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Abstract: Much work on gquantum gravity has focussed on short-distance problems such as non-renormalizability and singularities. However,
guantization of gravity raises important long-distance issues, which may be more important guides to the conceptual advances required. These
include the problems of black hole information and gauge invariant observables, and those of inflationary cosmology. An overview of aspects of
these problems, and apparent connections, will be given.
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Important early refs: 't Hooft; Amati, Ciafaloni, Veneziano

Recent work: SBG & Srednicki, 0711.5012; SBG & Porto
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This is a short-distance issue. We seem
to have deeper problems at

(Can examine in the context of
candidate regulators:
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(High energy / long distance)
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- previous incomplete theories (4 Fermi, massive vector
bosons, efc.):
linked and problems
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Indeed, subleading loop diagrams:
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QM, LI -- cant see how to sensibly modify,
respecting consistency and observation







Indeed, Page (1993): basic info. theory tells us for unitary
evolution, information must start to be returned by
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of needed long-distance modifications)

- nonlocality -- extendedness
- perturbative calculations of S-matrix

- dualities - AdS/CFT, etc; "holography”
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Momentum fractionation; tfimescales

- Dont understand ~ local observables:
dont directly address the "paradox”

- Not clear that AdS/CFT reproduces sufficiently
fine-grained S-matrix for bulk physics




This appears to present profound conceptual
challenges.
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Uncertainty principle
Wave mechanics...



o
LQFT fails here // \ QG takes

Singu[ﬂrify over here?
(more subtie

breakdown LQFT)
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New physics was needed: Uncertainty principle
Wave mechanics...
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Do we need to go beyond to new principles?
(Or, find such principles in string theory??)

(As was the stability problem of the atom)




- understand “where Hawking went wrong” -
and what to do about it

- understand the “correspondence boundary” (TQM)
more generally

- properties of the gravitational S-matrix
.. how string theory was invented

- probe locality: what framework can yield the
approximate locality of QFT, yet have needed
"nonlocality” in the BH context?

- Investigate related cosmology —- example, experiment!
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x(t) . p(t)
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Note: not particle (e.g. spacetime uncertainty)
(“shortest distance” not compatible with Lorentz invariance)

(generalizations: N-particle; dS)
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(extreme, artificial construct)
1) not physically meaningful?
(gauge invariant)

2) large effect of fluctuations
at long fimes







Nonetheless, failure of a perturbative
description indicates the need for a
nonperturbative completion, so there is

certainly an
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1) What is the well-defined gauge-invariant
description of the state?

2) Large effects of fluctuations at long times

Not just for the sake of the information problem!
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(When inflaton takes specific value)

local observable reference field




o

Background

@ In states where background sharply localizes,
get local observable

@ Thus, localization is "emergent”

@ This can be a bad approximation: fluctuations
of reference field B, or large backreaction ..
(locality bound, ...)
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Backreaction important:

quanta

.. Page time

Also, issues for dS affer time
(See e.a. SBG & Marolf 0705.1178)
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An example - self reproduction:

Accumulated effect of fluctuations becomes large

Llnsaz ~memmaral 1 $haie?
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dS: (Aat slicing
throughout)

Consider a massless (or light) field:

—
=

Fluctuations leave horizon, freeze,
accumulate (T classical)
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How iIs this requlated?






o

largest wavelength Ht; = —log(Arg)
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can make important contributions if
@ the field is "observable,” or

@ has important effect on other fields through
interactions

e.g. self-repro
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general dimension: (We've seen before)







1) Perturbation theory indeed breaks down for
the purposes of computing the "full state” (in
the "large box”): large IR corrections




1) Perturbation theory indeed breaks down for
the purposes of computing the “full state” (in
the "large box”): large IR corrections

2) In computing more local quantities (“small box”),
can in simple cases absorb the large corrections
into background (“resum,” etc.)

\ /




Illustrate w/ self-reproduction:

Expect can make predictions about local
observables, with appropriate conditionals ..
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Also appears true for tensor fluctutions:

(there are methods to measure, e.qg. redshifts, etc.)




@ ~|ocal observables: resum - eliminate
large effects (in sufficiently simple
circumstances)

@ but globally, doesnt look like can eliminate
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1) Check/refine this story

2) If of quantum state
of the Universe, how we calculate it?

3) How sharp are the parallels with BH story (no
perturbative nice slice state?)
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