motion for f = (¢)? (AD, Pelliccia,
2005):

VaV%p® = 20pVaV% + 2V 4pV%p.

Hence
(VaVe+m?2 +ER)f =2(Vap V%)
_m2f_£¢RT.

Almost closed equation, except for
(V)? term.




Alternative derivation using equation
of motion for f = (¢)? (AD, Pelliccia,

2005):

VaVe0?% =20V V20 + 2V e V%0
Hence

(VaVe+m? +ER)f=2(Vap V%)

—mf — LT

Almost closed equation, except for
(V)? term.
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Express the first term in the r.h.s.
through the energy density of ¢, as-
suming that its energy-momentum has
DeSitter covariant form:

(1—6£)VaVef—2mif =
S _2<Taa> = —8 (o) -

In homogenous case:

(1 — 6¢) (f+ 3Hf) —2m?*f = —8 (o)
NB: p well behaves in infrared
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Express the first term in the r.h.s.
through the energy density of ¢, as-
suming that its energy-momentum has
DeSitter covariant form:

(1—6&)VaVef—2m?f =
= —2(T%) = —8(o) -

In homogenous case:
(1—6¢) (f+3HF) —2m?f = —8 (o)
NB: p well behaves in infrared
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Alternative derivation using equation

of motion for f = (¢)? (AD, Pelliccia,
2005):

VaV20? =20V V% + 2V 00 V%0.

Hence

(VaVE+m? +ER)f=2(Vap V%)
—wmF—tRT

Almost closed equation, except for
(V)? term.
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Express the first term in the r.h.s.
through the energy density of ¢, as-
suming that its energy-momentum has
DeSitter covariant form:

(1—-68)VaVef—2m?f =
= _2<Taa> = —8(o) -

In homogenous case:

(1—6¢) (f+3H f) —2m%f = —8 (o)
NB: p well behaves in infrared
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through the energy density of ¢, as-
suming that its energy-momentum has
DeSitter covariant form:

(1—6&)VaVef —2mf =
= —2(T%) = —8(o) -

In homogenous case:
(1—6¢) (F+3H f) —2m*f = —8 (o)
NB: p well behaves in infrared




If DS invariance is unbroken, p = const

and the equation can be solved ana-
lytically. For £ = 0 the general solu-

tion 1is:

f = Ciexp (Ait) + Corexp (Asat) 4

where A\; o = —3H/2::\/9H2/4 + 2m?2|
The time moment of the onset of DS
stage 1s essential.
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If DS invariance is unbroken, p = const

and the equation can be solved ana-
lytically. For £ = 0 the general solu-

tion 1is:

4(p)

m2

f = Ciexp (A1t) + Caexp (Azt)

where A\; o = —3H/2::\/9H2/4 + 2m?2|
The time moment of the onset of DS
stage 1s essential.




e .J_‘
7
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For small mass, *m:"/H2 < 1, and short
time, ¢ < 3H/2m?, the solution is

s

m2

SH

‘ 2m? 4
f=Ce* "t (1: - t) @)

If C1 9 are not singular at m = 0, the
dominant term for m — 0 is

y
(¢%) = 4(0)/m?,
formally the same as for £ = 1/6 but
remember that (T) = T5 (&, m).
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For small mass, '!1'12/H2 < 1, and short
time, t < 3H/2m2, the solution is

2m? |\ 4
f=01€_3Ht-|—CQ (1 | m t) jl <Q>

3SH 2

I

If C7 2 are not singular at m = 0, the
dominant term for m — 0 is

(¢%) = 4(e)/m?,
formally the same as for £ = 1/6 but
remember that (T)) = T3 (&, m).
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Express the first term in the r.h.s.
through the energy density of ¢, as-
suming that its energy-momentum has
DeSitter covariant form:

(1-6£)VaVef—2m?f =
S _2<Taa,> = —8 (o) -

In homogenous case:

(1—6¢) (f+3H f) —2m?f = —8 (o)
NB: p well behaves in infrared
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For small mass. *m2/I{2 < 1, and short
time, t < 3H/2m?, the solution is

4(p)

e

5
m-=

SH

‘ 2m >
f:Cle_SHt—f—CQ (1 I - t)

If C1 2 are not singular at m = 0, the
dominant term for m — 0 is

(%) = 4(e)/m*,
formally the same as for £ = 1/6 but
remember that (T3) = T5 (&, m).
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If only non-anomalous terms in T,
are taken into account, i.e.

T, = 3g.,5H*/3272, we obtain the
classical result:

(o2 — 3H4
L - 8m2m?2

With trace anomaly included the co-
efficient is different:

= 61H*
(¢7) =

" 24072m2’
WHY 2?7
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If m = 0 from the very beginning the

solution is (for £ = 0):

3 H S H
That is (p?) ~ —H?t/4n*. This solu-
tion is the same as the earlier found
by the absolute value (if anomaly is
not included) but the sign is opposite.
Possible explanation by Woodard and

Tsamis (private communication) are
some subtle problems with ultraVio- |
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If m = 0 from the very beginning the
solution is (for £ = 0):

e

8 8
fzcl+02€_3Ht <Q>t <Q>f

-

3 H 3 H
That is (p?) ~ —H3t/4w2. This solu-
tion is the same as the earlier found
by the absolute value (if anomaly is
not included) but the sign is opposite.
Possible explanation by Woodard and
Tsamis (private communication) are

some subtle problems with ultravio-
let renormalization.
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solution is (for £ = 0):

™~

fZCl—}—CQG_SHt 8<Q>t 8<Q>

™

3 H 3 B
That is (@?) ~ —H3t/4w2. This solu-
tion is the same as the earlier found
by the absolute value (if anomaly is
not included) but the sign is opposite.
Possible explanation by Woodard and
Tsamis (private communication) are
some subtle problems with ultravio-
let renormalization.

1
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8 (o) 8 (0)

— €5 | Cae— 528 ¢~
/ £ 3 H 3 H

That is (p?) ~ —H3t/4n*. This solu-
tion is the same as the earlier found
by the absolute value (if anomaly is
not included) but the sign is opposite.
Possible explanation by Woodard and
Tsamis (private communication) are
some subtle problems with ultravio-
let renormalization.

1
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™~

8 (o) t 8 (@)

™~

3 H 3 H
That is (@?) ~ —H3t/4w2. This solu-

tion is the same as the earlier found
by the absolute value (if anomaly is
not included) but the sign is opposite.
Possible explanation by Woodard and
Tsamis (private communication) are
some subtle problems with ultravio-
let renormalization.

1




The same solution can be obtained

from the general one in the limit of

m — 0 under condition that the solu-
B tion is not singular at m = 0. To this
" end C9 should be singular:

Cy = Cog — 4(p)/m?, where Coq is a

non-singular constant.
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A problem with the equation in the
conformal limit m =0 and £ = 1/6:

(1-6¢) (f+3H f) —2m?f = -8 (o).

The l.h.s. vanishes in the conformal
limit, m = 0, £ = 1/6, while the r.h.s.
is non-zero due to conformal anomaly.
This may explain disagreement with
the standard results if anomalous terms
are included into T,; but not into the
equation.
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Anomalous contribution should be take
into account in the l.h.s.

Analogy to the Maxwell equations in
DS with anomaly (AD, 1981):

where a is the cosmological scale fac-
tor. The equation describes massless
photon production in DS.

In fact the equation is nonlocal but

in DS it can be essentially reduced-to
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are included into T,; but not into the
equation.




A problem with the equation in the
conformal limit m = 0 and £ = 1/6:

(1—6¢) (f+3Hf) —2m?f = —8 (o).

The l.h.s. vanishes in the conformal
limit, m = 0, £ = 1/6, while the r.h.s.
is non-zero due to conformal anomaly.
This may explain disagreement with
the standard results if anomalous terms
are included into T,; but not into the
equation.
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Anomalous contribution should be take

into account in the l.h.s.

Analogy to the Maxwell equations in
DS with anomaly (AD, 1981):

o, F” + 2°Nf (5 ma)F¥ — 0
vy 371_(1/1'1‘1)“—;

where a is the cosmological scale fac-
tor. The equation describes massless
photon production in DS.

In fact the equation is nonlocal but

in DS it can be essentially reduced to
the local one.
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Anomalous contribution should be take

into account in the l.h.s.

Analogy to the Maxwell equations in
DS with anomaly (AD, 1981):

2aN
O,F’+ -8 Ina)F’ =0,
7 7

37T
where a is the cosmological scale fac-
tor. The equation describes massless
photon production in DS.
In fact the equation is nonlocal but

in DS it can be essentially reduced to
the local one.
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For free scalar field in curved space-
time one has to calculate its Green’s
function and inverse of it would give
the equation of motion with anoma-
lous corrections.

It may have infrared problems.
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Conclusion

I. Alternative calculations of (¢?) free
of infrared problems give the same re-
sult for non-zero mass as the standard

one.
II. The same calculations for m = 0
differ by sign from the the previously
found results in large time limit.




I11. Possible explanations:

a. Modification of the mode functions
at low momenta.

b. UV renormalization (NT, RW).

c. Ambiguity in the choice vacuum.
d. Breakdown of DS symmetry.

d. Finite duration of DS stage (AD,

Einhorn, Zakharov, 1993)
e. Nothing of the above.
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I11. Possible explanations:

a. Modification of the mode functions
at low momenta.

b. UV renormalization (NTyRW).

c. Ambiguity in the choice vacuum.
d. Breakdown of DS symmetry.

d. Finite duration of DS stage (AD,

Einhorn, Zakharov, 1993)
e. Nothing of the above.
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Conclusion

I. Alternative calculations of (¢?) free
of infrared problems give the same re-
sult for non-zero mass as the standard

one.
II. The same calculations for m = 0
differ by sign from the the previously
found results in large time limit.




I1I. Possible explanations:

a. Modification of the mode functions
at low momenta.

b. UV renormalization (NT, RW).

c. Ambiguity in the choice vacuum.
d. Breakdown of DS symmetry.

d. Finite duration of DS stage (AD,
Einhorn, Zakharov, 1993)

e. Nothing of the above.
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Anomalous contribution should be take

into account in the l.h.s.
Analogy to the Maxwell equations in

DS with anomaly (AD, 1981):

where a is the cosmological scale fac-
tor. The equation describes massless
photon production in DS.

In fact the equation is nonlocal but

in DS it can be essentially reduced-to
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For small mass, *m2/H2 < 1, and short
time, t < 3H/2m?, the solution is

m2

3H

- _,
f=Ce 3t 1y (1 — t) 14@)

If C1 2 are not singular at m = 0, the
dominant term for m — 0 is

(%) = 4(e)/m*,
formally the same as for £ = 1/6 but
remember that (T3) = T5 (&, m).
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Alternative derivation using equation

of motion for f = (¢)? (AD, Pelliccia,
2005):

VaoV2ep0?% =20V oVep + 2V 00 V%0.

Hence

(VaVe+m2+£R)f =2(Vap V)
—af —ERT

Almost closed equation, except for
(V)? term.
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Long wave modes, UV and IR cutoft:
H? /H d’k Ht

In terms of physical momentum
p=kexp(— Ht):

H2 Ht H3t
(992):— din (p) = ——.

472 J o H 472
The result sits on small p and/or k,

for which ¢; may be nonzero and c»
different from its flat space limit.” ™

(¢?) =




Vacuum expectation value of the energy
momentum tensor of ¢ in DS is pro-

portional to metric tensor:

<Tab>-ren —— Jab {?’TL2 Tn2 — (£ -
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Vacuum expectation value of the energy

momentum tensor of ¢ in DS is pro-
portional to metric tensor:

 Sab |} 12 2 1
(Tap)ren = 6472 {m -’m = (45 = 6) R

*w 3 3 : 12m?2
_ (2+"')+¢(2_")_" R
1 n* . W
L
2 6 2160

; 1 m2R’
m- | & — R .

6 18
(Dowker Critchlew: 1976 Bunch: Piavid

/

irsa: 10100071



irsa:

00000000

Express the first term in the r.h.s.
through the energy density of ¢, as-
suming that its energy-momentum has
DeSitter covariant form: o

(1-6£)VaVef—2m?f =
— _2<Taa> = —8 (o) -

In homogenous case:

(1 — 6¢) (f+ 3Hf) —2m?*f = —8 (o)
NB: p well behaves in infrared
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A problem with the equation in the
conformal limit m = 0 and £ = 1/6:

(1—6¢) (f+3H f) —2m?f = —8(o).

The l.h.s. vanishes in the conformal
limit, m = 0, £ = 1/6, while the r.h.s.
is non-zero due to conformal anomaly.
This may explain disagreement with
the standard results if anomalous terms
are included into T,; but not into the
equation.




I11. Possible explanations:

a. Modification of the mode functions
at low momenta.

b. UV renormalization (NT, RW).

c. Ambiguity in the choice vacuum.
d. Breakdown of DS symmetry.

d. Finite duration of DS stage (AD,

Einhorn, Zakharov, 1993)
e. Nothing of the above.
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