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Abstract: The definition of correlation functions relies on measuring distances on some late surface of equal energy density. If invariant distances
are used, the curvature correlation functions of single-field inflation are free of any IR sensitivity. By contrast, conventional correlation functions,
defined using the coordinate distance between pairs of points, receive large IR corrections if measured in a & quot;large box& quot; and if inflation
lastet for a sufficiently long period. The underlying large logarithms are associated with long-wavelength fluctuations of both the scalar and the
graviton background. This effect is partially captured by the familiar delta-N-formalism. Conventional, |R-sensitive correlation functions are related
to their IR-safe counterparts by simple and very general formulae. In particular, the coefficient of the leading logarithmic correction to any n-point
function is controlled by the first and second logarithmic derivatives of this function with respect to the overall momentum scale. This alows for a
simple evaluation of corrections to leading and higher-order non-Gaussianity parameters.
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IR divergences in 0 N formalism

Starobinsky ‘85, Sasaki/Stewart '95
Wands /Malik /Lyth/Liddle "00
Lyth/Malik /Sasaki ‘04

e Consider some late, constant-energy-density surface
(reheating surface):

ds® = e*“dx' (& )i dx .

e Ignoring v;; for the moment, one has

(x) = N(g+dp(x)) — N(?)
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e Consider the curvature correlator:

' 2 e Y ; ]‘ # BT e .
CkCp) = N::ﬁﬂ;;{ﬂ;p = ZN -":_(f}-"

e Focus on the second term:
f? o = = = N
el N:., / .:_,-’?_‘q;'_l'j_‘k_q;‘r ?_‘I,H'!' _:p—l'r.-:: .
Jqg.l

o Use

to find the leading-log contribution from q./ < k.p :

T —_—
“1 o N2_H*(k) In(kL).

Nf 0 Hd ( kJ / qj ] Page 4/57
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Intuitive physical picture:

¢ Long-wavelength modes affect measured short-wavelength
fluctuations (e.g. L1).

e Modes outside the 'box size’ can be absorbed in constant
(-background and are irrelevant (e.g. Ls).

ANV
/\/\/\/\
i
Ld
——-// \
=< =
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Fluctuations of the Hubble scale

e Even if only for conceptual reasons, we do care about very
large L, relevant for the late observer.

e Obviously, the technical origin of the effect is the dependence
of N () on doq with g < k.

e Hence, the Hubble scale H should be modified analogously:

H(o(tk) +02(x)) ak .

do(x) ~ -
| B - ) .. k k3 2

where
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e Consider the curvature correlator:

o Use

to find the leading-log contribution from q./ < k. p :

e ini ED ¥ o
N2 _H (k) / 9 NZ_HA(K) In(kL) .
; q =i, Page 7/57
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IR divergences in 0 N formalism

Starobinsky ‘85, Sasaki/Stewart '95
Wands /Malik /Lyth/Liddle "00
Lyth/Malik /Sasaki ‘04

e Consider some late, constant-energy-density surface
(reheating surface):

ds® = e*dx' (& )i dx .

e Ignoring v;; for the moment, one has

(9 = NG +0260) — N()
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e Consider the curvature correlator:

o

CkSp/ — N; \0FLkOPp) + ZN:; (0" k(0%)p) + - -
L

e Focus on the second term:

o Use

to find the leading-log contribution from q./ < k. p :

" ———
=3~ NZ_H*(k) In(kL).

N:.} L Hﬂ' ( k ) / qj ] Page 9/57
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Fluctuations of the Hubble scale

e Even if only for conceptual reasons, we do care about very
large L. relevant for the late observer.

e Obviously, the technical origin of the effect is the dependence
of N.(2) on dp4 with g < k.

e Hence, the Hubble scale H should be modified analogously:

o
— KX

8

. k3/2 H(r‘(fk)—i—f{:(‘){)) 2.

‘ri'r:{’\/) =

where
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e Using this modified oo in ( = N(2+9dp) — N(,2) and

expanding in both d- and 42, one finds

f\;:ﬂ{k -+ I' d_ 3
(GGo) ~ — 73 T BEnE - —(H In kL) —(N2H?)
o With H?In kL ~ (63%)1 /. this gives
. ._ 5 4 9 | S 4 .
P:(k) ~ NSH* + 5-.__:1;-_;1 " d;z(N:‘H_)'
e We now replace the ‘time variable’ Z by Ink = —C

d ’dmk‘)“d)_m d
de ( dy (d|n_f<__ — T dnk
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Geometry of the reheating surface

o We find

i = P d 525 d: : =
Pelk) = (1 BTV ’dunk):) Pelh),

where P? is the (almost scale-invariant) tree-level spectrum.

e This are obviously the first terms of the Taylor expansion of

Pe(k) = (Po(ke™)

-

where (..} is the average in ( (defined in patches of size 1/k)
over a box of size L.

e Can we get this simple result more directly?

s see also Giddings/Sloth Wl



e Using this modified o2 in ( = N(2+9dp) — N(,) and

expanding in both 6> and 42, one finds

4";3”(—5— .' >y 2 d‘
kG ~ —z - |M2H? + (FilnkL)G‘L

(N2H?)| .

o With H?In kL ~ (6Z%)1 /. this gives

| ._ 5 5 1.5 g .
Pelk) ~ NZH? + 56221 3 (NZH?)
e We now replace the ‘time variable’ Z by Ink = —C

d— "dhk) By - o d
dr (cﬁra (dhk ~ Y dink’
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Geometry of the reheating surface

o We find

| = — d P & Y

where PE Is the (almost scale-invariant) tree-level spectrum.

e This are obviously the first terms of the Taylor expansion of

Pe(k) = (P2(ke™®)

where (..} is the average in ( (defined in patches of size 1/k)
over a box of size L.

e Can we get this simple result more directly?’

g
o
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e Using this modified - in ( = N(2+d¢) — N(2) and

expanding in both 0> and 07, one finds

33k 1+ p) —— 2
CkCp) ~ ”ﬁ:’”-‘ N2H? (H In kL) dd_

(NZH?)

e With H?In kL ~ (63%)1 /. this gives

S d?

Pe(k) ~ NZH® + S(02%)1k 5—(NZH?).

e We now replace the ‘time variable’ Z by Ink = —C

d _ (dink\ ( d \ _ , d
dr ( d; ) dink) ~ 7dnk’
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Geometry of the reheating surface

o We find

2y P-lk) .
@ imer) PR

N | =

= —
P.(k) = (1 = ==

where P? is the (almost scale-invariant) tree-level spectrum.

e This are obviously the first terms of the Taylor expansion of

5

Pe(k) = (P2(ke™)

oy

where (..} is the average in ( (defined in patches of size 1/k)
over a box of size L.
e Can we get this simple result more directly?’
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Intuitive physical picture:

e Long-wavelength modes affect measured short-wavelength
fluctuations (e.g. L1).

e Modes outside the ‘box size’ can be absorbed in constant
(-background and are irrelevant (e.g. L5).

Lyth '07
ANV
e e, e, e e,
p——
L'f
——-// \
- =
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Geometry of the reheating surface

—_

{ -

S T d(In k)2

I .r_:|.

(k).

o We find
d?
) P

= d
Pe(k) = (1 = =

PN |

where PE’ is the (almost scale-invariant) tree-level spectrum.
e This are obviously the first terms of the Taylor expansion of

"

Po(k) = (P2(ke )

oy

where (..} is the average in { (defined in patches of size 1/k)

over a box of size L.
e Can we get this simple result more directly’

see also Giddings/Sloth W10ss
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e Using this modified d- in ( = N(-+d2) — N(~) and
expanding in both d.- and 4=, one finds

: "ﬁfk_i_ ) s 1 > dZ o
) v = 2L INCH? + S(H?InkL) ——(N2H?)

e With H?In kL ~ (§Z%)1 /. this gives

Pak) ~ N2H? + 1(622), 0 (N2

= -
i
oy

e We now replace the ‘time variable’ = by Ink = —(

d _ (dink\ ( d \ _ , d
do ( do ) dink) — Fdink’
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Geometry of the reheating surface

e We find

PN | =

= & % .z
(€3 ) P: (k).

dIn k "d(In k)2

Pe(k) = (1 =5 =

where PE Is the (almost scale-invariant) tree-level spectrum.

e This are obviously the first terms of the Taylor expansion of

where (..} is the average in ( (defined in patches of size 1/k)
over a box of size L.

e Can we get this simple result more directly?

T see also Giddings/Sloth Wl



e Using this modified 0o in ( = N(z +0p) — N(,) and

expanding in both d- and 4=, one finds

fl;jrk == 1' 9. 9 ]. " d_.} 2 o 3
(CeCp) ~ kkap’ N2H? + Z(H?InkL) ——(N2H?)
e With H?In kL ~ (63%);/; this gives
= — 1 & &
Ph(k} ~ N:H' = = 5-‘._;1;‘_}1 2 d;_"*'(N:H_)
e We now replace the ‘time variable’ Z by Ink = —C

d (dhk\ ( g ) —
dg ch) dink) ~ Fdink’

&
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Geometry of the reheating surface

e We find

PN | =

- d?
L ) P2(k) .,

"d(In k)2

—
Petk) = (1 - @gor +

where PE’ is the (almost scale-invariant) tree-level spectrum.

e This are obviously the first terms of the Taylor expansion of

P:(k) = (PY(ke™)

oy

where (..} is the average in { (defined in patches of size 1/k)
over a box of size L.

e Can we get this simple result more directly?
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|R-safe correlation functions

e Define the almost scale-invariant spectrum as

Pc(k) ~ kE/ ™ ({(x)¢(x+y)

e T[his is sensitive to the box-size L since the physical meaning
of y depends on the strongly varying background (.

e However, we can avoid this by selecting pairs of points using

the invariant distance z = y € . The z-dependence of the

correlator. | =
(Cx)C(x +2ze7%))

is then a background-independent and hence IR-safe object.

related to Urakawa/Tanaka '1Q,2.
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Geometry of the reheating surface

o We find

e =
i -'d(lnk)f) ESNey

PN | =

| =
P\‘[Lf) = (]. = Lﬁd]ﬂk -+

where PE’ Is the (almost scale-invariant) tree-level spectrum.

e This are obviously the first terms of the Taylor expansion of

P'(k) | 'PP(__'}(E—-J)

ey

where (..} is the average in { (defined in patches of size 1/k)
over a box of size L.

e Can we get this simple result more directly?’
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|R-safe correlation functions

e Define the almost scale-invariant spectrum as

Pek) ~ K [ & ((ac(x+y)

e This is sensitive to the box-size L since the physical meaning
of y depends on the strongly varying background (.

e However, we can avoid this by selecting pairs of points using

the invariant distance z = y € . The z-dependence of the

correlator. | =
(C(x)C(x +2ze7%))

is then a background-independent and hence |IR-safe object.

related to Urakawa/Tanaka "10,.7.
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IR divergences in 0 N formalism

Starobinsky ‘85, Sasaki/Stewart '95
Wands /Malik /Lyth/Liddle "00
Lyth /Malik /Sasaki "'04

e Consider some late, constant-energy-density surface
(reheating surface):

ds® = e%dx' (7). dx .

if

e Ignoring v;; for the moment, one has

¢(x) = N(e+op(x)) — N(#)
=, 7 )—i— N r‘ ‘( )j——

o
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IR divergences in 0 N formalism

Starobinsky ‘85, Sasaki/Stewart '95
Wands /Malik /Lyth/Liddle "00
Lyth/Malik /Sasaki ‘04

e Consider some late, constant-energy-density surface
(reheating surface):

ds® = e*dx' (& )i dx .

e Ignoring v;; for the moment, one has
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Intuitive physical picture:

¢ Long-wavelength modes affect measured short-wavelength
fluctuations (e.g. L1).

e Modes outside the ‘box size’ can be absorbed in constant
(-background and are irrelevant (e.g. Ls).

AVvaTaY
/\/\/\/\
“_zc—
L'f
——// \
=< =
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e Using this modified oo in = N( 2} — N(z) and

expanding in both o and ‘ﬁf. one flnds

" ~ ]. d_ o
Calp) ~ 3 NZH- E(H In kL) d_-(NFHi)
o With H?In kL ~ (6Z%)1 /. this gives
. : - . ]. ey dj
Pelk) ~ NZH? + S(02%)1 5 (NZH?).
e We now replace the ‘time variable’ Z by Ink = —C

d _(”a‘lnk)”d = =
do ~ \ dg (d|m’< ~ ¥ dink’
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Geometry of the reheating surface

o We find

~ d I . d" %
P-(k) = P — &) —{(?) o P-(k),
Palu ) ( Lﬁd]ﬂf( + 2._‘-1 d(lﬂk}‘) ’P\.‘L"{)
where PE’ is the (almost scale-invariant) tree-level spectrum.

e This are obviously the first terms of the Taylor expansion of

Pe(k) = (P2(ke™®)

5 LS.

where (..} is the average in { (defined in patches of size 1/k)
over a box of size L.

e Can we get this simple result more directly?’
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|R-safe correlation functions

e Define the almost scale-invariant spectrum as

P(k) ~ K3 / e ( C(x)C(x +y)

e This is sensitive to the box-size L since the physical meaning
of y depends on the strongly varying background (.

e However, we can avoid this by selecting pairs of points using

the invariant distance z = y € . The z-dependence of the

correlator. | =
(C(x)(x +ze™%))

is then a background-independent and hence |IR-safe object.

related to Urakawa/Tanaka '1Q,2,.
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Intuitive physical picture:

e Long-wavelength modes affect measured short-wavelength

fluctuations (e.g. L1).

e Modes outside the ‘box size’ can be absorbed in constant
(-background and are irrelevant (e.g. Ls).

ANV
/\/\M
i
L'f
——-// \
=< =
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e Using this modified oo in ( = N(o+9d,) — N(,2) and
expanding in both d- and 4=, one finds

7,
d

33 (k + p)

¥
G ~ — o NZH? + Z(H?Inki)

H?)

-

e With H?In kL ~ (§Z%)1 /. this gives

.

F

P.(k) ~ N2H? + %;;i;l; (N2H?).

li{d_z

e We now replace the ‘time variable’” = by Ink = —(

= ”dlnk) - o d
de ( de ) \dink) = "?dink’
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Geometry of the reheating surface

o We find

( _.d(lnk)j) PO(k).

where PE Is the (almost scale-invariant) tree-level spectrum.

N | =

| =~ d
Pi(k) = (1 — Qg7 +

e This are obviously the first terms of the Taylor expansion of

Pc(k) = (P2(ke™)

k. -y

where (..} is the average in { (defined in patches of size 1/k)
over a box of size L.

e Can we get this simple result more directly?’
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|R-safe correlation functions

e Define the almost scale-invariant spectrum as

Pc(k) ~ kE/ " {{(x)¢(x+y)

e This is sensitive to the box-size L since the physical meaning
of y depends on the strongly varying background (.

e However, we can avoid this by selecting pairs of points using

the invariant distance z = y € . The z-dependence of the

correlator. | =
(C(x)¢(x+2ze7%))

is then a background-independent and hence IR-safe object.

related to Urakawa/Tanaka '1Q, 2.
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Pirsa: 10100064

e |ts Fourier transform is our desired |R-safe power spectrum:

Po(k) ~ K / e (((x)¢(x +2eC)).

o Z

e [he original |R-sensitive power spectrum follows as

in agreement with our previous result.
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Tensor modes

e Our |IR-safe power spectrum immediately generalizes to the
case of background tensor modes:

PE}(,(] = k3 /'esz n(}f)g(,‘( n e_“.i"i—f'_

(s Z

N
-\-‘_r-

e As before, the length of z is the invariant distance between
the two points in the correlator.

e [he calculation of the IR-sensitive spectrum produces an extra

term since
__. = :.} =x = F -
/dj(e s Vz}—e 3‘"‘/(:!32,

T . . — .
we=ooms | he factor k2 is not automatically changed to (e 7/%k

|
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Intuitive physical picture:

e Long-wavelength modes affect measured short-wavelength
fluctuations (e.g. L1).

e Modes outside the ‘box size’ can be absorbed in constant
(-background and are irrelevant (e.g. Ly).

ANV
W
aZg—=ip
L'f
——_// \
= ==
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IR divergences in 0 N formalism

Starobinsky ‘85, Sasaki/Stewart '95
Wands /Malik /Lyth /Liddle "00
Lyth/Malik /Sasaki ‘04

e Consider some late, constant-energy-density surface
(reheating surface):

ds® = e dx' (€ )i dx .

e Ignoring v;; for the moment, one has

(x) = N(g+da(x)) — N(?)
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IR divergences in 0 N formalism

Starobinsky ‘85, Sasaki/Stewart '95
Wands /Malik /Lyth /Liddle "00
Lyth /Malik /Sasaki "04

e Consider some late, constant-energy-density surface
(reheating surface):

ds® = e*dx' (& )i dx

e Ignoring 4;; for the moment, one has

(x) = N(g+82(x)) — N(z)
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e |ts Fourier transform is our desired |R-safe power spectrum:

'Pfj{k) e / = ¢ C(X)C(x +ze7°)).

o Z

e [he original |R-sensitive power spectrum follows as

P-k) ~ Kk

\"""‘*--..
m“—h
-
<
~
—,
¢
S
e
—
>
\_‘:: ]

in agreement with our previous result.
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L] We ﬁﬂd

P-(k) = { (e 72k)3 Pe=72k) Y,

i
Sy

where k is a unit-vector in k-direction.

e Expanding in leading non-trivial order in the background (and

assuming (¢} = 0 for simplicity) gives

RM)@zo”dka“dwmﬁ>R“)

(in agreement with Giddings/Sloth)

e The two terms are of the same order (tr32 is more slow-roll
suppressed, but comes with only one derivative in In k).
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Higher correlation functions

e We could try to generalize the ‘almost scale-invariant’
spectrum by writing

P(n}(klkn) ~ an/ * *]E"“Rl‘vl_m_k”*v”}{'.ﬁ{}()Lﬁ(;{__yl) ——— R(X—F,vn)-}
< V1 ¥n

e However, it is not clear which particular combination of
k...k, one should use to define the prefactor k3"

e This is not irrelevant since factors e7 will get tangled up in
this prefactor.

e Hence, we choose to write the general formula for the
higher-order analogue of the conventional spectrum

Pirsa: 10100064 P( k) o P( kjl k?} :
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e We find

Pe(k) = { (e72k)y3 PXe5"72k) ),

where k is a unit-vector in k-direction.

e Expanding in leading non-trivial order in the background (and
assuming (() = 0 for simplicity) gives

, = | 1 -2 d 1 -2 d* DO/
P'*{-k)_(_l_ﬁtr *Tdnk = 2" d(mk;f) £Ces,

(in agreement with Giddings/Sloth)

-

e [he two terms are of the same order (tr5< is more slow-roll
suppressed, but comes with only one derivative in In k).
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e We find

Pe(k) ={ (e 7/%2k)™3 PYe S

where k is a unit-vector in k-direction.

e Expanding in leading non-trivial order in the background (and

assuming (() = 0 for simplicity) gives

Pﬁ“‘«}_iﬁ“’ dink = 2" deF)

(in agreement with Giddings/Sloth)

-

e [he two terms are of the same order (tr5< is more slow-roll
suppressed, but comes with only one derivative in In k).
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Higher correlation functions

e We could try to generalize the ‘almost scale-invariant’
spectrum by writing

P[ﬂ}(kl”'k”} - k3”/ = /E;[ﬁﬁ_“-_k”‘v”}-iﬁ{XJA(X—,Vl) - C(X+Va))
+ f'.ﬁ_ * ,Vr_'r

e However, it is not clear which particular combination of
ki ...k, one should use to define the prefactor k3"

e This is not irrelevant since factors e7 will get tangled up in
this prefactor.

e Hence, we choose to write the general formula for the
higher-order analogue of the conventional spectrum

Pirsa: 10100064 P( k ) iy fp{ k ) k 3 -
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e However, given these preliminaries, the generalization of our
formalism is completely straightforward.

e [he |IR-safe spectrum is defined as

‘ ‘/Eﬁf[klzl_m_kﬁzﬂ}*iL.,(X)x..(}f‘k}"l ) e *-\(X‘F,Vn)

L ZII-‘:-

In words:
e Measure the correlation function in terms of invariant
distances, characterized by a set of vectors z;.

e Then Fourier transform (going from z; to k;).
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e Then, by a straightforward generalization of the previous
calculations, one finds

= /2 C—~712

.' / 3n{ pOo . i ¥y N
Pny(ki , ... .kn) = ( ™ Pp(e ki.....e kn) ) .

e The prefactor ™ comes from the naive scaling Pf”} ~ g3

e This can be directly applied to observables measuring
non-Gaussianity, such as fy; .
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Example:

Tensor mode effect on fy; Iin the squeezed limit

e Using ‘consistency relations’ (Maldacena '02), we find

12}[ ek ’f (k)2 PA(K) o 1 kD) ((k = 'Pﬁké)) /
— 1l s - : — :
"PERTE ( (k)3 P2k ) ( (k5)3 P2(k3) )

S
where k' = e 7/%k.

e At leading order in the background 72 this gives

=

fne(ki. ko) = |1 — %f" T J far (k1. k2) .
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Explicit averaging over the background

We want to calculate quantities of the type (f(((x))).

In principle, we have to average ((x) over the (large) observed
region of size L.

However, this is equivalent to an ensemble average of ((0)
with IR cutoff L.

Thus, we are dealing with a sum of Gaussian random variables

i (N-H)(q)
<(9) E/ e
( J1/l<g<k ql_ q

which is again a Gaussian random variable of width

|
2
i

(2 ~ / (N-H)*(q)
== 1/l q<k q3
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Example:

Tensor mode effect on fy; In the squeezed limit

e Using ‘consistency relations’ (Maldacena '02), we find

12?" (k. ko) ( (K 1) PG( 1) dl[lk;( )~ SPD ))
— (k1. k2) = — ¢ B _
2 ( (k)2 POKY) ) ( (ky)—2 P2(KS)

where k! = e 7/2k.

e At leading order in the background 72 this gives

|

ﬁ”u"f_{}{lkz): ]‘_%* dln k] fﬁﬁf_(klkj)

Pirsa: 10100064 Page 53/57




Pirsa: 10100064

Explicit averaging over the background

We want to calculate quantities of the type (f(((x))).

In principle, we have to average ((x) over the (large) observed
region of size L.

However, this is equivalent to an ensemble average of ((0)
with IR cutoff L.

Thus, we are dealing with a sum of Gaussian random variables

- [ (N-H)(q)
Q 0) ~ : , :
(0) : /1 L< gk q3/2 dq

which is again a Gaussian random variable of width

3
)
]

(2 ~ / (N.H)*(q) |
== J1/ L€ q<k ‘?3
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e Thus, all we need is the single integral

]. ‘ = EE fey o o —
— / agie—= " HC).

gy

e For example,

P:(k) = 1 /d;e—f”f-*r?’(ke—{).

IR fw L
|'f-r 1!.,’_ 2 il -

where PE’(R) is the (almost scale-invariant) tree-level
spectrum (N_H)?, written as a function of k.

e [he generalization to tensor modes, though conceptually
straightforward, is complicated by the matrix structure of 3
and the different independent polarizations involved.
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Important conceptual comment:

In fact, the there exists a value k., corresponding to modes
that never left the horizon.

For very large L, and for k sufficiently close to kpmax, the
region where ke ¢ > k.. is relevant in the (-integral.

We need to assume that the very late observer is intelligent
enough to exclude such regions from his averaging.

L

Technically, this is implemented as

/ dC e /27 P2(ke ")

:.-"-?.-:n:_ In{ kmax / k)
While this is physically harmless, it clearly affects the
convergence properties of the (-expansion
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Summary

An interesting class of IR divergences comes from
long-wavelength background modes.

This effect seen be seen from an (appropriately modified)
ON formalism as well as from the ‘geometry of the reheating
surface’.

One can define |R-safe correlators.

One can return to usual correlators and calculate their
|R-sensitive corrections (both scalar and tensor) very explicitly.

The generalization to multiple scalar fields is interesting but
(probably) conceptually straightforward.

Are there observable effects (given our relatively small L)?
Are there interesting implications for quantum gravity in

de Sitter space’
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