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Abstract: In this talk we quickly review the basics of the moda & quot;toy model&quot; of quantum theory described by Schumacher in his
September 22 colloquium at Pl. We then consider how the theory addresses more general open systems. Because the modal theory has a more
primitive mathematical structure than actual quantum mechanics, it lacks density operators, positive operator measurements, and completely
positive maps. As we will show, however, modal quantum theory has an elegant description of the states, effects and operations of open modal
systems -- a description with close analogies to actual quantum mechanics.
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Modal quantum theory

States
A system is described by a vector space V over a field F.
* F might be finite.
* V need have no norm or inner product.
» The state of a system may be any non-zero |@®) € V

Basic measurements {(a|} < {la)}
A basic measurement is a basis { (a | } for V*. .,
Each element (a | is an "effect” associated with a |9) = Z Pa |a)
result of the measurement ’ ¢a = (a|®)

The result a is possible if (a|®) #0

Linear evolution
In the absence of measurement, the state evolves 16(2)) = T'(£,0) |6(0))
by an invertible linear operator 7. |
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Modal quantum theory

States
A system is described by a vector space V over a field F.
* F might be finite.
* V need have no norm or inner product.
» The state of a system may be any non-zero |®) € V

Basic measurements {(a|} < {la)}
A basic measurement is a basis { (a | } for V*. ._
Each element (a | is an "effect” associated with a |9) = Z Pa |a)
result of the measurement . ba = (a|d)

The result a is possible if (a|®) #0

Linear evolution
In the absence of measurement, the state evolves 16(8)) = T'(£,0) |6(0))
by an invertible linear operator 7.
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Annihilators _.E

Given a set A C V | the annihilator is
A°={(a|l €V :(a|lv) =0, V|vb) € A}
If A 1s a set of states, then A4° is the set of effects that are

impossible for all states in A.

If A 1s a set of effects, then A4° is the set of states for which all
effects in 4 are impossible.

» A° is a subspace.

« If ACB then B° C A°.

* A and its span (4) have the same annihilator.

* A and B have the same annihilator iff (4) = (B).
e (AUB)° = (4UB)° = 4°N B° .
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Mixed states

&

A mixture is a set of possible states M = {|a),|b),...}

M, and M, are equivalent mixtures if they lead to the same possible
and impossible effects.

Thus, M, and M, are equivalent if M,° = M,° and thus { M, ) =(M,)

Mixed state M = (M)

» Mixtures of mixed states: M = M1V My = (M; UM,)
e Product mixed states: MP® = M @ M®

« Time evolution of mixed states: M — TM = {T |m) : |m) € M}

irsa: 10100050 Page 7/34




Mixed states and entanglement

k.

Conditional states

e

Joint state: |¥“*®))

A-effect: (a'?|

wgﬁa) o ({IL"“ “I,{AB})

\

>

Conditional state of |
system B given effect |
a on system A

Why: For any (0

({I{Abf b{B‘j |lI,{AE‘.| } — (b{B} 1w;B})

The conditional state identifies which B-effects are possible
given the A-effecta .

Given joint state |[¥‘*®) | system B has the mixed state

;M{:B} — {(a{_ﬁg ‘w(AB}) . (a{A;l & V{A;*}
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Mixed states and entanglement

L3

Given joint state |¥*®) | system B has the mixed state

M(B} — {(a{-'l] l\I;(AB}) : (a(-'t}l c v{ﬁi*}

M is always a subspace

Given a basic system A measurement { (]}

M® = ({(k™ |@@®)1) (all k)

Subsystem state for a mixed state: given M
.r"M{"E} == RE_A]JM{AB} — ( {(EL:‘L} |miAE1 )} >

(all (e] € V™7, |m) € MAP)
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Generalized effects

N
Generalized effect I : M — {possible, impossible}
Postulate: T respects mixtures -- that is, if M = M; V M3 = (M; U M>5)
then T is possible for M iff T is possible for M; or M
i.e, T is impossible for M iff T is impossible for M; and M

Given T, let Z = (| J{M:T is impossible} )

* I is impossible for 2

* T is impossible forM iff M C Z
Identify: I' = Z°

* ["is impossible for M iff M CT° =2
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Generalized measurements

A generalized measurement is aset {I',} of generalized effects.

Requirement: For any state, at least one effect is possible.

Nre=o = \a/ra:@ra):w

A generalized measurement is a spanning
set {I'_} of subspaces of V".
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Generalized effects

Generalized effect I : M — {possible, impossible}

Postulate: I’ respects mixtures -- that is, if M = M; V M3 = (M; U M5)
then T is possible for M iff T is possible for M; or M»
i.e, I is impossible for M iff T is impossible for M1 and M

Given I',let Z = <U{Jvt = 'meossible}>

* I is impossible for 2

e T is impossible forM iff M C Z
Identify: I = Z°

* I"is impossible for M iff M CT° =2
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Mixed states and entanglement

Given joint state |¥“*®) | system B has the mixed state

M(B] - {(a{-\]l [11;(:\13}) - (a(-*‘l}| & v(a"t}*}

M'™ is always a subspace

Given a basic system A measurement { (]}

M® = ({(k™ |&@®)1) (all k)

Subsystem state for a mixed state: given M“*®
‘__.M[_E} = REA}JM{ALB} = < {(EL;‘L} Im[AE‘F )}>

(all (e] € V™7, |m) € MAP)
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Mixed states and entanglement

Conditional states

.

Joint state: |¥“*®))

A-effect: (a'?|

> |¥5”) = (a® [E49)

\

Conditional state of
system B given effect |
a on system A

Why: For any (6|

({I{A}? b{B’] |‘I,{AE] } = (st} !'H);B})

The conditional state identifies which B-effects are possible
given the A-effecta .

Given joint state |¥‘*®) | system B has the mixed state

;M‘:B} — {(a“’” ‘wtéﬂ}) - (a{-ﬂul = V{AJ*}
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Mixed states and entanglement

Given joint state |¥“*®) | system B has the mixed state

M(B) - {(a(-‘i] l\I;{AB}) : (a{-%}l o v(ﬁ)*}

M™ is always a subspace
i 3 (A)
Given a basic system A measurement { (| }

JM(B} - < {(k.(ﬁ} ‘\II{AB} )}) (3.].1 k)

Subsystem state for a mixed state: given M“*®
‘_.MLE'-. - Rf.&‘jv’wiiE} - < {(ELA) |.mi_=-1EH )} >

(all (e] € V*7,|m) € MAP)
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Generalized effects

Generalized effect I : M — {possible, impossible}

Postulate: I' respects mixtures -- that is, if M = M; V M3 = (M; U M5)
then T is possible for M iff T is possible for M; or Mo
i.e, I is impossible for M iff T is impossible for M; and M

Given T',let Z = <U{M -Tis ilnpossible}>

* I is impossible for 2

e T is impossible forM iff M C Z
Identify: I = Z°

* ['is impossible for M iff M CT° =2
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Generalized measurements

A generalized measurement is a set {I',} of generalized effects.

Requirement: For any state, at least one effect is possible.

r=0 = Y- (yr) =

A generalized measurement is a spanning
set {I",} of subspaces of V".
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Generalized conditional states

Now that we have generalized (mixed) states and generalized
effects, what about the general concept of a conditional state?

Given: Joint AB state M“*® and an A-effect T'® iy decfcd iET™ is
possible on M“**’

MP = C(MADITD) = ( {(® [m*™)} )
(all (e] €T, |m) € M“A®)

Note that C( - | -) respects mixtures in both places:

C (‘_I,ME.AE} V JMEE:AE}‘F{A}) — C (Mfi.Aler{A}) \/ C (J_M.;E_;E;lr{__”)
C (JM{AB) ‘1“3&} V l—q;}) C (JM{AB_‘] |]_-w;l.a:~) v C (j\/[t..as}lriz.a})

For an A-measurement {I',} : R, M*® = (C (M”‘E‘W{"”*)
irsa: 10100050 Page 18/34

\/ C(M@®T®)




Generalized evolution

A generalized evolution would be a map on subspaces of V

Such a map ought to have two properties:
EM1VM;3)=E(M;)VEM:)
M #(0) = E(M) # (0)

That 1s, the map ought to "respect mixtures" and never map a
state to the zero subspace.

A Type M map on subspaces is one that satisfies these requirements.

Any reasonable generalized evolution must be Type M.
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Type L, Type L

Some possible types of maps

A Type I map on S can be realized as invertible linear evolution on
a larger system SE:

gtS}(MLSj) — er} (T{SEH (JM{E‘:' R *ME}E}))

KKMBH = (/0®))

T% invertible

A Type L map on S can be represented as a mixture of linear
evolutions (not necessarily invertible):

E(M) = \/ A M

Note: The A4, operators
Pirsa: 10100050 must Satisf}, m ker A kageTe-/sz( 0)
k




Type E

A map on S is Type E if it can be extended in a way that
"commutes" with deriving conditional states.

That is, £ is Type E if for any R there exists £ such that
E(S‘J (C (M[RE‘Jll-w_RJ)) - C (E{RSH (,-M{RS}) |]_-'{H“J) .
for any R-effect I'® and RS-state M ™

EEHE}
M®E >| £ (ME)

For a Type E map on S, we
C (-|T™) l 1C(-|F‘R}) can find an RS map for which

this diagram commutes.

JM{E} — SQE}(J\A?))
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L=l=F

Type L= Tvpel

Given the 4, operators for a Type L map on S, introduce system E
and define 7B by

T(SE) ‘_m:S}‘OLE Z ( ”hc lm, (S 8 |k E})

TypeI=Type E

Given the TP representation for a Type I map on S, for any

added system R define
gtRS}(MqRSJ) . RFE‘& [(1|R] R T(SE) ) ( A (RS) R M{E]) ]

Key fact: R, commutes with C(-|IT®)
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Type E

A map on S is Type E if it can be extended in a way that
"commutes" with deriving conditional states.

That is, £ is Type E if for any R there exists £®° such that
8(3] (C (M[RS‘Jll_‘{R))) — C (SEHSY (’I_M{PLS']) |l"{H"J) -
for any R-effect I'® and RS-state M ™

EfRE“}
MBS > gsRE“}( _,MI;RE&)

For a Type E map on S, we
C (-|T™®) l lc(_u"-{m) can find an RS map for which

this diagram commutes.

M > | £SO (MP)
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Type E

A map on S is Type E if it can be extended in a way that
"commutes" with deriving conditional states.

That is, £ is Type E if for any R there exists £ such that

£ (C(MT™IT™)) = C(E™ (M) [I™).

M®S

g{RS}

cer) |

(S)
M

irsa: 10100050

for any R-effect I'® and RS-state M ™

ELRS'I(JM(RS})

[ cer)

S{S](M?})

For a Type E map on S, we
can find an RS map for which

this diagram commutes.
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Open Systems in Modal Quantum
Theory
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Type E

A map on S is Type E if it can be extended in a way that
"commutes" with deriving conditional states.

That is, £ is Type E if for any R there exists £ such that
ES (C (M[Ftﬁﬁlrtm)) — C (g{RS'J (..-M{‘RS}) |]_-<Fn) ]
for any R-effect I'® and RS-state M ™

E{RE}
qunsts > gtRE‘r(J,M(RS})

For a Type E map on S, we
C (-|T™) l lc(_|rtm) can find an RS map for which

this diagram commutes.

_ £ :
M > | ES(ME)
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E==l=—F

Type L= Tyvpel

Given the 4, operators for a Type L map on S, introduce system E
and define 7B by

T(SE) j_maﬂ}‘OlE”J Z ( ”hc m 8 |k E})

TypeI=Type E

Given the 7P representation for a Type I map on S, for any

added system R define

g!.FLS}(JM{RE)) — [E\j [(1:111 R Tl:.-.E ) (Mqﬁ.s: R M{E])]

Key fact: R, commutes with C(-|IT'™®)
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E=>]

Suppose our map is Type E. Let R and S have the same dimension 4.
et lﬂ_‘[;HS}) = s Z |k_{m!k{s:-) s i MES) — <|ﬂf{&51)}
k

Consider the S-state G© = {[gﬁ}) = ng |k£5})}
k

G = {d-tuples (gi) for G}

Define the R-effect '™ = {(g“m| = ng (™| : (gx) € G}
k

Then G® = C(M®|I'®)

Why: ‘Q:S}) — (giﬂi ‘jf‘ﬂs] )
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=]

EFF(MT®) isa subspace, so £ (M) = ({|IMJ™)})

| —— (all a)
Definition of 4 : operators Given 19 L same (gx)

(™| |

—

A 197) = (9™ |M;™)

ThED E{S‘p(gnsa) 8{5} (C (-"MtRS)IF(R}))
C (SKRE)(M{RS))II‘ER“!)
({(g™|M;™)}) <---(all &, (g| €T?)

({45719)})  <---- (all o, |g) € G®)
= YAGP

x

irsa: 10100050 Type L! Page 32/34




Equivalence!

Among Type M maps, Types L, I and E are equivalent.

Every map of Type E can be represented as invertible linear
evolution on a larger system (Type I).

Every map of Type E can be represented as a mixture of linear
evolutions (Type L).
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Type M = Type L?
Do = (|0))
Modal quantum system: F = Z3 D, i (1))
dimV =2 States P+ = (|0)+[1))
D_ = (jo)—|1)
- v = ({l0),D})
E(Do) = Do
S(Dl) — Dl " .
Proposedmap £(D.) = D. ;]:us sha/[tlsﬁes'the !
£y — ¥ ype M requiremen
EV) = y _]
Properties of potential 4, operators
Ar|0) = +10),—10), or0
f’lk]l) = -I—‘]_)..—‘]_).UI'O . =}’Ak=1?_1!0
Apl+) = +|4),—|+), or0

~ ED-)=\/AD_=D_#V
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Not all Tvoe M maps are also Tvoe L. (or I or E)




