Title: Anyonic entanglement renormalization
Date: Oct 13, 2010 04:00 PM
URL: http://pirsa.org/10100045

Abstract: We introduce afamily of variational ansatz states for chains of anyons which optimally exploits the structure of the anyonic Hilbert space.
This ansatz is the natural analog of the multi-scale entanglement renormalization ansatz for spin chains. In particular, it has the same interpretation
as a coarse-graining procedure and is expected to accurately describe critical systems with algebraically decaying correlations. We numerically
investigate the validity of this ansatz using the anyonic golden chain and its relatives as a testbed. This demonstrates the power of entanglement
renormalization in a setting with non-abelian exchange statistics, extending previous work on qudits, bosons and fermions in two dimensions. This
isjoint work with Ersen Bilgin.
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Many-body quantum physics: approaches

« variational ansatz states

entanglement
renormalization ansatz
(for multiqudit systems)
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Entanglement renormalization for spins
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Entanglement renormalization for spins
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Entanglement renormalization

Evidence that this is a good ansatz:

« good approximations to ground state energies & correlation functions
of critical systems =venbly, Vidal ‘09 &Vidal ‘07

- describes states with S(pz) =~ log L and algebraically decaying
correlations in 1D

» exact description of interesting topologically ordered states

Useful as a numerical method because:

« efficient evaluation of expectation values
carrelation function
critical exponents

« generalizes to D>1 and to e.g.. fermions

eiterative algorithms for minimizing energy




Efficient evaluation of expectation values

The expectation value of a local observable can be efficiently
computed as only isometries within its “causal cone” contribute.
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Efficient evaluation of expectation values
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The expectation value of a local observable can be efficiently
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Entanglement renormalization: Summary

1. Choose a smtabletree i!ke graph

2. Associate varniational parameters

—

qucht SEaEE

T —

i_:' 4 - e =

3. Compute expectation values from F@j—l

using substitutions

:H ) and contracting resuliing
= simplified tensor network




Parameter counting

general

translation-invariant

scale-invariant




Introduction to anyons

« Background

» The anyonic Hilbert space

« Conservation of topological charge
« Anyonic Hamiltonians

« Computational rules
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Local perturbations and effective Hamiltonians

Characteristic
properties:

« ground space degeneracy
depending on =

- finite gap. “stable” under
local perturbations

store
quantum
nfo hers

How do low-energy degrees of freedom
behave?

What is a good effective modef
(Hamiltonian)?

exponentially
~small splitting
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Topological charge tunneling

large
inter-anyon
distance

small
inter-anyon
distance

exchange of
topological charge
IS responsible for

energy splitting

exponentially
small splitting

1/distance
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Ground space Hsx

depends on topology of surface X

and a labeling of boundary components \*

~

Underiying algebraic data: (UTMF/TQFT)

- set of labels “anyons™ {ab,¢,...,}
- fusion rules: set of triples of labels

-

Basis vectors of HE

(ﬂ‘ha! ; h)

{k,a3,¢c)
fusion-
consistent

a; ds ds

periodic

(B2,a,b1)
(d1,a,55)

fusion-
consistent
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G roun d S pace HZ .Underlying algebraic data: (UTMF/TQFT)

depends on topology of surface X | - set of labels "anyons” fniee.  _}
- fusion rules: set of triples of labels

and a labeling of boundary components \* ...

Y, Basis vectors of HE

(81,02,5)
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fusion-
consistent
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(d2,a,b1)
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periodic
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Example state space of N Fibonacci anyons

torus X with N holes Ftbonacm TQET

- label set {0.1}
» fusion rules

U_U_u .

basis for N=3 Fibonacci anyons: ™

Every N-bit string without consecutive 0’s represents a basis state.




Example state space of N Fibonacci anyons

torus Xy with N holes "Fibonacci TQFT

- label set {0.1}
« fusion rules

0.0.0).

basis for N=3 Fibonacci anyons: ™

011

dim#s, € O((%)N) <<
== 1.62

Every N-bit string without consecutive 0’s represents a basis state.




Example: state space of N anyons of type a

=
torus Yy with N holes each with label a "eﬁai“
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anyonic states qudit states d — Z£particle type
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‘quantum dimension” of pariicle a
(not necessarily integert)




“Locally related” pants decompositions
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Topological charge conservation by local operators

Alocal operator O acting on a region-4 (e.g..
with 3-anyons) should only affect topological
variables “inside”™ .4 .
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Topological charge conservation by local operators

=_==E'=" s ==-; = A local operator O acting on a region-4 (e.g..
T == with 3-anyons) should only affect topological
variables “inside”™ 4 .
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The operator preserves only affects/depends on the subtree. and preserves its total
charge c (—=block-diagonal}.




Ribbon graph representation of local operators

@ 4 &

The operator praserves only affecis/depends on the subirese. and preserves its total
charge c (->block-diagonal).




Ribbon graph representation of local operators

0=, (Zd’d,(().:)dr,d -\4:;/- > ( n\ﬁi/n ‘ )

The operator preserves only affects/depends on the subires. and preserves its total
charge c (—>block-diagonal).




Ribbon graph representation of local operators

O=@. (Zd,d’(oﬂ)d'rd l -\Q;/- ) ( “\ﬁ:/- ‘ )

— Ec,d,d’ (Or: )d‘#

This graphical representation of operators incorporates charge
conservation and obeys simple rules for taking adjoints, multiplication, ...

a a

The operator preserves only affecis/depends on the subiree. and preserves its total
charge c (->block-diagonal).
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Projection onto trivial charge and the golden chain

L & Pt

II; > =

&

pair-interaction 3-anyon interaction

translation-invariant effective “anyonic chain” model

H=4)) Th:i,J2) 1512

For Fibonacci-anyons: various generalizations:
- exact solution known for Jo2 =0 * su(Zjk, 2D arrangements of anyons

= phase diagram (numerical) - jetal. a 103
: o » random couplings

Rest of this talk: (1) variational ansatz -
(2) numerical test of validity
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Anyonic formalism: Computational rules

—

- adjoints:

By By [
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Simplification rules for anyonic diagrams
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Anyonic formalism versus tensor networks

expectation
value

local - S
operator | L el .

[T L1
" i e 2

evaluated by local rules Svaluated by tensor
contraction




Anyonic entanglement renormalization:

a variational ansatz which

» exploits structure of Hilbert space
» allows straightforward generalization to 2D

» has operational meaning




Anyonic entanglement renormalization: Definition

1. Choose a suitable tree-like graph ﬁl_.

2. Associate (variational) parameters

B o i i

(S-janyon state topological charge-preserving isometry

3. Substitute boxes by graphical representation

Result: formal linear combination.
represents variational state @
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Anyonic entanglement renormalization: Definition

1. Choose a suitable tree-like graph %:I_.

2. Associate (variational) parameters

)= 171 SN - T O.c ]

(3-)anyon state topological charge-preserving isometry

3. Substitute boxes by graphical representation

example: (I |o) — 2L - (Vo)g
bedd
T i

Result: formal linear combination.
represents variational state @




Topological charge-preserving isometries

The familiar rule applies in the
anyonic context




Topological charge-preserving isometries

The familiar rule applies in the
anyonic context

if ¥is a

iy — P =l e e 'A-_
charge-preserving

isometry:

ViV=0 3 (V).z-V.z

L dF e




Anyonic entanglement renormalization

1. Choose a suitable tree-like graph %

2. Associate (variational) parameters

(3-)anyon state

3. Compute expectation values from ht@:lﬁ

using substitutions

:El - and evaluating resulting

simplified anyon diagram

With these modifications, techniques developed for spin chains (e.g.. for
numerically varying over isometries, extracting critical exponents/CFT data) can
be applied to anyons.




Parameter counting: N anyons of type a

quantum dimension

:l_a translation-invariant O(polyld. ) log N
I

scale-invariant




Numerical test




Application to the golden chain
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Ground state energy computed by anyonic MERA:

16 anyons




Application to the golden chain

ground state energy
computed by anyonic MERA

R A

phase boundaries




Application to the golden chain

ground state energy
computed by anyonic MERA

s Clr) ={hall 1y 12} — {]IL.?)Z

= #:B




Large systems and CFT

specirum of periodic 1D critical system of length N

E:

s = ]
identified: ¢ =




2D arrangements of anyons

» Hamiltonians

» evaluation of expeciation values by braiding




Non-abelian exchange statistics

Nexti-to-nearest neighbor interactions:
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Non-abelian exchange statistics

Next-to-nearest neighbor interactions:

3-anyon operators

.
hh<
-

\J
X

B'HB  ,4ditional




Example: anyonic array
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Non-abelian exchange statistics

Next-to-nearest neighbor interactions:

3-anyon operators

b=
.Lq.<
-

\\
3

B'HB  ,4ditional




Example: anyonic array
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anyonic array




anyonic array

nearest-
neighbor
interaction




anyonic array

nearest-
neighbor
interaction

Hamiltonian:




Braiding-type non-local operators

for the non-local operator for the “local” operator

o o-1B

isometries: "'LT g r e {” s

computable with complexity of order O(poly(+=crossings)
(on causal cone)

This provides a technique for treating 2D anyon-arrangements (similar
to fermionic tensor networks).




Rules for resolving crossings...

~ \/ compatibility with F-matrix implies the identites
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Rules for resolving crossings...

compatibility with F-matrix implies the identites
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A new operational interpretation:




A new operational interpretation:

anyonic state preparation

anyoni siatopreparsion
Y siion of ompse amyors




Universal computation with
Fibonacci anyons

Typically used Need to be able to:
encoding:

s  EEr 1
0) > \/\/ e

1) — \<>/




Dealing with noisy initial states
idealized scenario: Suppose pair creation is probabilistic

pair creation only
successful in these
(unknown) locations

How to deal with this situation?

Proposal 1: make measurements to determine presence/absence of
pairs

Proposal 2: concentrate entropy into a certain sector by reversible
gates




Sweeping dirt into the bin in a closed house

Hpair-s - subspace spanned by states of arbitrary (non-zero) number of
particle pairs distributed among specified ("potential defect”) locations

Example
state: 1 L Vv b >

Assumption 0 (mixed state) on 'Hpairg -
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o - Subspace spann y states of arbitrary (non-zero) number o
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Example
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Assumption () (mixed state) on Hpair;e CH
anyonic distillation
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pure state of one pair




Sweeping dirt into the bin in a closed house

Hpairs - subspace spanned by states of arbitrary (non-zero) number of
particle pairs distributed among specified ("potential defect”) locations

=xample
state: l - Vv A >

g?si!i-llation:UpUT — IV>(V R -

pure state of one encoded i mixed state on “bin”




Sweeping dirt into the bin in a closed house

3 - = . SUbspace spann y states of arbitrary (non-zero) number o
Hpairs :Sub ed by states of arb ber of
particle pairs distributed among specified ("potential defect”) locations

Example
state: l W Vv - V>

after

distillation:UpUT = IV)(V| K -
Main property :
(subsystem Uﬂpairs - IV> *

code):




Concatenated Composite anyons \ﬁ_-

codes
physical (qu)bi “physical”
anyon pairs
(defects)

®9 v
logical bits Oy — 000
(repetition) = pair of
code Lr =111 “opeoded ’
l composite anyons

H = encoded

logical bits of
concatenated pairs of
(repetition) code (doubly)

composite

Oz =000 _
= E anyons

composite anyons are equivalent to bare anyons wrt. computation
—complexity increase only quadratically in circumference




Constructing an anyonic distillation circuit
Main building block:
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Constructing an anyonic distillation circuit
Main building, block:

_—

Construction: use purebraid
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+ injection weave




Constructing an anyonic distillation circuit
Main building, block:

\/

vV

: — Construction: use purebraid
Final circuit:

recursive construction ERAVAVERE — \<>/

+ injection weave




Relation to anyonic entanglement
renormalization

Consider an anyonic entanglement RG
with a fixed toplevel state:

eq. = ‘\/l _\/_

This is the “target” state of composite anyons

anyonic entanglement RG = composite anyon distillation scheme
-> characterization of “distillable” states




Relation to anyonic entanglement
renormalization

Consider an anyonic entanglement RG
with a fixed toplevel state:

e.qg.. = ‘\/l _\/_

This is the “target” state of composite anyons

anyonic entanglement RG = composite anyon distillation scheme
-> characterization of “distillable” states

Assume that every isometry/unitary is composed
of physically realizable processes

braiding — (+inverse)




Anyonic entanglement renormalization
Variational family for anyons with operational interpret

- state preparation circuit

- renormalization group scheme, connects to composite anyon distillation
Evidence for its descriptive power:

» exact description of multi-anyon chains at certain coupling strengths

......... compare |
fo successes |
of non-anyonic
versionl

= accurate numerical estimation of ground state energies &
correlation functions for finite-size systems

« good agreement with CFT predictions in thermodynamic limit

Provides a new numerical toolbox: Computational |
savings -

| achieved by

. . . . : : : exploiting

- inherits various optimization/evaluation algornthms  Hilbert space
structure

- extends to 2D-arrangements of anyons




