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Abstract: The Exact Renormalization Group (ERG) is a technique which can be fruitfully applied to systems with local interactions that exhibit a
large number of degrees of freedom per correlation length. In the first part of the talk | will give a very general overview of the ERG, focussing on
its applications in quantum field theory (QFT) and critical phenomena. In the second part | will discuss how a particular extension of the formalism
suggests a new understanding of correlation functionsin QFTS, in general, and gauge theoriesin particular.
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Blocking: From Microscopic to Macroscopic

@ Consider a lattice of spins
@ To go from micro to macro, average over groups of spins
@ Rescale
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lows in Parameter Space

Part of the critical surface

Fixed-Point

=

Trajectories in the critical surface flow into the fixed-point

3

® The critical surface is spanned by the irrelevant operators

@ Flows along the relevant directions leave the critical surface
2

If there are n relevant directions, then we must tune n
quantities to get on to the critical surface
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he Wilsonian Effective Action

Start with the partition function

2= [Doc = [Dpesid
Ao A

@ [ he bare scale

@ High energy (short distance) scale
@ Modes above this scale are cut off (regularized)

@ The bare (classical) action

@ Integrate out modes between the bare scale and an
intermediate scale, A

@ [ he partition function stays the same

@ [ he effects of the high energy modes must be taken into
account

i @ [ he action evolves = Wilsonian effective action e
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ery General ERGs

e S 0 3 .—S[o]
o /xm(x) (w"[@]e )

effective scale
set of fields

=
P
@ Wilsonian effective action
=

s[é]

partition function, [ Doe >!?l invariant under the flow
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ery General ERGs

Formulation

Adhe—SHl _ : 51e—Sl9]
s /x 56(x) (w-‘f[' le )

effective scale

set of fields

partition function, fD@e_S[‘-I’], invariant under the flow

9

Q

@ Wilsonian effective action

9

@ Parametrizes blocking procedure
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@ huge freedom in precise form—adapt to suit our needs
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@ effective scale
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@ huge freedom in precise form—adapt to suit our needs
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- )
= =" = i —Sl]
e /x dd(x) (‘-Ux[qv]e )

@ effective scale

@ set of fields
@ Wilsonian effective action

@ partition function, fD@e_S[‘f’], invariant under the flow
@ Parametrizes blocking procedure
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Implementing Rescaling

@ Measure all dimensionful quantities in units of A

@ Remember to take account of anomalous dimensions!

¥ X Afu]l scaling dimension

@ Notation: ¢ dimensionful, ¢ dimensionless

@ —AOp — O, with t =Inpu/A
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Jualitative Aspects of the ERG

@ Blocking (coarse-graining)

@ Rescaling

Implementing Rescaling

@ Measure all dimensionful quantities in units of A

@ Remember to take account of anomalous dimensions!

p = Afu]l scaling dimension

@ Notation: ¢ dimensionful, ¢ dimensionless

@ —AOp — O, with t =Inpu/A

What we need for this talk

@ ERG Equation: 9;S[p] = ...
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elevance/lrrelevance

@ At a fixed-point we have 9;5, = 0

@ Consider an infinitesimal perturbation

First order classification

@ Operators that grow with t are relevant

@ Operators that shrink with t are irrelevant

@ Operators that stay the same are marginal

m—r—'-mj

Marginal Operators

@ S, + a0 arginal Is a fixed-point up to O (32)
@ This might not be true beyond leading order
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Jualitative Aspects of the ERG

elevance/lrrelevance

@ At a fixed-point we have 9;5, = 0

@ Consider an infinitesimal perturbation

First order classification

@ Operators that grow with t are relevant

@ Operators that shrink with t are irrelevant

@ Operators that stay the same are marginal
m—_—mJ

Marginal Operators

@ S, + a0 arginal Is a fixed-point up to O (32)
@ This might not be true beyond leading order

@ Eg the four point coupling in D = 4 scalar field theory is
marginally irrelevant
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Jualitative Aspects of the ERG

elevance/lrrelevance

@ At a fixed-point we have 9;5, = 0

@ Consider an infinitesimal perturbation

First order classification

@ Operators that grow with t are relevant

@ Operators that shrink with t are irrelevant

@ Operators that stay the same are marginal

$

Marginal Operators

@ S, + a0 arpinal Is a fixed-point up to O (32)
@ This might not be true beyond leading order

@ Eg the four point coupling in D = 4 scalar field theory is
marginally irrelevant
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@ An exactly marginal operator generates a line of fixed-points
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extbook renormalization

® Choose an action e.g.

Slo] = /G'DX [53#08#@ - §m2@2 4 EC}«:‘L]
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Renormalizability

extbook renormalization

@ Choose an action e.g.

1 1 A
Slo] = /de [Eaﬂoaﬁ;@ - Emzoz - 5@4]

@ Choose a UV regulator

Pirsa: 10100037 Page 115/268




Renormalizability

extbook renormalization

@ Choose an action e.g.

1 1 A
Slo] = /de [Eaﬂoa#@ - - 2m2@2 + Ecﬁ]

@ Choose a UV regulator

@ Start computing the correlation functions

(©()-- o) = 5 [ Do)+ (xa)e
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Renormalizability

extbook renormalization

® Choose an action e.g.

1 A
S[o] :/ [ 0,00, + 2m2@2 = 4!6'}""‘]

@ Choose a UV regulator

@ Start computing the correlation functions

(o(x1) - - - O(xn)) = /D{?) O(x1) - - - O(xn)e 1)
@ Adjust the action to absorb UV divergences:

S[o] — Slo] + 4S[4]
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Renormalizability

extbook renormalization

@ Choose an action e.g.

Slo] = /dDX [gaﬁoap@+ 2m2@2 =S 4!{3}"‘]

@ Choose a UV regulator

@ Start computing the correlation functions

($(x1) - D(xm)) = / Do é(x1) - - - d(x) e
@ Adjust the action to absorb UV divergences:

S[o] — S[o] + 0S[4]




Renormalizability

ilsonian |

Pirsa: 10100037 Page 119/268




Renormalizability

ilsonian |

The Question

Are there effective actions Sp p,[¢] for which we can safely send
/\0 — 007
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Ag — 00’

The Simplest Answer

@ Rescale all quantities, using A
@ Only dimensionless variables appear

@ Fixed-points of the ERG correspond to continuum limits!
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ilsonian |

The Question

Are there effective actions Sp p,[¢] for which we can safely send
Ag — 00’

The Simplest Answer

@ Rescale all quantities, using A
@ Only dimensionless variables appear

@ Fixed-points of the ERG correspond to continuum limits!

FrS.]p] =0
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The Question

Are there effective actions Sp p,[@] for which we can safely send
Ag — 00’

The Simplest Answer

@ Rescale all quantities, using A
@ Only dimensionless variables appear

@ Fixed-points of the ERG correspond to continuum limits!
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@ S, is independent of all scales, including Ag
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ilsonian |

The Question

Are there effective actions Sp p,[@] for which we can safely send
Ag — 00’

The Simplest Answer

@ Rescale all quantities, using A

@ Only dimensionless variables appear

@ Fixed-points of the ERG correspond to continuum limits!

FeS.|p] =0

@ S, is independent of all scales, including Aq

Pirsa: 10100037
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Fixed-Point

@ Tune the trajectory towards the critical surface, as Ag — o0
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@ Tune the trajectory towards the critical surface, as Ag — o0
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Renormalizability

ilsonian ||

Part of the critical surface

Fixed-Point

£ |

@ Tune the trajectory towards the critical surface, as Ag — o0
@ [he trajectory splits in two:

@ One part sinks into the fixed-point
@ One part emanates out
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Renormalizability

llsonian ||

Part of the critical surface
e

Fixed-Point

@ Tune the trajectory towards the critical surface, as Ag — oo
@ [he trajectory splits in two:

@ One part sinks into the fixed-point
@ One part emanates out
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@ Actions on the RT are renormalizable
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Renormalizability

he Key Point

Nonperturbatively renormalizable theories follow from fixed-points

@ Either directly

@ Or from the renormalized trajectories emanating from them

Theory Space

@ QFTs should be understood in terms of ‘theory space’

@ Renormalizable QF T's follow from the solution to an equation
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Asymptotic Freedom etc.

Triviality
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Triviality

GFP

no
interacting
relevant
directions

massive,
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Asymptotic Freedom etc.

Triviality Asymptotic Freedom Asymptotic Safety
GFP GFP
- : interacting
r(::*lex-fa.pt directions
directions
massive. mterac-tﬂ}g.
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Renormalizability

Asymptotic Freedom etc.

Triviality Asymptotic Freedom Asymptotic Safety
GFP GFP NT FP
renormalizablilty
. : determined
- : interacting in UV
interacting ==
r(::*leva;lt directions
directions
(GFP)
L ]
Theory appears
massive. int-emc-til} o Eflllﬁ enormalizable
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Renormalizability

bcalar Field Theory: Four Dimensions

Only the Gaussian FP exists

The mass is relevant

The four point coupling is marginally irrelevant
All other couplings are irrelevant

The only nonperturbatively renormalizable scalar field theories
in four dimensions are trivial!
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bcalar Field Theory: Three Dimensions
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Gaussian Fixed-point
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bcalar Field Theory: Three Dimensions

Gaussian Fixed-point

@ [ he mass term is relevant

@ T he four-point coupling is relevant

e LI e S S ST e e e e e
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bcalar Field Theory: Three Dimensions

Gaussian Fixed-point

@ The mass term is relevant
@ T he four-point coupling is relevant

@ Non-trivial renormalizable theories exist along the \¢*
direction!
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bcalar Field Theory: Three Dimensions

Gaussian Fixed-point

@ The mass term is relevant
@ [ he four-point coupling is relevant

@ Non-trivial renormalizable theories exist along the /\«,94 !
direction!

ﬁ

Wilson-Fisher Fixed-point

ﬁ
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bcalar Field Theory: Three Dimensions

Gaussian Fixed-point

@ The mass term is relevant
@ T he four-point coupling is relevant

@ Non-trivial renormalizable theories exist along the \¢*
direction!

ﬁ

Wilson-Fisher Fixed-point

@ In addition to the Gaussian FP, there is a non-trivial FP

— T — — a

Pirsa: 10100037 Page 161/268




Renormalizability

bcalar Field Theory: Three Dimensions

Gaussian Fixed-point

@ The mass term is relevant
@ The four-point coupling is relevant

@ Non-trivial renormalizable theories exist along the \y*
direction!

Wilson-Fisher Fixed-point

@ In addition to the Gaussian FP, there is a non-trivial FP

@ The W-F FP possesses a single relevant direction
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Renormalizability

bcalar Field Theory: Three Dimensions

Gaussian Fixed-point

@ The mass term is relevant

@ T he four-point coupling is relevant !

@ Non-trivial renormalizable theories exist along the \y* [
direction!

e

Wilson-Fisher Fixed-point

@ In addition to the Gaussian FP, there is a non-trivial FP |

@ [ his can also be used to construct an RT }

@ The W-F FP possesses a single relevant direction
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Example of a Continuum Limit in D=3

Wilson-Fisher FP

Gaussian FP
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Renormalizability

extbook versus Wilsonian

Question: What is the link?

@ lextbook formulation is in terms of correlation functions

@ Wilsonian formulation is in terms of Sy

My aims in the rest of this talk

@ To convince you that the question is profound
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olchinski's Equation
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@ Polchinski made a particular choice

VU = WUp,y

Pros

|
e e )
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olchinski’'s Equation

@ Polchinski made a particular choice

VU = WUp,y

The flow equation is simple
@ [ he correlation functions can be extracted from Sx—g

Renormalizability of S = renormalizability of (¢(x1) - - - 9(x,))
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Correlation Funcrions in the ERG

olchinski's Equation

@ Polchinski made a particular choice

VU = WUp,y

Pros

@ The flow equation is simple

@ [ he correlation functions can be extracted from Sx—g !

@ Renormalizability of S = renormalizability of (¢(x7) - - - &(x,)) l

e —
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Correlation Functions in the ERG

olchinski’'s Equation

@ Polchinski made a particular choice

VU = WUp,y

@ The flow equation is simple

@ [ he correlation functions can be extracted from Sx—g

@ Renormalizability of S = renormalizability of (¢(x7) - - - &(x,))

@ It is inconvenient for finding fixed-points I
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A modified version of Polchinski’'s equation

@ Allow for an extra field redefinition along the flow

UV =Vp, + ¢
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A modified version of Polchinski’'s equation

@ Allow for an extra field redefinition along the flow

U =Vpy + ¢
@ Choose
- HAdInZ
g a0 ¥y
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Correlation Functions in the ERG

A modified version of Polchinski’'s equation

@ Allow for an extra field redefinition along the flow

WZWPol—i—L‘
@ Choose
e 1__ _&AdInZ
g ¥ "

@ Since v is a field redefinition. this choice ensures canonical
normalization of the kinetic term
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Correlation Functions in the ERG

A modified version of Polchinski’'s equation

@ Allow for an extra field redefinition along the flow

V =Vp, +¢
@ Choose
= JAdInZ
= 2;70. N = A

@ Since v is a field redefinition, this choice ensures canonical
normalization of the kinetic term

@ The redundant coupling, Z, is removed from the action
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Correlation Functions in the ERG

A modified version of Polchinski’'s equation

@ Allow for an extra field redefinition along the flow

U = WUp, +
@ Choose
= _ _AdInZ
= 2170. n = A

@ Since v is a field redefinition. this choice ensures canonical
normalization of the kinetic term

@ The redundant coupling, Z, is removed from the action

T —
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Correlation Functions in the ERG

A modified version of Polchinski’'s equation

@ Allow for an extra field redefinition along the flow

W = Wpg + ¢
@ Choose
e 1_@ “AdInZ
——qgm T 5

@ Since ¥ is a field redefinition, this choice ensures canonical
normalization of the kinetic term

@ The redundant coupling, Z, is removed from the action

@ Easy to find fixed-points with n, # 0 l
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@ Allow for an extra field redefinition along the flow

U = Wp, + v
@ Choose
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@ Since v is a field redefinition. this choice ensures canonical
normalization of the kinetic term

@ The redundant coupling, Z, is removed from the action

@ Easy to find fixed-points with n, %0 I




Correlation Functions in the ERG

A modified version of Polchinski’'s equation

@ Allow for an extra field redefinition along the flow

W =Wpy + v
@ Choose
e — _ ﬂAdInZ
= g ¥

@ Since v is a field redefinition, this choice ensures canonical
normalization of the kinetic term

@ The redundant coupling, Z, is removed from the action

@ Easy to find fixed-points with n, %0 l

@ The link between S and (&(x3) --- &(x,)) changes
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Correlation Functions in the ERG

ntroducing a source: Textbook

The Standard Correlation Functions

@ Introduce a source term in the bare action

Z[J] = /D(D E—Sno[{ﬁ]—l—_f-ﬁﬁ

@ Extract the connected correlation functions from W[J] =In2Z

(#0x) - - §(Xn))conn = 5J(5x1) 5fo”) e [

$
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Correlation Functions in the ERG

ntroducing a source: Textbook

The Standard Correlation Functions

@ Introduce a source term in the bare action
2V = [DoeSultss

@ Extract the connected correlation functions from W[J] =In2Z
J o
0d(x) 0J(xn)

W]

<@(XI) 5o @(Xn»tsnnﬂ = ‘J:D

J F

Composite Operators
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Correlation Funcrions in the ERG

ntroducing a source: Textbook

The Standard Correlation Functions

@ Introduce a source term in the bare action
20 = [ Do Solétso

@ Extract the connected correlation functions from W[J] =In 2
J o
0J(xa) 0J(xn)

J
Composite Operators

@ Add additional source terms eg. b - ¢?

W]

(9(x1) - - - &(xn)) conn = ‘J:D
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Correlation Functions in the ERG

ntroducing a source: Textbook

The Standard Correlation Functions

@ Introduce a source term in the bare action
ZU) = / D e—Srolél+1-0

@ Extract the connected correlation functions from W[J] =In2Z
J o
0d(xa) 0J(xn)

W{J]

(@(x1) - - - 9(xn))conn = ‘J:ﬂ

-

Composite Operators

@ Add additional source terms e.g. b - ¢?

@ Take derivatives with respect to J and J> to find

(d(x1) - - - d(xa)d°(y1) - - - 9*(¥m)) conn
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Correlation Functions in the ERG

ntroducing a source: Textbook

The Standard Correlation Functions

@ Introduce a source term in the bare action

Z[] = f D e SnoldH+1o

@ Extract the connected correlation functions from W[J] =In2Z
J o
0d(xa) 0J(xn)

((_35()(1) e C_D(Xn))ccmﬂ =

Composite Operators

@ Add additional source terms e.g. b - ¢

-

J A

@ Take derivatives with respect to J and J5 to find

(':.b(x]-) e @(Xn)@Z(YI) - @2(Ym)>{:ﬂnﬂ
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dimension, d;
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@ Introduce an external field, J, with undetermined scaling
dimension, d;

@ Allow for J-dependence of the action

SA[O] — Th[@, J]
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ew ERG Approach

@ Introduce an external field, J, with undetermined scaling
dimension, d;

@ Allow for J-dependence of the action

SA[O] —3 TA[Q. J]
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Correlation Functions in the ERG

ew ERG Approach

@ Introduce an external field, J, with undetermined scaling
dimension, d;

@ Allow for J-dependence of the action
Salo] — Talo, J]

@ The flow equation follows as before

AdneTalsN _ [, _© —TAl.]]
Aope /d X 50(x) {llf(x)e }
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ew ERG Approach
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@ Introduce an external field, J, with undetermined scaling
dimension, d;

@ Allow for J-dependence of the action

SA[O] — TA[Q- J]

@ T he flow equation follows as before

_Aone—TaleA _ [0, 9 —Talo.J]
Adpe f 4 5500 {w(x)e }

@ A sensible boundary condition would be

hhn;]\u Talo, J] — Salo] = - O

: 10100037
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Correlation Functions in the ERG

ew ERG Approach

@ Introduce an external field, J, with undetermined scaling
dimension, d;
@ Allow for J-dependence of the action

SA[O] —3 T;\[Q, J]

@ [he flow equation follows as before

Aone—Tale A _ [4D, —Talé.J]
Aope /d x 56(x) {llf(x)e }

@ A sensible boundary condition would be

lim Th[ﬂ)J] — 5;\[@] ——J-0
ﬁ—}ﬁn

irsa: 10100037 Page 204/268

@ But we will not implement the bc in this way
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bource-Dependent Renormalization
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Nonperturbatively renormalizable solutions follow from fixed-points
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Correlation Funcrions in the ERG

bource-Dependent Renormalization

The game

@ Search for renormalizable, source-dependent solutions

Nonperturbatively renormalizable solutions follow from fixed-points |

@ Either directly: 0, T.|p,j] =0

e e )
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Correlation Functions in the ERG

A Source-Dependent Fixed-Point

@ Suppose that we have found a critical fixed-point

FeS«lp] =0
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A Source-Dependent Fixed-Point

® Suppose that we have found a critical fixed-point
OeS«lp] =0

@ Then there is always a source-dependent f-p

Tl = Sl + [ 755 1] s+ Lo
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Correlation Functions in the ERG |

A Source-Dependent Fixed-Point

@ Suppose that we have found a critical fixed-point
FeS«lp] =0
@ Then there is always a source-dependent f-p

e it 7o st 3o

= 3

o j(p)=i(p)/P°
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Correlation Functions in the ERG

A Source-Dependent Fixed-Point

@ Suppose that we have found a critical fixed-point
FtS«lp] =0

@ Then there is always a source-dependent f-p

Tlp.il = Suliel + |29 —1| [S\fi] + 50 F - o]
* j(p) =i(p)/P?

o 0= o(p?), f = f(p?)
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Correlation Functions in the ERG

A Source-Dependent Fixed-Point

@ Suppose that we have found a critical fixed-point
FeS«[p] =0
@ Then there is always a source-dependent f-p
. S = 1
Tlp.dl = Silel + [eF23/% 1] [S,[] + S+ - ¢

}( ) =i(p)/P?
o= o(p?), f =f(p?)

Two crucial points
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Correlation Functions in the ERG

A Source-Dependent Fixed-Point

@ Suppose that we have found a critical fixed-point
OS] =0

@ [hen there is always a source-dependent f-p

Te, il = Sile] + [e‘} 00/0p _ 1] [5*[;] + %-f 5 \1,]

5( ) =i(p)/ P
o= o(p?), f =f(p?)

Two crucial points

@ The solution only works if d; = (D +2 —1n,)/2 .
I
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Correlation Functions in the ERG

A Source-Dependent Fixed-Point

@ Suppose that we have found a critical fixed-point

FrSi[p] =0
@ Then there is always a source-dependent f-p
2 SR 7 1
il = Suliel + 7295 — 1] [S.[] + > f- g
i(p) = j(p)/ P

Two crucial points
@ The solution only works if d; = (D +2 —1n,)/2

@ In dimensionful variables

lim Tal[g, J] — Salo] = —J- ¢
A—oco
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Correlation Functions in the ERG

@ For each critical f-p, we can find the eigenperturbations

St[;’] — S*[*f-?] E 2 Z Qie)ﬁtoi[;]
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Correlation Functions in the ERG

@ For each critical f-p, we can find the eigenperturbations
Selel = Sulel + ) eie*Oiy]

@ Every eigenperturbation, O; has a source-dependent extension

Oily.j] = €¢%%%0,
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Correlation Functions in the ERG

@ For each critical f-p, we can find the eigenperturbations
Sele] = Silel + ) _ aie* Oyl
:
@ Every eigenperturbation, O; has a source-dependent extension
Oilg.j] = €% 0,
@ At the linear level

Telp,jl = Tile,jl + Z a,—e’\*'t@,-[.;.j]
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Correlation Functions in the ERG

@ For each critical f-p, we can find the eigenperturbations

Sel] = Sife] + Z ;e O;[p]

@ Every eigenperturbation, O; has a source-dependent extension
Oilg.j] = €250,
@ At the linear level

Tilp,i] = Tule.il + ) | aie**Oilp, )]

o~

where \; = A;
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extension
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Correlation Functions in the ERG

nterpretation

@ Every critical f-p has a particular source-dependent extension

@ Every renormalized trajectory has a source-dependent
extension

@ T his source-dependence corresponds to the boundary
condition

lim Tal[o.J] — Splo]l =—J -0
A—o0
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Correlation Functions in the ERG

nterpretation

@ Every critical f-p has a particular source-dependent extension
@ Every renormalized trajectory has a source-dependent
extension

@ T his source-dependence corresponds to the boundary
condition

lim Ta[d, J] — Sa[é] = —J - ¢
A—co
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nterpretation

@ Every critical f-p has a particular source-dependent extension
@ Every renormalized trajectory has a source-dependent
extension

@ T his source-dependence corresponds to the boundary
condition

lim Thl[o.J] — Splo]l =—J -0

A—o0

If we use the modified Polchinski equation with ¥ = —ny/2
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Correlation Functions in the ERG

nterpretation

@ Every critical f-p has a particular source-dependent extension
@ Every renormalized trajectory has a source-dependent
extension

@ T his source-dependence corresponds to the boundary
condition

lim Tplo,J] — Splo] = —J -0

A—co

If we use the modified Polchinski equation with ¥ = —ny/2

Renormalizability of Sp implies renormalizability of the standard
correlation functions

Page 231/
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A new perspective on QFT7?
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@ Decide which correlation
functions to compute
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@ Decide which correlation @ Allow arbitrary source
functions to compute dependence

@ Introduce appropriate source
terme.g. J-0
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@ Decide which correlation @ Allow arbitrary source
functions to compute dependence
@ Introduce appropriate source @ Search for fixed-point

termeg J-o0 solutions
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Correlation Functions in the ERG

A new perspective on QFT7?

@ Decide which correlation @ Allow arbitrary source
functions to compute dependence

@ Introduce appropriate source @ Search for fixed-point
termeg J-0 solutions

@ Analyse renormalizability of
correlation functions
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@ Decide which correlation @ Allow arbitrary source
functions to compute dependence
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solution(s) correspond

Pirsa: 10100037 Page 238/268
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A new perspective on QFT?

@ Decide which correlation @ Allow arbitrary source
functions to compute dependence

@ Introduce appropriate source @ Search for fixed-point
termeg J-0 solutions

@ Analyse renormalizability of @ Deduce the correlation
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solution(s) correspond
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A new perspective on QFT7?

@ Decide which correlation @ Allow arbitrary source
functions to compute dependence

@ Introduce appropriate source @ Search for fixed-point
termeg J-o0 solutions

@ Analyse renormalizability of @ Deduce the correlation
correlation functions functions to which the
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Correlation Functions in the ERG

A new perspective on QFT7?

@ Decide which correlation @ Allow arbitrary source
functions to compute dependence

@ Introduce appropriate source @ Search for fixed-point
teremeg J-0 solutions

@ Analyse renormalizability of @ Deduce the correlation
correlation functions functions to which the

solution(s) correspond

Philosophy

@ [ he Wilsonian effective action is fundamental

@ QFT determines which quantities we should compute
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(Juestions

Modified Polchinski Equation v = —n¢/2
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(Juestions

Modified Polchinski Equation v = —ny/2

@ What other renormalizable source-dependent solutions exist?

@ How does the OPE play a role?
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Correlation Functions in the ERG

(Juestions

Meodified Polchinski Equation ©v» = —ng/2

@ What other renormalizable source-dependent solutions exist?

@ How does the OPE play a role?
@ Can a link be made with method of CT?
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Correlation Functions in the ERG

(Juestions

Modified Polchinski Equation v = —np/2

@ What other renormalizable source-dependent solutions exist?

@ How does the OPE play a role?
@ Can a Iin be made with mehds of CF17?

Other flow equations
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Correlation Functions in the ERG

(Juestions

Modified Polchinski Equation v = —ng/2

@ What other renormalizable source-dependent solutions exist?

@ How does the OPE play a role?
@ Can a link e e with methods of CFT7

Other flow equations

@ What happens for other flow equations?
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Correlation Functions in the ERG

(Juestions

Modified Polchinski Equation v = —ny /2

@ What other renormalizable source-dependent solutions exist?

@ How does the OPE play a role?
° an ank be made with ethod of CFT

Other flow equations

@ What happens for other flow equations?

@ What does this imply for gauge theories?
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@ Covariant higher derivatives
@ Pauli-Villars fields
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manifestly gauge invariant flow equation
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Correlation Functions in the ERG

auge [ heory

@ It is possible to construct a gauge invariant cutoff, using

@ Covariant higher derivatives
@ Pauli-Villars fields

@ W can be chosen to give a
manifestly gauge invariant flow equation
@ No gauge fixing is required at any stage!

@ [he formalism is very complicated

Correlation Functions

@ The standard correlation functions play no role
@ How do manifestly gauge invariant operators renormalize?

@ [ hrow in sources and let the ERG tell us!




Correlation Functions in the ERG

Ask not what quantum field theory can
compute for you, but what you can compute
for quantum field theory
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