Title: A New Perspective on Quantum Field Theory

Date: Oct 20, 2010 04:00 PM

URL: http://pirsa.org/10100037

Abstract: The Exact Renormalization Group (ERG) is a technique which can be fruitfully applied to systems with local interactions that exhibit a large number of degrees of freedom per correlation length. In the first part of the talk I will give a very general overview of the ERG, focusing on its applications in quantum field theory (QFT) and critical phenomena. In the second part I will discuss how a particular extension of the formalism suggests a new understanding of correlation functions in QFTs, in general, and gauge theories in particular.

Pirsa: 10100037 Page 1/268

A New Perspective on Quantum Field Theory arXiv:1003.1366 [hep-th]

Oliver J. Rosten

Sussex U.

October 2010

Outline of this Lecture

Qualitative Aspects of the ERG

2 Renormalizability

3 Correlation Functions in the ERG

Outline of this Lecture

Qualitative Aspects of the ERG

2 Renormalizability

3 Correlation Functions in the ERG

Outline of this Lecture

Qualitative Aspects of the ERG

2 Renormalizability

Correlation Functions in the ERG

Pirsa: 10100037 Page 6/268

A microscope with variable resolving power

A microscope with variable resolving power

Our description of physics generally changes with scale

A microscope with variable resolving power

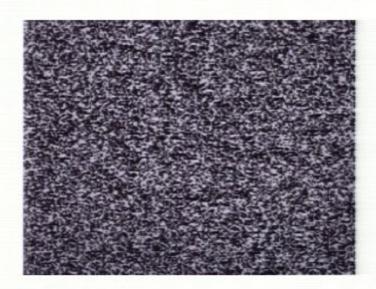
- Our description of physics generally changes with scale
- Short/long distance descriptions often differ

A microscope with variable resolving power

- Our description of physics generally changes with scale
- Short/long distance descriptions often differ
- We can go from short to long by averaging over local patches

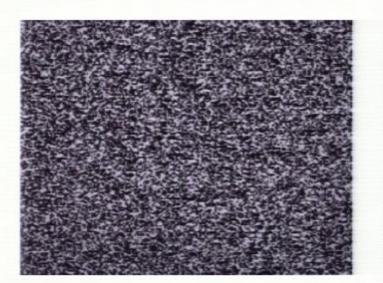
A microscope with variable resolving power

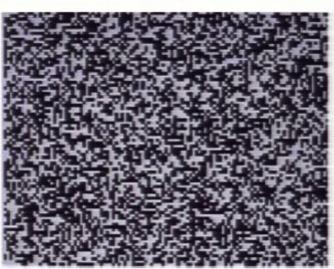
- Our description of physics generally changes with scale
- Short/long distance descriptions often differ
- We can go from short to long by averaging over local patches



A microscope with variable resolving power

- Our description of physics generally changes with scale
- Short/long distance descriptions often differ
- We can go from short to long by averaging over local patches





The ERG is of use for systems with

- A large number of degrees of freedom per correlation length
- Local interactions

Easy Problems (no need for ERG)

Pirsa: 10100037 Page 14/268

The ERG is of use for systems with

- A large number of degrees of freedom per correlation length
- Local interactions

Easy Problems (no need for ERG)

Pirsa: 10100037 Page 15/268

The ERG is of use for systems with

- A large number of degrees of freedom per correlation length
- Local interactions

Easy Problems (no need for ERG)

Pirsa: 10100037 Page 16/268

The ERG is of use for systems with

- A large number of degrees of freedom per correlation length
- Local interactions

Easy Problems (no need for ERG)

- A small number of degrees of freedom per correlation length
 - The subsystem is easy to understand
 - The subsystem captures the behaviour of the whole system
 - The whole system is easy to understand

Pirea: 10100037

The ERG is of use for systems with

- A large number of degrees of freedom per correlation length
- Local interactions

Easy Problems (no need for ERG)

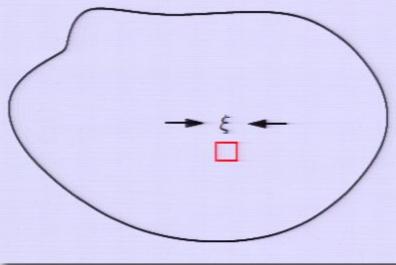
- A small number of degrees of freedom per correlation length
 - The subsystem is easy to understand
 - The subsystem captures the behaviour of the whole system
 - The whole system is easy to understand

The ERG is of use for systems with

- A large number of degrees of freedom per correlation length
- Local interactions

Easy Problems (no need for ERG)

A small number of degrees of freedom per correlation length



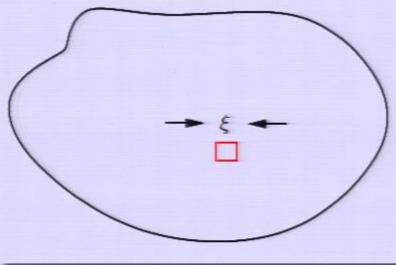
- The subsystem is easy to understand
- The subsystem captures the behaviour of the whole system
- The whole system is easy to understand

The ERG is of use for systems with

- A large number of degrees of freedom per correlation length
- Local interactions

Easy Problems (no need for ERG)

A small number of degrees of freedom per correlation length



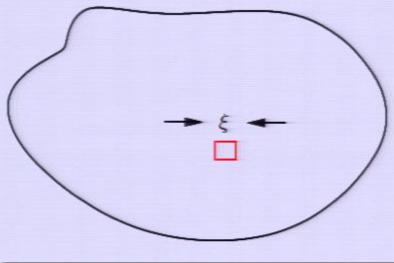
- The subsystem is easy to understand
- The subsystem captures the behaviour of the whole system
- The whole system is easy to understand

The ERG is of use for systems with

- A large number of degrees of freedom per correlation length
- Local interactions

Easy Problems (no need for ERG)

A small number of degrees of freedom per correlation length



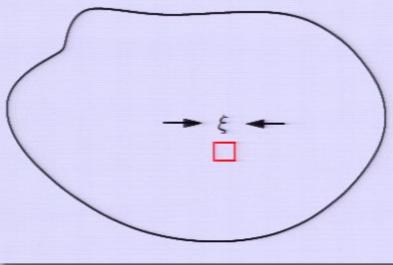
- The subsystem is easy to understand
- The subsystem captures the behaviour of the whole system
- The whole system is easy to understand

The ERG is of use for systems with

- A large number of degrees of freedom per correlation length
- Local interactions

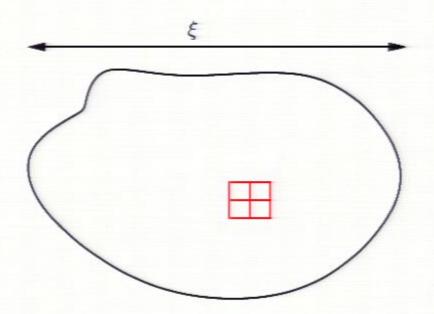
Easy Problems (no need for ERG)

A small number of degrees of freedom per correlation length



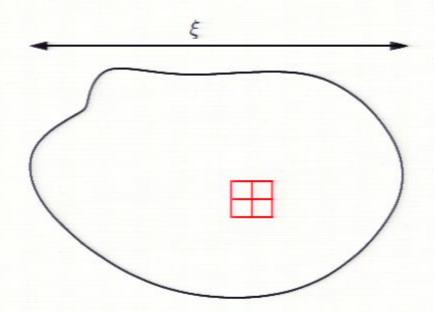
- The subsystem is easy to understand
- The subsystem captures the behaviour of the whole system
- The whole system is easy to understand

Take a system with a large number of d.o.f. per correlation length



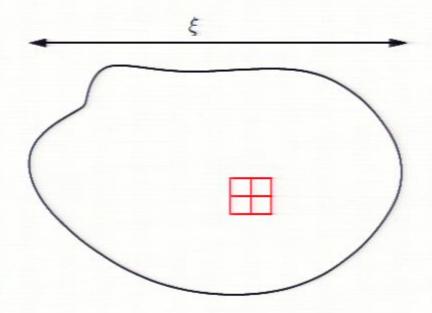
- Again focus on small subsystems
- But now they don't capture the behaviour of the whole system
- For local interactions, we can average over patches

Take a system with a large number of d.o.f. per correlation length



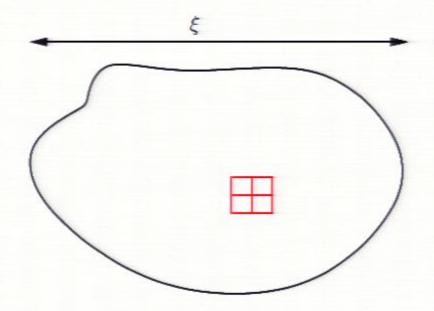
- Again focus on small subsystems
- But now they don't capture the behaviour of the whole system
- For local interactions, we can average over patches

Take a system with a large number of d.o.f. per correlation length



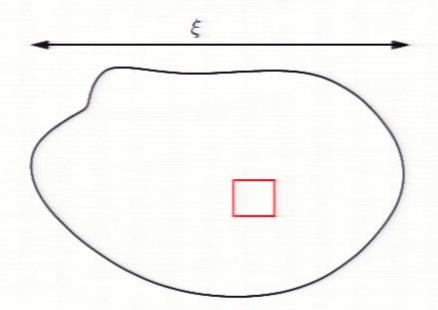
- Again focus on small subsystems
- But now they don't capture the behaviour of the whole system
- For local interactions, we can average over patches

Take a system with a large number of d.o.f. per correlation length



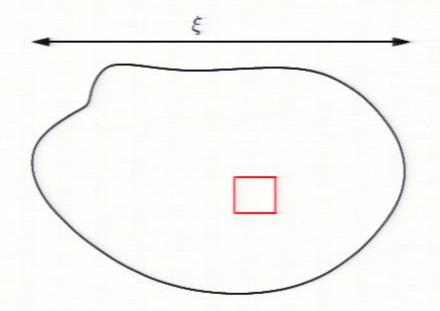
- Again focus on small subsystems
- But now they don't capture the behaviour of the whole system
- For local interactions, we can average over patches

Take a system with a large number of d.o.f. per correlation length



- Again focus on small subsystems
- But now they don't capture the behaviour of the whole system
- For local interactions, we can average over patches

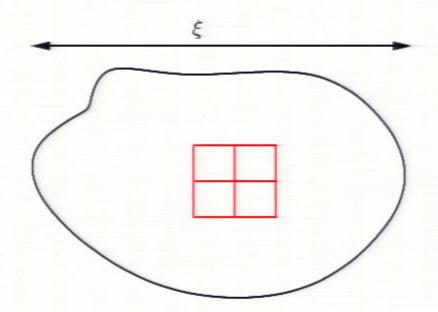
Take a system with a large number of d.o.f. per correlation length



- Again focus on small subsystems
- But now they don't capture the behaviour of the whole system
- For local interactions, we can average over patches

lterating, we build up an understanding of the whole system

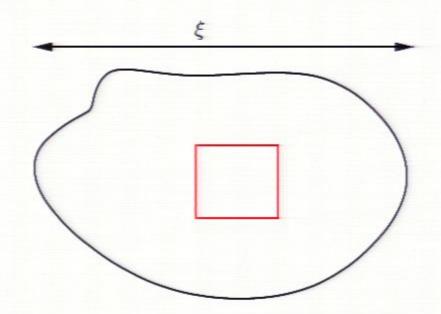
Take a system with a large number of d.o.f. per correlation length



- Again focus on small subsystems
- But now they don't capture the behaviour of the whole system
- For local interactions, we can average over patches

Iterating, we build up an understanding of the whole system Page 30/268

Take a system with a large number of d.o.f. per correlation length



- Again focus on small subsystems
- But now they don't capture the behaviour of the whole system
- For local interactions, we can average over patches

lterating, we build up an understanding of the whole system Page 31/268

Applications

- Quantum field theory
- Critical phenomena
- Kondo effect, ultra-cold gases, nuclear physics,...

What has the ERG given us?

What's the catch?

Applications

- Quantum field theory
- Critical phenomena
- Kondo effect, ultra-cold gases, nuclear physics,...

What has the ERG given us?

What's the catch?

Applications

- Quantum field theory
- Critical phenomena
- Kondo effect, ultra-cold gases, nuclear physics,...

What has the ERG given us?

What's the catch?

Applications

- Quantum field theory
- Critical phenomena
- Kondo effect, ultra-cold gases, nuclear physics,...

What has the ERG given us?

- A deep understanding of renormalization and universality
- A tool for performing real calculations

What's the catch?

Pirsa: 10100037 Page 36/268

Practicalities

Applications

- Quantum field theory
- Critical phenomena
- Kondo effect, ultra-cold gases, nuclear physics,...

What has the ERG given us?

- A deep understanding of renormalization and universality
- A tool for performing real calculations

What's the catch?

Pirsa: 10100037 Page 37/268

Practicalities

Applications

- Quantum field theory
- Critical phenomena
- Kondo effect, ultra-cold gases, nuclear physics,...

What has the ERG given us?

- A deep understanding of renormalization and universality
- A tool for performing real calculations

What's the catch?

Pirsa: 10100037 Page 38/268

Practicalities

Applications

- Quantum field theory
- Critical phenomena
- Kondo effect, ultra-cold gases, nuclear physics,...

What has the ERG given us?

- A deep understanding of renormalization and universality
- A tool for performing real calculations

What's the catch?

The coarse-graining procedure cannot be done exactly

Pirsa: 10100037 Page 39/268

The ERG supports nonperturbative approximation schemes

Page 40/268

Practicalities

Applications

- Quantum field theory
- Critical phenomena
- Kondo effect, ultra-cold gases, nuclear physics,...

What has the ERG given us?

- A deep understanding of renormalization and universality
- A tool for performing real calculations

What's the catch?

- The coarse-graining procedure cannot be done exactly
 - If a small parameter is available we can do perturbation theory
 - For many problems of interest, there is no small parameter

The ERG supports nonperturbative approximation schemes

Page 41/268

Practicalities

Applications

- Quantum field theory
- Critical phenomena
- Kondo effect, ultra-cold gases, nuclear physics,...

What has the ERG given us?

- A deep understanding of renormalization and universality
- A tool for performing real calculations

What's the catch?

Pirsa: 10100037

- The coarse-graining procedure cannot be done exactly
 - If a small parameter is available we can do perturbation theory
 - For many problems of interest, there is no small parameter

The ERG supports nonperturbative approximation schemes

Page 42/268

Practicalities

Applications

- Quantum field theory
- Critical phenomena
- Kondo effect, ultra-cold gases, nuclear physics,...

What has the ERG given us?

- A deep understanding of renormalization and universality
- A tool for performing real calculations

What's the catch?

Pirsa: 10100037

- The coarse-graining procedure cannot be done exactly
 - If a small parameter is available we can do perturbation theory
 - For many problems of interest, there is no small parameter

The ERG supports nonperturbative approximation schemes

Page 43/268

Practicalities

Applications

- Quantum field theory
- Critical phenomena
- Kondo effect, ultra-cold gases, nuclear physics,...

What has the ERG given us?

- A deep understanding of renormalization and universality
- A tool for performing real calculations

What's the catch?

- The coarse-graining procedure cannot be done exactly
 - If a small parameter is available we can do perturbation theory
 - For many problems of interest, there is no small parameter

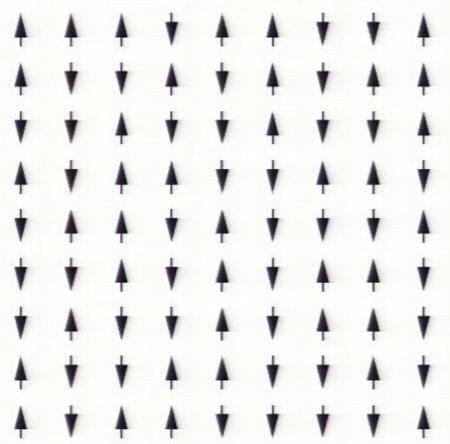
The ERG supports nonperturbative approximation schemes

Pirsa: 10100037 Page 44/268

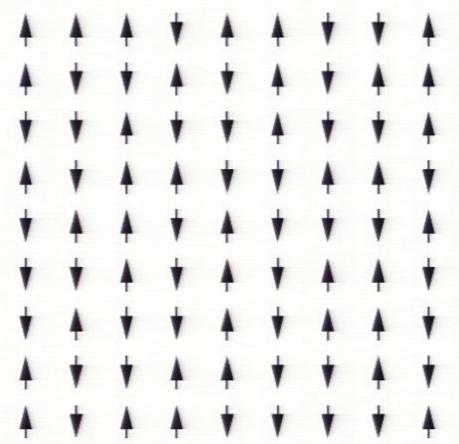
Consider a lattice of spins

Pirsa: 10100037 Page 45/268

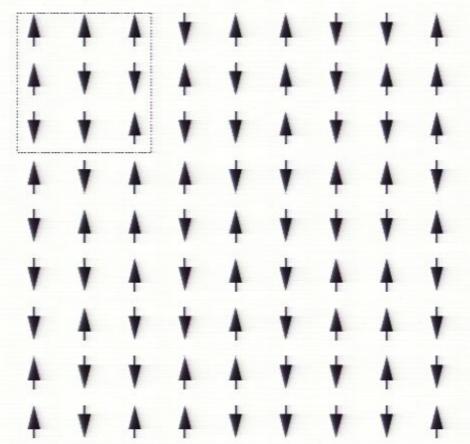
Consider a lattice of spins



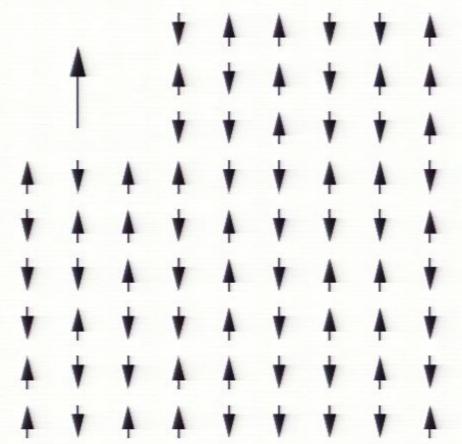
- Consider a lattice of spins
- To go from micro to macro, average over groups of spins
- Rescale



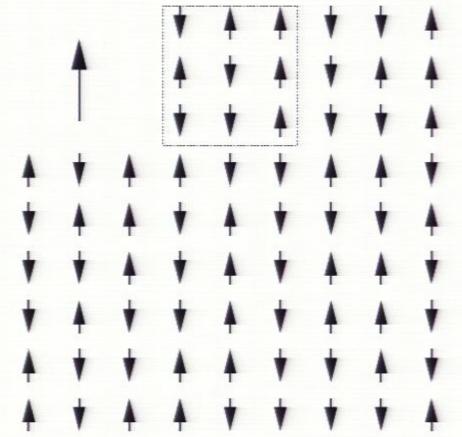
- Consider a lattice of spins
- To go from micro to macro, average over groups of spins
- Rescale



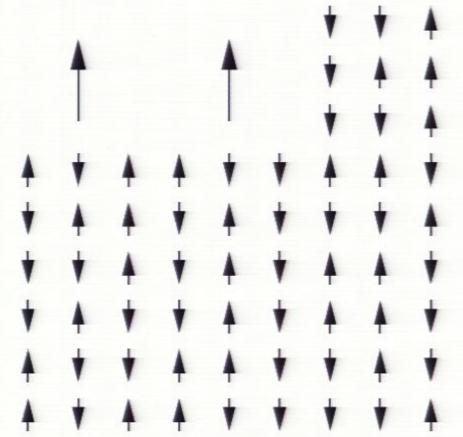
- Consider a lattice of spins
- To go from micro to macro, average over groups of spins
- Rescale



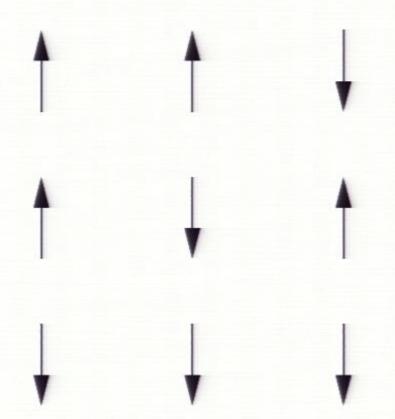
- Consider a lattice of spins
- To go from micro to macro, average over groups of spins
- Rescale



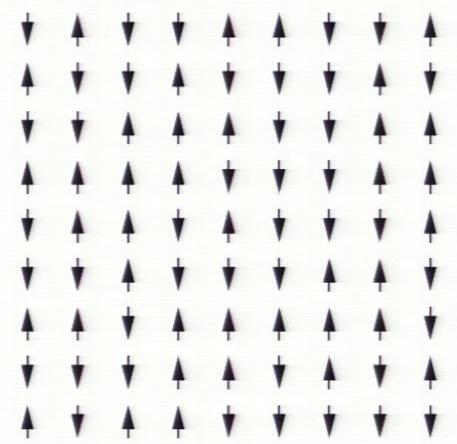
- Consider a lattice of spins
- To go from micro to macro, average over groups of spins
- Rescale



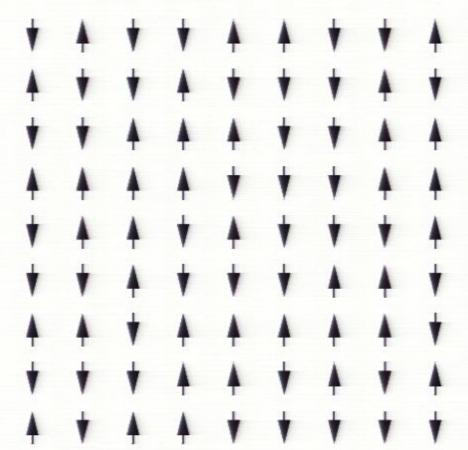
- Consider a lattice of spins
- To go from micro to macro, average over groups of spins
- Rescale



- Consider a lattice of spins
- To go from micro to macro, average over groups of spins
- Rescale



- Consider a lattice of spins
- To go from micro to macro, average over groups of spins
- Rescale



Pirsa: 10100037 Page 54/268

What is the effect of blocking?

What is the effect of blocking?

 Suppose the microscopic spins interact only with their nearest neighbours

Pirsa: 10100037 Page 57/268

What is the effect of blocking?

- Suppose the microscopic spins interact only with their nearest neighbours
- The blocked spins will generically exhibit all possible interactions

What is the effect of blocking?

- Suppose the microscopic spins interact only with their nearest neighbours
- The blocked spins will generically exhibit all possible interactions
- Each time we block, the strengths of the various interactions will change

What is the effect of blocking?

- Suppose the microscopic spins interact only with their nearest neighbours
- The blocked spins will generically exhibit all possible interactions
- Each time we block, the strengths of the various interactions will change

How can we visualize this?

Pirsa: 10100037 Page 60/2<mark>68</mark>

What is the effect of blocking?

- Suppose the microscopic spins interact only with their nearest neighbours
- The blocked spins will generically exhibit all possible interactions
- Each time we block, the strengths of the various interactions will change

How can we visualize this?

Consider the space of all possible interactions

Pirsa: 10100037 Page 61/268

What is the effect of blocking?

- Suppose the microscopic spins interact only with their nearest neighbours
- The blocked spins will generically exhibit all possible interactions
- Each time we block, the strengths of the various interactions will change

How can we visualize this?

- Consider the space of all possible interactions
- Each point in the space represents a strength for every interaction

Pirsa: 10100037 Page 62/268

What is the effect of blocking?

- Suppose the microscopic spins interact only with their nearest neighbours
- The blocked spins will generically exhibit all possible interactions
- Each time we block, the strengths of the various interactions will change

How can we visualize this?

- Consider the space of all possible interactions
- Each point in the space represents a strength for every interaction
- As we block and rescale, we hop in this space

Pirsa: 10100037 Page 63/268

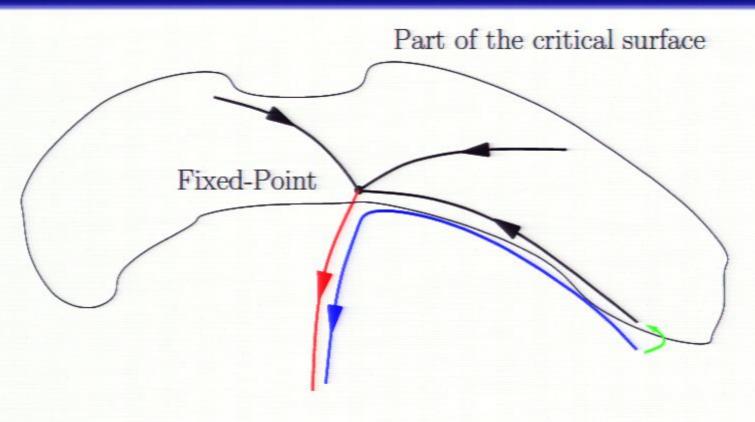
What is the effect of blocking?

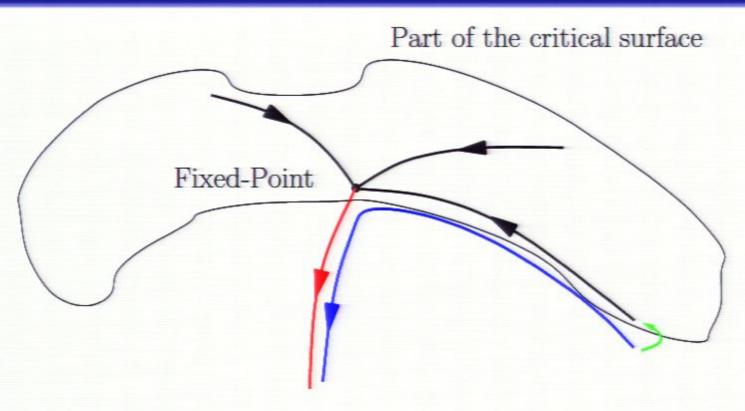
- Suppose the microscopic spins interact only with their nearest neighbours
- The blocked spins will generically exhibit all possible interactions
- Each time we block, the strengths of the various interactions will change

How can we visualize this?

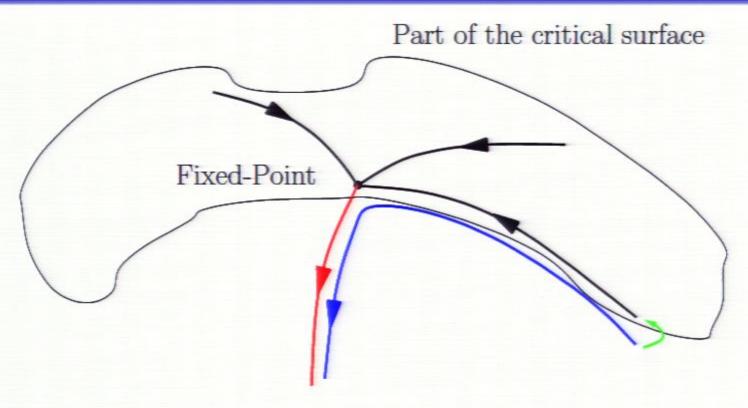
- Consider the space of all possible interactions
- Each point in the space represents a strength for every interaction
- As we block and rescale, we hop in this space

The transformation can have fixed-points



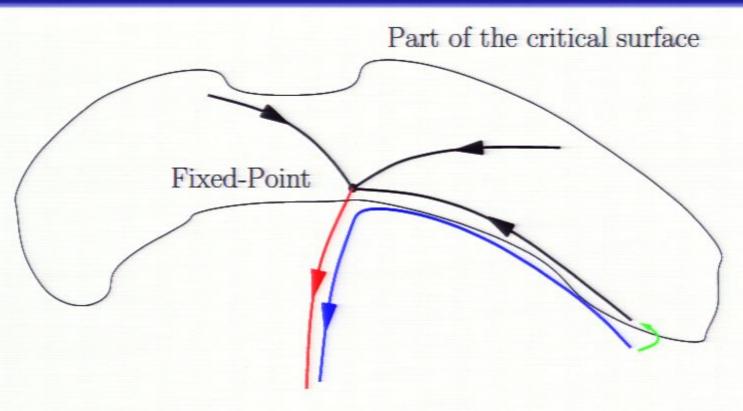


Trajectories in the critical surface flow into the fixed-point



- Trajectories in the critical surface flow into the fixed-point
- The critical surface is spanned by the irrelevant operators

Pirsa: 10100037 Page 67/268



- Trajectories in the critical surface flow into the fixed-point
- The critical surface is spanned by the irrelevant operators
- Flows along the relevant directions leave the critical surface



- Trajectories in the critical surface flow into the fixed-point
- The critical surface is spanned by the irrelevant operators
- Flows along the relevant directions leave the critical surface
- If there are n relevant directions, then we must tune n quantities to get on to the critical surface

The Wilsonian Effective Action

Start with the partition function

The Wilsonian Effective Action

Start with the partition function

$$Z = \int_{\Lambda_0} \mathcal{D}\phi e^{-S_{\Lambda_0}[\phi]} = \int_{\Lambda} \mathcal{D}\phi e^{-S_{\Lambda}[\phi]}$$

The bare scale

- The bare (classical) action
- Integrate out modes between the bare scale and an intermediate scale, \(\Lambda\)

The Wilsonian Effective Action

Start with the partition function

$$Z = \int_{\Lambda_0} \mathcal{D}\phi e^{-S_{\Lambda_0}[\phi]} = \int_{\Lambda} \mathcal{D}\phi e^{-S_{\Lambda}[\phi]}$$

- The bare scale
 - High energy (short distance) scale
 - Modes above this scale are cut off (regularized)
- The bare (classical) action
- Integrate out modes between the bare scale and an intermediate scale, \(\Lambda\)

Pirsa: 10100037 Page 72/268

Start with the partition function

$$Z = \int_{\Lambda_0} \mathcal{D}\phi e^{-S_{\Lambda_0}[\phi]} = \int_{\Lambda} \mathcal{D}\phi e^{-S_{\Lambda}[\phi]}$$

- The bare scale
 - High energy (short distance) scale
 - Modes above this scale are cut off (regularized)
- The bare (classical) action
- Integrate out modes between the bare scale and an intermediate scale, \(\Lambda\)

Pirsa: 10100037 Page 73/268

Start with the partition function

$$Z = \int_{\Lambda_0} \mathcal{D}\phi e^{-S_{\Lambda_0}[\phi]} = \int_{\Lambda} \mathcal{D}\phi e^{-S_{\Lambda}[\phi]}$$

- The bare scale
 - High energy (short distance) scale
 - Modes above this scale are cut off (regularized)
- The bare (classical) action
- Integrate out modes between the bare scale and an intermediate scale, \(\Lambda \)

Page 75/268

The Wilsonian Effective Action

$$Z = \int_{\Lambda_0} \mathcal{D}\phi e^{-S_{\Lambda_0}[\phi]} = \int_{\Lambda} \mathcal{D}\phi e^{-S_{\Lambda}[\phi]}$$

- The bare scale
 - High energy (short distance) scale
 - Modes above this scale are cut off (regularized)
- The bare (classical) action
- Integrate out modes between the bare scale and an intermediate scale, \(\Lambda\)

$$Z = \int_{\Lambda_0} \mathcal{D}\phi e^{-S_{\Lambda_0}[\phi]} = \int_{\Lambda} \mathcal{D}\phi e^{-S_{\Lambda}[\phi]}$$

- The bare scale
 - High energy (short distance) scale
 - Modes above this scale are cut off (regularized)
- The bare (classical) action
- Integrate out modes between the bare scale and an intermediate scale, \(\Lambda\)
 - The partition function stays the same
 - The effects of the high energy modes must be taken into account
 - The action evolves ⇒ Wilsonian effective action

$$Z = \int_{\Lambda_0} \mathcal{D}\phi e^{-S_{\Lambda_0}[\phi]} = \int_{\Lambda} \mathcal{D}\phi e^{-S_{\Lambda}[\phi]}$$

- The bare scale
 - High energy (short distance) scale
 - Modes above this scale are cut off (regularized)
- The bare (classical) action
- Integrate out modes between the bare scale and an intermediate scale, \(\Lambda\)
 - The partition function stays the same
 - The effects of the high energy modes must be taken into account
 - The action evolves ⇒ Wilsonian effective action

$$Z = \int_{\Lambda_0} \mathcal{D}\phi e^{-S_{\Lambda_0}[\phi]} = \int_{\Lambda} \mathcal{D}\phi e^{-S_{\Lambda}[\phi]}$$

- The bare scale
 - High energy (short distance) scale
 - Modes above this scale are cut off (regularized)
- The bare (classical) action
- Integrate out modes between the bare scale and an intermediate scale, \(\Lambda\)
 - The partition function stays the same
 - The effects of the high energy modes must be taken into account
 - The action evolves ⇒ Wilsonian effective action

$$Z = \int_{\Lambda_0} \mathcal{D}\phi e^{-S_{\Lambda_0}[\phi]} = \int_{\Lambda} \mathcal{D}\phi e^{-S_{\Lambda}[\phi]}$$

- The bare scale
 - High energy (short distance) scale
 - Modes above this scale are cut off (regularized)
- The bare (classical) action
- Integrate out modes between the bare scale and an intermediate scale, \(\Lambda\)
 - The partition function stays the same
 - The effects of the high energy modes must be taken into account
 - The action evolves ⇒ Wilsonian effective action

Formulation

$$-\Lambda \partial_{\Lambda} e^{-S[\phi]} = \int_{\mathcal{X}} \frac{\delta}{\delta \phi(x)} \left(\Psi_{x}[\phi] e^{-S[\phi]} \right)$$

- effective scale
- set of fields
- Wilsonian effective action
- partition function, $\int \mathcal{D}\phi e^{-S[\phi]}$, invariant under the flow
- Parametrizes blocking procedure

a huge freedom in precise form—adapt to suit our needs

Formulation

$$-\Lambda \partial_{\Lambda} e^{-S[\phi]} = \int_{x} \frac{\delta}{\delta \phi(x)} \left(\Psi_{x}[\phi] e^{-S[\phi]} \right)$$

- effective scale
- set of fields
- Wilsonian effective action
- partition function, $\int \mathcal{D}\phi e^{-S[\phi]}$, invariant under the flow
- Parametrizes blocking procedure

Formulation

$$-\Lambda \partial_{\Lambda} e^{-S[\phi]} = \int_{x} \frac{\delta}{\delta \phi(x)} \left(\Psi_{x}[\phi] e^{-S[\phi]} \right)$$

- effective scale
- set of fields
- Wilsonian effective action
- partition function, $\int \mathcal{D}\phi e^{-S[\phi]}$, invariant under the flow
- Parametrizes blocking procedure

corresponds to a field redefinition

Formulation

$$-\Lambda \partial_{\Lambda} e^{-S[\phi]} = \int_{x} \frac{\delta}{\delta \phi(x)} \left(\Psi_{x}[\phi] e^{-S[\phi]} \right)$$

- effective scale
- set of fields
- Wilsonian effective action
- partition function, $\int \mathcal{D}\phi e^{-S[\phi]}$, invariant under the flow
- Parametrizes blocking procedure

Formulation

$$-\Lambda \partial_{\Lambda} e^{-S[\phi]} = \int_{\mathcal{X}} \frac{\delta}{\delta \phi(x)} \left(\Psi_{\mathbf{x}}[\phi] e^{-S[\phi]} \right)$$

- effective scale
- set of fields
- Wilsonian effective action
- partition function, $\int \mathcal{D}\phi e^{-S[\phi]}$, invariant under the flow
- Parametrizes blocking procedure
 - huge freedom in precise form—adapt to suit our needs
 - corresponds to a field redefinition

Formulation

$$-\Lambda \partial_{\Lambda} e^{-S[\phi]} = \int_{\mathcal{X}} \frac{\delta}{\delta \phi(x)} \left(\Psi_{\mathbf{x}}[\phi] e^{-S[\phi]} \right)$$

- effective scale
- set of fields
- Wilsonian effective action
- partition function, $\int \mathcal{D}\phi e^{-S[\phi]}$, invariant under the flow
- Parametrizes blocking procedure
 - huge freedom in precise form—adapt to suit our needs
 - corresponds to a field redefinition

Formulation

$$-\Lambda \partial_{\Lambda} e^{-S[\phi]} = \int_{\mathcal{X}} \frac{\delta}{\delta \phi(x)} \left(\Psi_{\mathbf{x}}[\phi] e^{-S[\phi]} \right)$$

- effective scale
- set of fields
- Wilsonian effective action
- partition function, $\int \mathcal{D}\phi e^{-S[\phi]}$, invariant under the flow
- Parametrizes blocking procedure
 - huge freedom in precise form—adapt to suit our needs
 - corresponds to a field redefinition

Formulation

$$-\Lambda \partial_{\Lambda} e^{-S[\phi]} = \int_{\mathcal{X}} \frac{\delta}{\delta \phi(x)} \left(\Psi_{x}[\phi] e^{-S[\phi]} \right)$$

- effective scale
- set of fields
- Wilsonian effective action
- partition function, $\int \mathcal{D}\phi e^{-S[\phi]}$, invariant under the flow
- Parametrizes blocking procedure
 - huge freedom in precise form—adapt to suit our needs
 - corresponds to a field redefinition

Pirsa: 1010
$$\partial_{t}\partial_{\Lambda}S=\int_{x}\frac{\delta S}{\delta\phi(x)}\Psi_{x}-\int_{x}\frac{\delta\Psi_{x}}{\delta\phi(x)}$$

Ingredients of ERG Transformation

- Blocking (coarse-graining)
- Rescaling

Implementing Rescaling

What we need for this talk

Ingredients of ERG Transformation

- Blocking (coarse-graining)
- Rescaling

Implementing Rescaling

What we need for this talk

Page 92/268

Rescaling

Ingredients of ERG Transformation

- Blocking (coarse-graining)
- Rescaling

Implementing Rescaling

- Measure all dimensionful quantities in units of Λ
- Remember to take account of anomalous dimensions!

$$X \to X \Lambda^{\text{full scaling dimension}}$$

- Notation: ϕ dimensionful, φ dimensionless
- \bullet $-\Lambda \partial_{\Lambda} \rightarrow \partial_{t}$, with $t = \ln \mu / \Lambda$

Ingredients of ERG Transformation

- Blocking (coarse-graining)
- Rescaling

Implementing Rescaling

- Measure all dimensionful quantities in units of Λ
- Remember to take account of anomalous dimensions!

$$X \to X \Lambda^{\text{full scaling dimension}}$$

- Notation: ϕ dimensionful, φ dimensionless
- \bullet $-\Lambda \partial_{\Lambda} \rightarrow \partial_{t}$, with $t = \ln \mu / \Lambda$

Ingredients of ERG Transformation

- Blocking (coarse-graining)
- Rescaling

Implementing Rescaling

- Measure all dimensionful quantities in units of Λ
- Remember to take account of anomalous dimensions!

$$X \to X \Lambda^{\text{full scaling dimension}}$$

- Notation: ϕ dimensionful, φ dimensionless
- \bullet $-\Lambda \partial_{\Lambda} \rightarrow \partial_{t}$, with $t = \ln \mu / \Lambda$

Ingredients of ERG Transformation

- Blocking (coarse-graining)
- Rescaling

Implementing Rescaling

- Measure all dimensionful quantities in units of Λ
- Remember to take account of anomalous dimensions!

$$X \to X \Lambda^{\text{full scaling dimension}}$$

- Notation: ϕ dimensionful, φ dimensionless
- \bullet $-\Lambda \partial_{\Lambda} \rightarrow \partial_{t}$, with $t = \ln \mu / \Lambda$

Ingredients of ERG Transformation

- Blocking (coarse-graining)
- Rescaling

Implementing Rescaling

- Measure all dimensionful quantities in units of Λ
- Remember to take account of anomalous dimensions!

$$X \to X \Lambda^{\text{full scaling dimension}}$$

- Notation: ϕ dimensionful, φ dimensionless
- $-\Lambda \partial_{\Lambda} \rightarrow \partial_{t}$, with $t = \ln \mu / \Lambda$

Ingredients of ERG Transformation

- Blocking (coarse-graining)
- Rescaling

Implementing Rescaling

- Measure all dimensionful quantities in units of Λ
- Remember to take account of anomalous dimensions!

$$X \to X \Lambda^{\text{full scaling dimension}}$$

- Notation: ϕ dimensionful, φ dimensionless
- $-\Lambda \partial_{\Lambda} \rightarrow \partial_{t}$, with $t = \ln \mu / \Lambda$

What we need for this talk

Pirsa: 10100037

Page 97/268

• Fixed-points: $\partial_{+}S_{-}[\omega] = 0$

Ingredients of ERG Transformation

- Blocking (coarse-graining)
- Rescaling

Implementing Rescaling

- Measure all dimensionful quantities in units of Λ
- Remember to take account of anomalous dimensions!

$$X \to X \Lambda^{\text{full scaling dimension}}$$

- Notation: ϕ dimensionful, φ dimensionless
- $-\Lambda \partial_{\Lambda} \rightarrow \partial_{t}$, with $t = \ln \mu / \Lambda$

What we need for this talk

Pirsa: 10100037 ERG Equation: $\partial_t S[\varphi] = \dots$

Page 98/268

Ingredients of ERG Transformation

- Blocking (coarse-graining)
- Rescaling

Implementing Rescaling

- Measure all dimensionful quantities in units of Λ
- Remember to take account of anomalous dimensions!

$$X \to X \Lambda^{\text{full scaling dimension}}$$

- Notation: ϕ dimensionful, φ dimensionless
- $-\Lambda \partial_{\Lambda} \rightarrow \partial_{t}$, with $t = \ln \mu / \Lambda$

- Pirsa: 10100037 ERG Equation: $\partial_t S[\varphi] = \dots$
 - Fixed-points: $\partial_{x} S_{x} [\omega] = 0$

- At a fixed-point we have $\partial_t S_* = 0$
- Consider an infinitesimal perturbation

First order classification

Marginal Operators

- At a fixed-point we have $\partial_t S_{\star} = 0$
- Consider an infinitesimal perturbation

First order classification

- Operators that grow with t are relevant
- Operators that shrink with t are irrelevant
- Operators that stay the same are marginal

Marginal Operators

- At a fixed-point we have $\partial_t S_{\star} = 0$
- Consider an infinitesimal perturbation

First order classification

- Operators that grow with t are relevant
- Operators that shrink with t are irrelevant
- Operators that stay the same are marginal

Marginal Operators

- At a fixed-point we have $\partial_t S_{\star} = 0$
- Consider an infinitesimal perturbation

First order classification

- Operators that grow with t are relevant
- Operators that shrink with t are irrelevant
- Operators that stay the same are marginal

Marginal Operators

- At a fixed-point we have $\partial_t S_{\star} = 0$
- Consider an infinitesimal perturbation

First order classification

- Operators that grow with t are relevant
- Operators that shrink with t are irrelevant
- Operators that stay the same are marginal

Marginal Operators

- At a fixed-point we have $\partial_t S_{\star} = 0$
- Consider an infinitesimal perturbation

First order classification

- Operators that grow with t are relevant
- Operators that shrink with t are irrelevant
- Operators that stay the same are marginal

Marginal Operators

- $S_{\star} + a\mathcal{O}_{\text{marginal}}$ is a fixed-point up to $O\left(a^2\right)$
- This might not be true beyond leading order
- Eg the four point coupling in D=4 scalar field theory is marginally irrelevant

An exactly marginal operator generates a line of fixed-points

Pirsa: 10100037 Page 106/268

- At a fixed-point we have $\partial_t S_* = 0$
- Consider an infinitesimal perturbation

First order classification

- Operators that grow with t are relevant
- Operators that shrink with t are irrelevant
- Operators that stay the same are marginal

Marginal Operators

- $S_{\star} + a\mathcal{O}_{\text{marginal}}$ is a fixed-point up to $O(a^2)$
- This might not be true beyond leading order
- Eg the four point coupling in D=4 scalar field theory is marginally irrelevant

An exactly marginal operator generates a line of fixed-points

Page 107/268

Page 108/268

Relevance/Irrelevance

- At a fixed-point we have $\partial_t S_* = 0$
- Consider an infinitesimal perturbation

First order classification

- Operators that grow with t are relevant
- Operators that shrink with t are irrelevant
- Operators that stay the same are marginal

Marginal Operators

- $S_{\star} + a\mathcal{O}_{\text{marginal}}$ is a fixed-point up to $O(a^2)$
- This might not be true beyond leading order
- Eg the four point coupling in D=4 scalar field theory is marginally irrelevant

An exactly marginal operator generates a line of fixed-points

Relevance/Irrelevance

- At a fixed-point we have $\partial_t S_* = 0$
- Consider an infinitesimal perturbation

First order classification

- Operators that grow with t are relevant
- Operators that shrink with t are irrelevant
- Operators that stay the same are marginal

Marginal Operators

- $S_{\star} + a\mathcal{O}_{\text{marginal}}$ is a fixed-point up to $O(a^2)$
- This might not be true beyond leading order
- Eg the four point coupling in D=4 scalar field theory is marginally irrelevant

An exactly marginal operator generates a line of fixed-points

Page 109/268

Relevance/Irrelevance

- At a fixed-point we have $\partial_t S_* = 0$
- Consider an infinitesimal perturbation

First order classification

- Operators that grow with t are relevant
- Operators that shrink with t are irrelevant
- Operators that stay the same are marginal

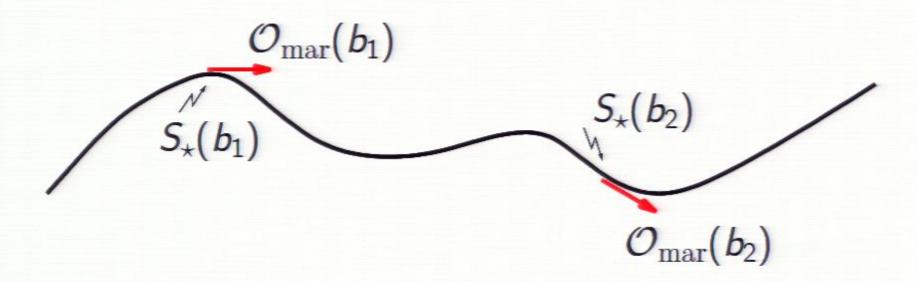
Marginal Operators

- $S_{\star} + a\mathcal{O}_{\text{marginal}}$ is a fixed-point up to $O(a^2)$
- This might not be true beyond leading order
- Eg the four point coupling in D=4 scalar field theory is marginally irrelevant

An exactly marginal operator generates a line of fixed-points

Page 110/268

Relevance/Irrelevance



Qualitative Aspects of the ERG

2 Renormalizability

Correlation Functions in the ERG

Choose an action e.g.

$$S[\phi] = \int d^D x \left[\frac{1}{2} \partial_\mu \phi \partial_\mu \phi + \frac{1}{2} m^2 \phi^2 + \frac{\lambda}{4!} \phi^4 \right]$$

- Choose a UV regulator
- Start computing the correlation functions

$$\langle \phi(x_1) \cdots \phi(x_n) \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}\phi \, \phi(x_1) \cdots \phi(x_n) e^{-S[\phi]}$$

• Adjust the action to absorb UV divergences:

$$S[\phi] \rightarrow S[\phi] + \delta S[\phi]$$

Choose an action e.g.

$$S[\phi] = \int \!\! d^D\!x \left[\frac{1}{2} \partial_\mu \phi \partial_\mu \phi + \frac{1}{2} m^2 \phi^2 + \frac{\lambda}{4!} \phi^4 \right]$$

- Choose a UV regulator
- Start computing the correlation functions

$$\langle \phi(x_1) \cdots \phi(x_n) \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}\phi \, \phi(x_1) \cdots \phi(x_n) e^{-S[\phi]}$$

• Adjust the action to absorb UV divergences:

$$S[\phi] \rightarrow S[\phi] + \delta S[\phi]$$

Choose an action e.g.

$$S[\phi] = \int \!\! d^D\!x \left[\frac{1}{2} \partial_\mu \phi \partial_\mu \phi + \frac{1}{2} m^2 \phi^2 + \frac{\lambda}{4!} \phi^4 \right]$$

- Choose a UV regulator
- Start computing the correlation functions

$$\langle \phi(x_1) \cdots \phi(x_n) \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}\phi \, \phi(x_1) \cdots \phi(x_n) e^{-S[\phi]}$$

• Adjust the action to absorb UV divergences:

$$S[\phi] \rightarrow S[\phi] + \delta S[\phi]$$

Choose an action e.g.

$$S[\phi] = \int \!\! d^D\!x \left[\frac{1}{2} \partial_\mu \phi \partial_\mu \phi + \frac{1}{2} m^2 \phi^2 + \frac{\lambda}{4!} \phi^4 \right]$$

- Choose a UV regulator
- Start computing the correlation functions

$$\langle \phi(x_1) \cdots \phi(x_n) \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}\phi \, \phi(x_1) \cdots \phi(x_n) e^{-S[\phi]}$$

Adjust the action to absorb UV divergences:

$$S[\phi] \rightarrow S[\phi] + \delta S[\phi]$$

Choose an action e.g.

$$S[\phi] = \int \!\! d^D\!x \left[\frac{1}{2} \partial_\mu \phi \partial_\mu \phi + \frac{1}{2} m^2 \phi^2 + \frac{\lambda}{4!} \phi^4 \right]$$

- Choose a UV regulator
- Start computing the correlation functions

$$\langle \phi(x_1) \cdots \phi(x_n) \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}\phi \, \phi(x_1) \cdots \phi(x_n) e^{-S[\phi]}$$

Adjust the action to absorb UV divergences:

$$S[\phi] \rightarrow S[\phi] + \delta S[\phi]$$

The Question

Are there effective actions $S_{\Lambda,\Lambda_0}[\phi]$ for which we can safely send $\Lambda_0 \to \infty$?

The Simplest Answer

The Question

Are there effective actions $S_{\Lambda,\Lambda_0}[\phi]$ for which we can safely send $\Lambda_0 \to \infty$?

The Simplest Answer

- Rescale all quantities, using Λ
- Only dimensionless variables appear
- Fixed-points of the ERG correspond to continuum limits!

0,5,0 = 0

The Question

Are there effective actions $S_{\Lambda,\Lambda_0}[\phi]$ for which we can safely send $\Lambda_0 \to \infty$?

The Simplest Answer

- Rescale all quantities, using Λ
- Only dimensionless variables appear
- Fixed-points of the ERG correspond to continuum limits!

The Question

Are there effective actions $S_{\Lambda,\Lambda_0}[\phi]$ for which we can safely send $\Lambda_0 \to \infty$?

The Simplest Answer

- Rescale all quantities, using Λ
- Only dimensionless variables appear
- Fixed-points of the ERG correspond to continuum limits!

The Question

Are there effective actions $S_{\Lambda,\Lambda_0}[\phi]$ for which we can safely send $\Lambda_0 \to \infty$?

The Simplest Answer

- Rescale all quantities, using Λ
- Only dimensionless variables appear
- Fixed-points of the ERG correspond to continuum limits!

$$\partial_t S_{\star}[\varphi] = 0$$

The Question

Are there effective actions $S_{\Lambda,\Lambda_0}[\phi]$ for which we can safely send $\Lambda_0 \to \infty$?

The Simplest Answer

- Rescale all quantities, using Λ
- Only dimensionless variables appear
- Fixed-points of the ERG correspond to continuum limits!

$$\partial_t S_{\star}[\varphi] = 0$$

The Question

Are there effective actions $S_{\Lambda,\Lambda_0}[\phi]$ for which we can safely send $\Lambda_0 \to \infty$?

The Simplest Answer

- Rescale all quantities, using Λ
- Only dimensionless variables appear
- Fixed-points of the ERG correspond to continuum limits!

$$\partial_t S_{\star}[\varphi] = 0$$

The Question

Are there effective actions $S_{\Lambda,\Lambda_0}[\phi]$ for which we can safely send $\Lambda_0 \to \infty$?

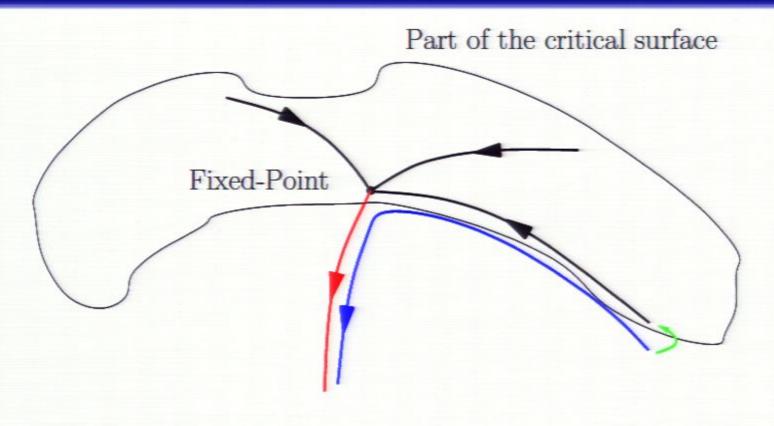
The Simplest Answer

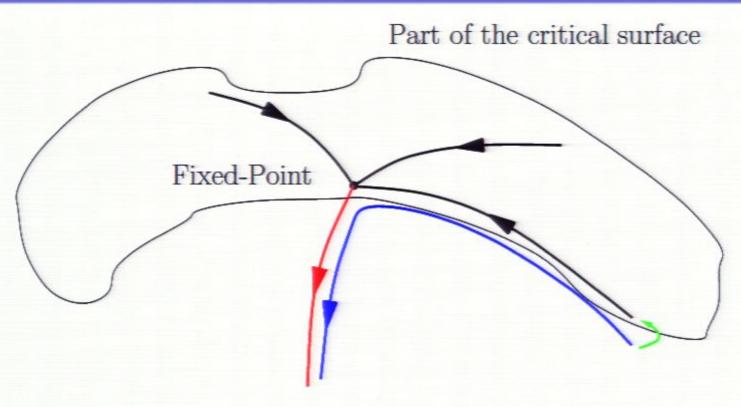
- Rescale all quantities, using Λ
- Only dimensionless variables appear
- Fixed-points of the ERG correspond to continuum limits!

$$\partial_t S_{\star}[\varphi] = 0$$

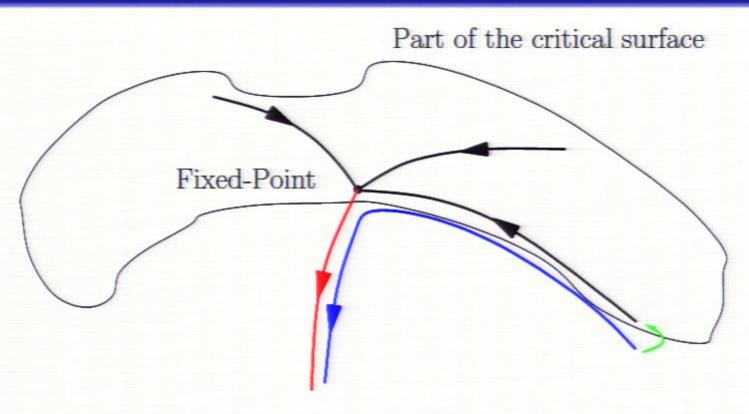
• S_{\star} is independent of all scales, including Λ_0

Pirsa: 10100037 Trivially, we can send $\Lambda_0 \to \infty$

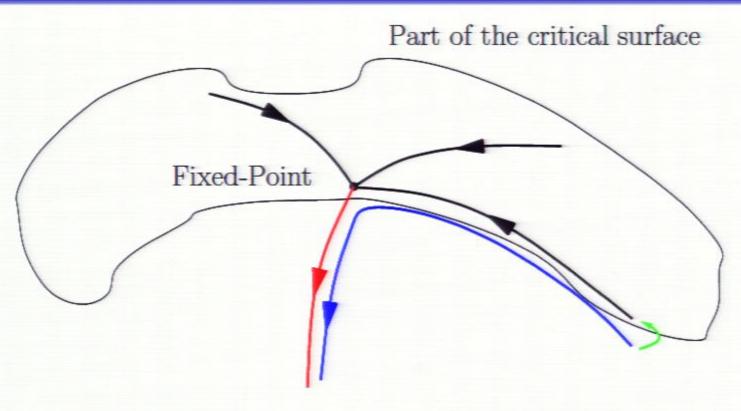




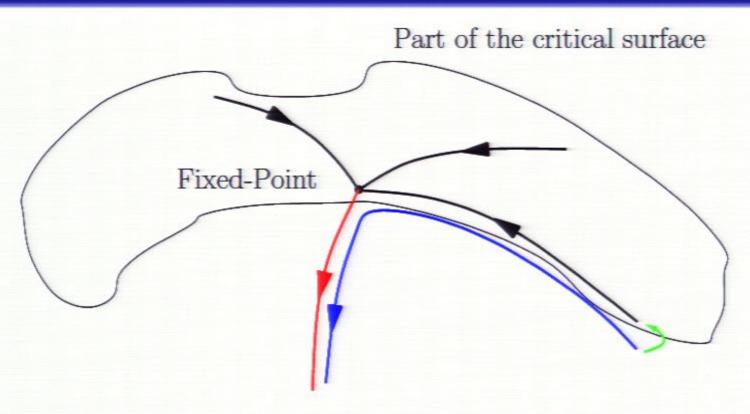
 \bullet Tune the trajectory towards the critical surface, as $\Lambda_0 \to \infty$



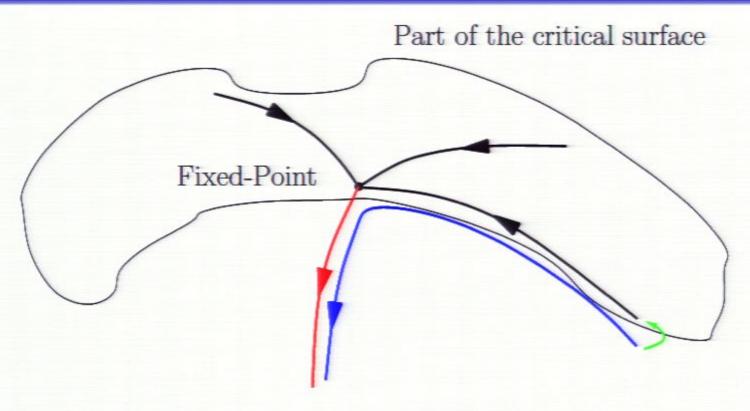
- Tune the trajectory towards the critical surface, as $\Lambda_0 \to \infty$
- The trajectory splits in two:



- Tune the trajectory towards the critical surface, as $\Lambda_0 \to \infty$
- The trajectory splits in two:
 - One part sinks into the fixed-point



- \bullet Tune the trajectory towards the critical surface, as $\Lambda_0 \to \infty$
- The trajectory splits in two:
 - One part sinks into the fixed-point
 - One part emanates out



- Tune the trajectory towards the critical surface, as $\Lambda_0 \to \infty$
- The trajectory splits in two:
 - One part sinks into the fixed-point
 - One part emanates out

Pirsa: 10100037

Actions on the RT are renormalizable

Nonperturbatively renormalizable theories follow from fixed-points

Nonperturbatively renormalizable theories follow from fixed-points

Nonperturbatively renormalizable theories follow from fixed-points

- Either directly
- Or from the renormalized trajectories emanating from them

Theory Space

Nonperturbatively renormalizable theories follow from fixed-points

- Either directly
- Or from the renormalized trajectories emanating from them

Theory Space

Nonperturbatively renormalizable theories follow from fixed-points

- Either directly
- Or from the renormalized trajectories emanating from them

Theory Space

- QFTs should be understood in terms of 'theory space'
- Renormalizable QFTs follow from the solution to an equation

Nonperturbatively renormalizable theories follow from fixed-points

- Either directly
- Or from the renormalized trajectories emanating from them

Theory Space

- QFTs should be understood in terms of 'theory space'
- Renormalizable QFTs follow from the solution to an equation

Nonperturbatively renormalizable theories follow from fixed-points

- Either directly
- Or from the renormalized trajectories emanating from them

Theory Space

- QFTs should be understood in terms of 'theory space'
- Renormalizable QFTs follow from the solution to an equation

Asymptotic Freedom etc.

Asymptotic Freedom etc.

Triviality

Asymptotic Freedom Asymptotic Safety

Asymptotic Freedom etc.

Triviality

Asymptotic Freedom Asymptotic Safety

GFP

no interacting relevant directions

massive,

Pirsa: 10100037 trivial theory

Page 144/268

Triviality

Asymptotic Freedom Asymptotic Safety

GFP

no interacting relevant directions

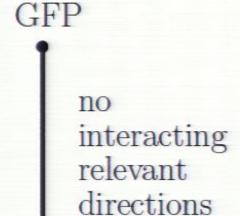
massive,

Pirsa: 10100037 trivial theory

Page 145/268

Asymptotic Freedom Asymptotic Safety

GFP



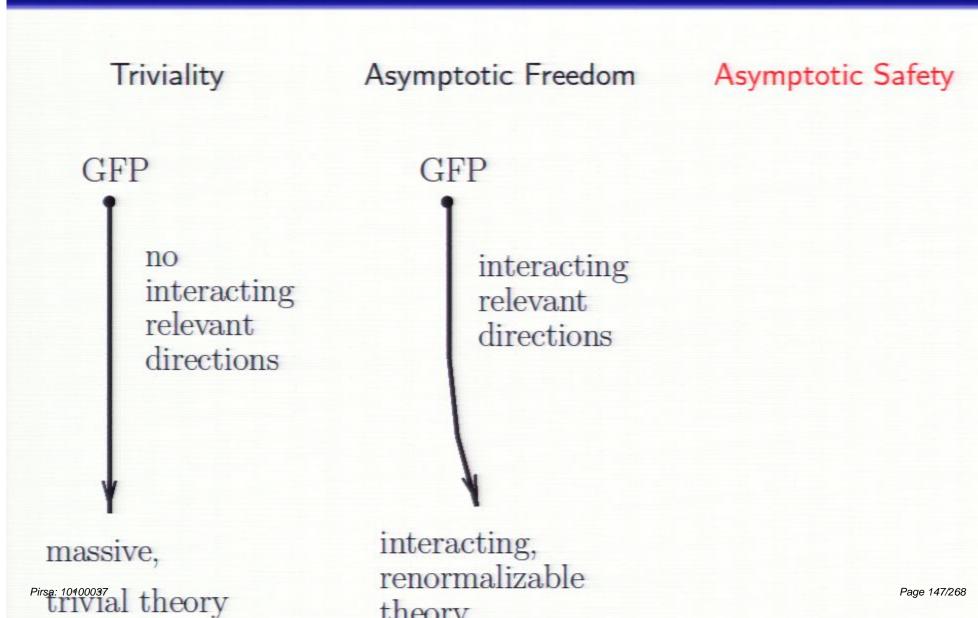
interacting relevant directions

massive,

Pirsa: 10100037 trivial theory

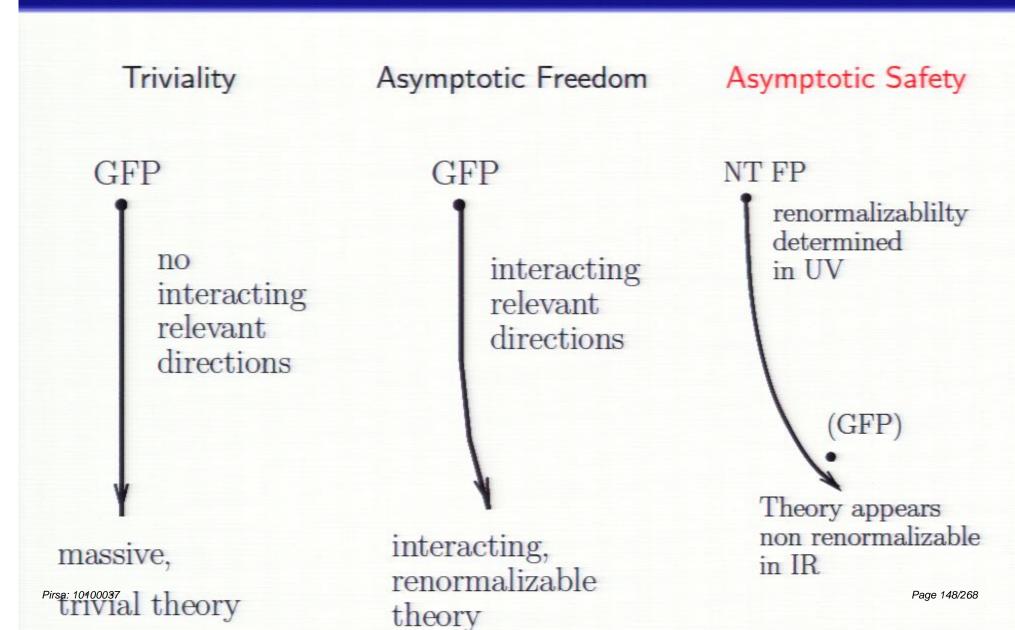
interacting, renormalizable theory

Page 146/268



theory

Page 147/268



- Only the Gaussian FP exists
- The mass is relevant.
- The four point coupling is marginally irrelevant
- All other couplings are irrelevant
- The only nonperturbatively renormalizable scalar field theories in four dimensions are trivial!

- Only the Gaussian FP exists
- The mass is relevant
- The four point coupling is marginally irrelevant
- All other couplings are irrelevant
- The only nonperturbatively renormalizable scalar field theories in four dimensions are trivial!

- Only the Gaussian FP exists
- The mass is relevant
- The four point coupling is marginally irrelevant
- All other couplings are irrelevant
- The only nonperturbatively renormalizable scalar field theories in four dimensions are trivial!

- Only the Gaussian FP exists
- The mass is relevant
- The four point coupling is marginally irrelevant
- All other couplings are irrelevant
- The only nonperturbatively renormalizable scalar field theories in four dimensions are trivial!

- Only the Gaussian FP exists
- The mass is relevant
- The four point coupling is marginally irrelevant
- All other couplings are irrelevant
- The only nonperturbatively renormalizable scalar field theories in four dimensions are trivial!

Gaussian Fixed-point

- The mass term is relevant
- The four-point coupling is relevant
- Non-trivial renormalizable theories exist along the $\lambda \varphi^4$ direction!

Wilson-Fisher Fixed-point

Gaussian Fixed-point

- The mass term is relevant
- The four-point coupling is relevant
- Non-trivial renormalizable theories exist along the $\lambda \varphi^4$ direction!

Wilson-Fisher Fixed-point

Pirsa: 10100037 Page 157/268

Gaussian Fixed-point

- The mass term is relevant
- The four-point coupling is relevant
- Non-trivial renormalizable theories exist along the $\lambda \varphi^4$ direction!

Wilson-Fisher Fixed-point

Gaussian Fixed-point

- The mass term is relevant
- The four-point coupling is relevant
- Non-trivial renormalizable theories exist along the $\lambda \varphi^4$ direction!

Wilson-Fisher Fixed-point

Gaussian Fixed-point

- The mass term is relevant
- The four-point coupling is relevant
- Non-trivial renormalizable theories exist along the $\lambda \varphi^4$ direction!

Wilson-Fisher Fixed-point

- In addition to the Gaussian FP, there is a non-trivial FP
- The W-F FP possesses a single relevant direction
- This can also be used to construct an RT

Gaussian Fixed-point

- The mass term is relevant
- The four-point coupling is relevant
- Non-trivial renormalizable theories exist along the $\lambda \varphi^4$ direction!

Wilson-Fisher Fixed-point

- In addition to the Gaussian FP, there is a non-trivial FP
- The W-F FP possesses a single relevant direction
- This can also be used to construct an RT

Gaussian Fixed-point

- The mass term is relevant
- The four-point coupling is relevant
- Non-trivial renormalizable theories exist along the $\lambda \varphi^4$ direction!

Wilson-Fisher Fixed-point

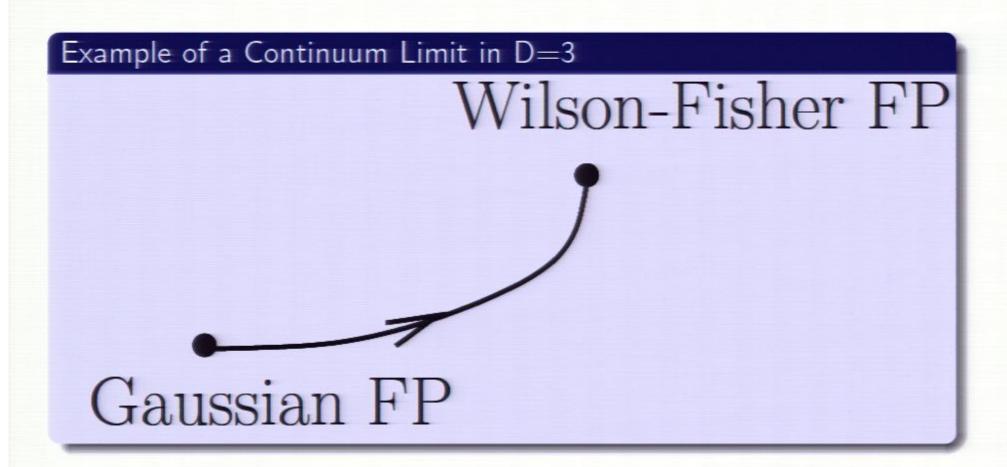
- In addition to the Gaussian FP, there is a non-trivial FP
- The W-F FP possesses a single relevant direction
- This can also be used to construct an RT

Gaussian Fixed-point

- The mass term is relevant
- The four-point coupling is relevant
- Non-trivial renormalizable theories exist along the $\lambda \varphi^4$ direction!

Wilson-Fisher Fixed-point

- In addition to the Gaussian FP, there is a non-trivial FP
- The W-F FP possesses a single relevant direction
- This can also be used to construct an RT



Question: What is the link?

- Textbook formulation is in terms of correlation functions
- Wilsonian formulation is in terms of S_{Λ}

My aims in the rest of this talk

Question: What is the link?

- Textbook formulation is in terms of correlation functions
- Wilsonian formulation is in terms of S_{Λ}

My aims in the rest of this talk

Question: What is the link?

- Textbook formulation is in terms of correlation functions
- Wilsonian formulation is in terms of S_{Λ}

My aims in the rest of this talk

Question: What is the link?

- Textbook formulation is in terms of correlation functions
- Wilsonian formulation is in terms of S_{Λ}

My aims in the rest of this talk

To convince you that the question is profound

Pirsa: 10100037 Page 169/268

Question: What is the link?

- Textbook formulation is in terms of correlation functions
- Wilsonian formulation is in terms of S_{Λ}

My aims in the rest of this talk

To convince you that the question is profound

Pirsa: 10100037 Page 170/268

Qualitative Aspects of the ERG

Renormalizability

Correlation Functions in the ERG

Polchinski made a particular choice

$$\Psi = \Psi_{Pol}$$

Pros

Polchinski made a particular choice

$$\Psi = \Psi_{Pol}$$

Pros

- The flow equation is simple
- The correlation functions can be extracted from $S_{\Lambda=0}$
- Renormalizability of $S \Rightarrow$ renormalizability of $\langle \phi(x_1) \cdots \phi(x_n) \rangle$

Polchinski made a particular choice

$$\Psi = \Psi_{Pol}$$

Pros

- The flow equation is simple
- The correlation functions can be extracted from $S_{\Lambda=0}$
- Renormalizability of $S \Rightarrow$ renormalizability of $\langle \phi(x_1) \cdots \phi(x_n) \rangle$

Polchinski made a particular choice

$$\Psi = \Psi_{Pol}$$

Pros

- The flow equation is simple
- The correlation functions can be extracted from $S_{\Lambda=0}$
- Renormalizability of $S \Rightarrow$ renormalizability of $\langle \phi(x_1) \cdots \phi(x_n) \rangle$

Polchinski made a particular choice

$$\Psi = \Psi_{Pol}$$

Pros

- The flow equation is simple
- The correlation functions can be extracted from $S_{\Lambda=0}$
- Renormalizability of $S \Rightarrow$ renormalizability of $\langle \phi(x_1) \cdots \phi(x_n) \rangle$

Polchinski made a particular choice

$$\Psi = \Psi_{Pol}$$

Pros

- The flow equation is simple
- The correlation functions can be extracted from $S_{\Lambda=0}$
- Renormalizability of $S \Rightarrow$ renormalizability of $\langle \phi(x_1) \cdots \phi(x_n) \rangle$

Cons

It is inconvenient for finding fixed-points

Polchinski made a particular choice

$$\Psi = \Psi_{Pol}$$

Pros

- The flow equation is simple
- The correlation functions can be extracted from $S_{\Lambda=0}$
- Renormalizability of $S \Rightarrow$ renormalizability of $\langle \phi(x_1) \cdots \phi(x_n) \rangle$

Cons

It is inconvenient for finding fixed-points

A modified version of Polchinski's equation

Pirsa: 10100037 Page 180/268

Allow for an extra field redefinition along the flow

$$\Psi = \Psi_{Pol} + \psi$$

Choose

$$\psi = -\frac{1}{2}\eta\phi, \qquad \eta \equiv \Lambda \frac{d\ln Z}{d\Lambda}$$

- ullet Since ψ is a field redefinition, this choice ensures canonical normalization of the kinetic term
- The redundant coupling, Z, is removed from the action

Allow for an extra field redefinition along the flow

$$\Psi = \Psi_{Pol} + \psi$$

Choose

$$\psi = -\frac{1}{2}\eta\phi, \qquad \eta \equiv \Lambda \frac{d\ln Z}{d\Lambda}$$

- ullet Since ψ is a field redefinition, this choice ensures canonical normalization of the kinetic term
- The redundant coupling, Z, is removed from the action

Allow for an extra field redefinition along the flow

$$\Psi = \Psi_{Pol} + \psi$$

Choose

$$\psi = -\frac{1}{2}\eta\phi, \qquad \eta \equiv \Lambda \frac{d\ln Z}{d\Lambda}$$

- ullet Since ψ is a field redefinition, this choice ensures canonical normalization of the kinetic term
- The redundant coupling, Z, is removed from the action

Allow for an extra field redefinition along the flow

$$\Psi = \Psi_{Pol} + \psi$$

Choose

$$\psi = -\frac{1}{2}\eta\phi, \qquad \eta \equiv \Lambda \frac{d\ln Z}{d\Lambda}$$

- ullet Since ψ is a field redefinition, this choice ensures canonical normalization of the kinetic term
- The redundant coupling, Z, is removed from the action

Allow for an extra field redefinition along the flow

$$\Psi = \Psi_{\text{Pol}} + \psi$$

Choose

$$\psi = -\frac{1}{2}\eta\phi, \qquad \eta \equiv \Lambda \frac{d\ln Z}{d\Lambda}$$

- ullet Since ψ is a field redefinition, this choice ensures canonical normalization of the kinetic term
- The redundant coupling, Z, is removed from the action

Pros

• Easy to find fixed-points with $\eta_* \neq 0$

Allow for an extra field redefinition along the flow

$$\Psi = \Psi_{Pol} + \psi$$

Choose

$$\psi = -\frac{1}{2}\eta\phi, \qquad \eta \equiv \Lambda \frac{d\ln Z}{d\Lambda}$$

- ullet Since ψ is a field redefinition, this choice ensures canonical normalization of the kinetic term
- The redundant coupling, Z, is removed from the action

Pros

• Easy to find fixed-points with $\eta_{\star} \neq 0$

Allow for an extra field redefinition along the flow

$$\Psi = \Psi_{Pol} + \psi$$

Choose

$$\psi = -\frac{1}{2}\eta\phi, \qquad \eta \equiv \Lambda \frac{d\ln Z}{d\Lambda}$$

- ullet Since ψ is a field redefinition, this choice ensures canonical normalization of the kinetic term
- The redundant coupling, Z, is removed from the action

Pros

• Easy to find fixed-points with $\eta_{\star} \neq 0$

Cons

Page 187/268

• The link between S and $\langle \phi(x_1) \cdots \phi(x_n) \rangle$ changes

Allow for an extra field redefinition along the flow

$$\Psi = \Psi_{\text{Pol}} + \psi$$

Choose

$$\psi = -\frac{1}{2}\eta\phi, \qquad \eta \equiv \Lambda \frac{d\ln Z}{d\Lambda}$$

- ullet Since ψ is a field redefinition, this choice ensures canonical normalization of the kinetic term
- The redundant coupling, Z, is removed from the action

Pros

• Easy to find fixed-points with $\eta_{\star} \neq 0$

Cons

Page 188/268

• The link between S and $\langle \phi(x_1) \cdots \phi(x_n) \rangle$ changes

The Standard Correlation Functions

Introduce a source term in the bare action

$$\mathcal{Z}[J] = \int \mathcal{D}\phi \, e^{-S_{\Lambda_0}[\phi] + J \cdot \phi}$$

ullet Extract the connected correlation functions from $W[J] \equiv \ln \mathcal{Z}$

$$\langle \phi(x_1) \cdots \phi(x_n) \rangle_{\text{conn}} = \frac{\delta}{\delta J(x_1)} \cdots \frac{\delta}{\delta J(x_n)} W[J] \Big|_{J=0}$$

Composite Operators

The Standard Correlation Functions

Introduce a source term in the bare action

$$\mathcal{Z}[J] = \int \mathcal{D}\phi \, e^{-S_{\mathsf{N}_0}[\phi] + J \cdot \phi}$$

• Extract the connected correlation functions from $W[J] \equiv \ln \mathcal{Z}$

$$\langle \phi(x_1) \cdots \phi(x_n) \rangle_{\text{conn}} = \frac{\delta}{\delta J(x_1)} \cdots \frac{\delta}{\delta J(x_n)} W[J] \Big|_{J=0}$$

Composite Operators

The Standard Correlation Functions

Introduce a source term in the bare action

$$\mathcal{Z}[J] = \int \mathcal{D}\phi \, e^{-S_{\mathsf{N}_0}[\phi] + J \cdot \phi}$$

• Extract the connected correlation functions from $W[J] \equiv \ln Z$

$$\langle \phi(x_1) \cdots \phi(x_n) \rangle_{\text{conn}} = \frac{\delta}{\delta J(x_1)} \cdots \frac{\delta}{\delta J(x_n)} W[J] \Big|_{J=0}$$

Composite Operators

The Standard Correlation Functions

Introduce a source term in the bare action

$$\mathcal{Z}[J] = \int \mathcal{D}\phi \, e^{-S_{\mathsf{N}_0}[\phi] + J \cdot \phi}$$

• Extract the connected correlation functions from $W[J] \equiv \ln \mathcal{Z}$

$$\langle \phi(x_1) \cdots \phi(x_n) \rangle_{\text{conn}} = \frac{\delta}{\delta J(x_1)} \cdots \frac{\delta}{\delta J(x_n)} W[J] \Big|_{J=0}$$

Composite Operators

- Add additional source terms e.g. $J_2 \cdot \phi^2$
- ullet Take derivatives with respect to J and J_2 to find

$$\langle \phi(x_1) \cdots \phi(x_n) \phi^2(y_1) \cdots \phi^2(y_m) \rangle_{\text{conn}}$$

Pirsa: 10100037 Page 193/268

The Standard Correlation Functions

Introduce a source term in the bare action

$$\mathcal{Z}[J] = \int \mathcal{D}\phi \, e^{-S_{\Lambda_0}[\phi] + J \cdot \phi}$$

• Extract the connected correlation functions from $W[J] \equiv \ln \mathcal{Z}$

$$\langle \phi(x_1) \cdots \phi(x_n) \rangle_{\text{conn}} = \frac{\delta}{\delta J(x_1)} \cdots \frac{\delta}{\delta J(x_n)} W[J] \Big|_{J=0}$$

Composite Operators

- Add additional source terms e.g. $J_2 \cdot \phi^2$
- \bullet Take derivatives with respect to J and J_2 to find

$$\langle \phi(x_1) \cdots \phi(x_n) \phi^2(y_1) \cdots \phi^2(y_m) \rangle_{\text{conn}}$$

Pirsa: 10100037 Page 194/268

The Standard Correlation Functions

Introduce a source term in the bare action

$$\mathcal{Z}[J] = \int \mathcal{D}\phi \, e^{-S_{\mathsf{N}_0}[\phi] + J \cdot \phi}$$

• Extract the connected correlation functions from $W[J] \equiv \ln Z$

$$\langle \phi(x_1) \cdots \phi(x_n) \rangle_{\text{conn}} = \frac{\delta}{\delta J(x_1)} \cdots \frac{\delta}{\delta J(x_n)} W[J] \Big|_{J=0}$$

Composite Operators

- Add additional source terms e.g. $J_2 \cdot \phi^2$
- Take derivatives with respect to J and J_2 to find

$$\langle \phi(x_1) \cdots \phi(x_n) \phi^2(y_1) \cdots \phi^2(y_m) \rangle_{\text{conn}}$$

Pirsa: 10100037 Page 195/268

The Standard Correlation Functions

Introduce a source term in the bare action

$$\mathcal{Z}[J] = \int \mathcal{D}\phi \, e^{-S_{\mathsf{N}_0}[\phi] + J \cdot \phi}$$

• Extract the connected correlation functions from $W[J] \equiv \ln Z$

$$\langle \phi(x_1) \cdots \phi(x_n) \rangle_{\text{conn}} = \frac{\delta}{\delta J(x_1)} \cdots \frac{\delta}{\delta J(x_n)} W[J] \Big|_{J=0}$$

Composite Operators

- Add additional source terms e.g. $J_2 \cdot \phi^2$
- Take derivatives with respect to J and J_2 to find

$$\langle \phi(x_1) \cdots \phi(x_n) \phi^2(y_1) \cdots \phi^2(y_m) \rangle_{\text{conn}}$$

Pirsa: 10100037 Page 196/268

- Introduce an external field, J, with undetermined scaling dimension, d_J
- Allow for J-dependence of the action

$$S_{\Lambda}[\phi] \to T_{\Lambda}[\phi, J]$$

The flow equation follows as before

$$-\Lambda \partial_{\Lambda} e^{-T_{\Lambda}[\phi,J]} = \int \!\! d^{D}\!x \, \frac{\delta}{\delta \phi(x)} \left\{ \Psi(x) e^{-T_{\Lambda}[\phi,J]} \right\}$$

A sensible boundary condition would be

$$\lim_{\Lambda \to \Lambda_0} T_{\Lambda}[\phi, J] - S_{\Lambda}[\phi] = -J \cdot \phi$$

Pirsa: 10100037

Page 198/268

But we will not implement the bc in this way

- Introduce an external field, J, with undetermined scaling dimension, d_J
- Allow for J-dependence of the action

$$S_{\Lambda}[\phi] \to T_{\Lambda}[\phi, J]$$

The flow equation follows as before

$$-\Lambda \partial_{\Lambda} e^{-T_{\Lambda}[\phi,J]} = \int \! d^{D}\!x \, \frac{\delta}{\delta \phi(x)} \left\{ \Psi(x) e^{-T_{\Lambda}[\phi,J]} \right\}$$

A sensible boundary condition would be

$$\lim_{\Lambda \to \Lambda_0} T_{\Lambda}[\phi, J] - S_{\Lambda}[\phi] = -J \cdot \phi$$

Pirsa: 10100037

Page 200/268

But we will not implement the bc in this way

- Introduce an external field, J, with undetermined scaling dimension, d_J
- Allow for J-dependence of the action

$$S_{\Lambda}[\phi] \to T_{\Lambda}[\phi, J]$$

The flow equation follows as before

$$-\Lambda \partial_{\Lambda} e^{-T_{\Lambda}[\phi,J]} = \int \!\! d^{D}\!x \, \frac{\delta}{\delta \phi(x)} \left\{ \Psi(x) e^{-T_{\Lambda}[\phi,J]} \right\}$$

A sensible boundary condition would be

$$\lim_{\Lambda \to \Lambda_0} T_{\Lambda}[\phi, J] - S_{\Lambda}[\phi] = -J \cdot \phi$$

Pirsa: 10100037

Page 201/268

- Introduce an external field, J, with undetermined scaling dimension, d_J
- Allow for J-dependence of the action

$$S_{\Lambda}[\phi] \to T_{\Lambda}[\phi, J]$$

The flow equation follows as before

$$-\Lambda \partial_{\Lambda} e^{-T_{\Lambda}[\phi,J]} = \int \!\! d^D\!x \, \frac{\delta}{\delta \phi(x)} \left\{ \Psi(x) e^{-T_{\Lambda}[\phi,J]} \right\}$$

A sensible boundary condition would be

$$\lim_{\Lambda \to \Lambda_0} T_{\Lambda}[\phi, J] - S_{\Lambda}[\phi] = -J \cdot \phi$$

Pirsa: 10100037

Page 202/268

But we will not implement the bc in this way

- Introduce an external field, J, with undetermined scaling dimension, d_J
- Allow for J-dependence of the action

$$S_{\Lambda}[\phi] \to T_{\Lambda}[\phi, J]$$

The flow equation follows as before

$$-\Lambda \partial_{\Lambda} e^{-T_{\Lambda}[\phi,J]} = \int \!\! d^D\!x \, \frac{\delta}{\delta \phi(x)} \left\{ \Psi(x) e^{-T_{\Lambda}[\phi,J]} \right\}$$

A sensible boundary condition would be

$$\lim_{\Lambda \to \Lambda_0} T_{\Lambda}[\phi, J] - S_{\Lambda}[\phi] = -J \cdot \phi$$

Pirsa: 10100037

But we will not implement the bc in this way

Page 203/268

- Introduce an external field, J, with undetermined scaling dimension, d_J
- Allow for J-dependence of the action

$$S_{\Lambda}[\phi] \to T_{\Lambda}[\phi, J]$$

The flow equation follows as before

$$-\Lambda \partial_{\Lambda} e^{-T_{\Lambda}[\phi,J]} = \int d^{D}x \, \frac{\delta}{\delta \phi(x)} \left\{ \Psi(x) e^{-T_{\Lambda}[\phi,J]} \right\}$$

A sensible boundary condition would be

$$\lim_{\Lambda \to \Lambda_0} T_{\Lambda}[\phi, J] - S_{\Lambda}[\phi] = -J \cdot \phi$$

Pirsa: 10100037

Page 204/268

But we will not implement the bc in this way

Pirsa: 10100037 Page 205/268

The game

Search for renormalizable, source-dependent solutions

The strategy

Notation

The game

Search for renormalizable, source-dependent solutions

The strategy

Notation

The game

Search for renormalizable, source-dependent solutions

The strategy

Nonperturbatively renormalizable solutions follow from fixed-points

- Either directly: $\partial_t T_*[\varphi,j] = 0$
- Or from relevant (source-dependent) perturbations

Notation

The game

Search for renormalizable, source-dependent solutions

The strategy

Nonperturbatively renormalizable solutions follow from fixed-points

- Either directly: $\partial_t T_*[\varphi,j] = 0$
- Or from relevant (source-dependent) perturbations

Notation

The game

Search for renormalizable, source-dependent solutions

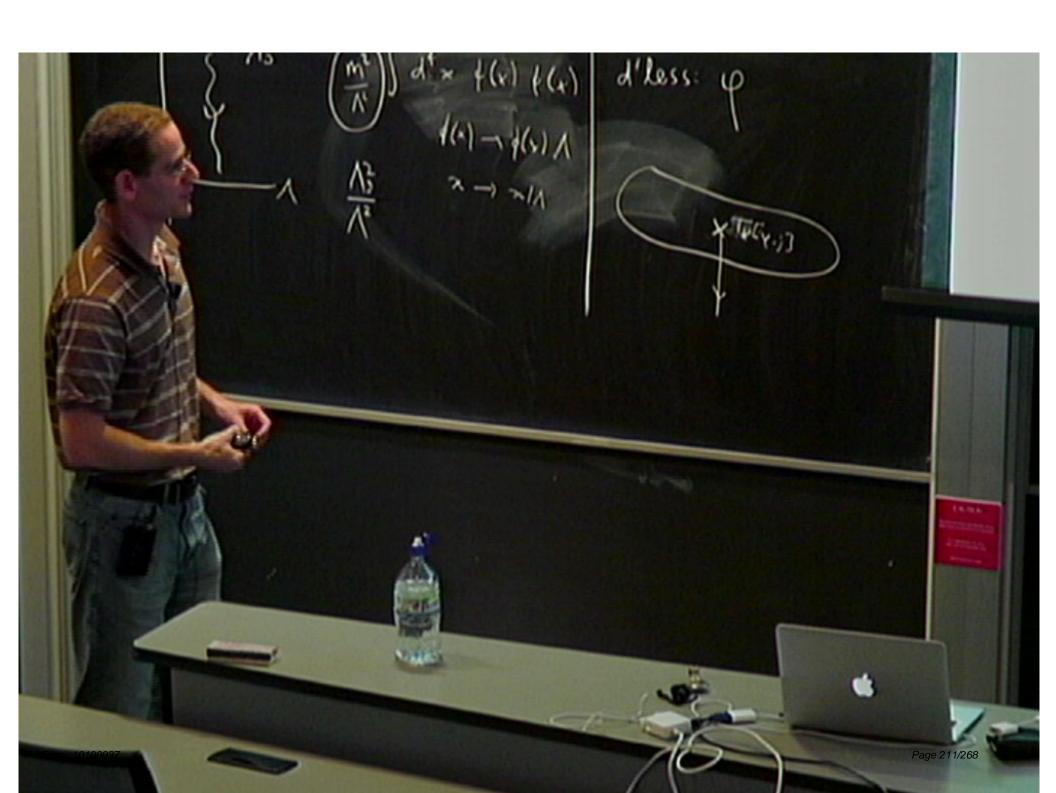
The strategy

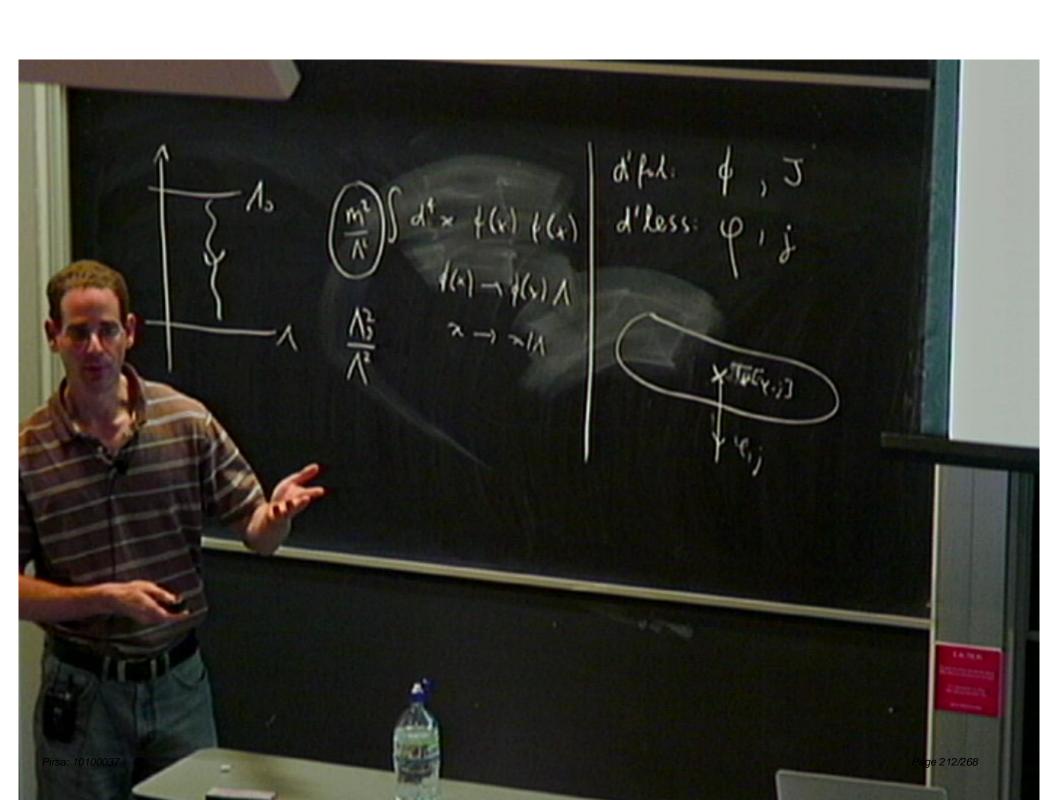
Nonperturbatively renormalizable solutions follow from fixed-points

- Either directly: $\partial_t T_*[\varphi,j] = 0$
- Or from relevant (source-dependent) perturbations

Notation

Pirsa: 10100037 Page 210/268





Suppose that we have found a critical fixed-point

$$\partial_t S_{\star}[\varphi] = 0$$

Then there is always a source-dependent f-p

$$T_{\star}[\varphi,j] = S_{\star}[\varphi] + \left[e^{-\bar{j}\cdot\varrho\cdot\delta/\delta\varphi} - 1\right] \left[S_{\star}[\varphi] + \frac{1}{2}\varphi\cdot f\cdot\varphi\right]$$

Suppose that we have found a critical fixed-point

$$\partial_t S_{\star}[\varphi] = 0$$

Then there is always a source-dependent f-p

$$T_{\star}[\varphi,j] = S_{\star}[\varphi] + \left[e^{-\bar{j}\cdot\varrho\cdot\delta/\delta\varphi} - 1\right] \left[S_{\star}[\varphi] + \frac{1}{2}\varphi\cdot f\cdot\varphi\right]$$

•
$$\bar{j}(p) \equiv j(p)/p^2$$

•
$$\varrho = \varrho(p^2)$$
, $f = f(p^2)$

Suppose that we have found a critical fixed-point

$$\partial_t S_{\star}[\varphi] = 0$$

Then there is always a source-dependent f-p

$$T_{\star}[\varphi,j] = S_{\star}[\varphi] + \left[e^{-\overline{j}\cdot\varrho\cdot\delta/\delta\varphi} - 1\right] \left[S_{\star}[\varphi] + \frac{1}{2}\varphi\cdot f\cdot\varphi\right]$$

•
$$\overline{j}(p) \equiv j(p)/p^2$$

• $\varrho = \varrho(p^2), f = f(p^2)$

Suppose that we have found a critical fixed-point

$$\partial_t S_{\star}[\varphi] = 0$$

Then there is always a source-dependent f-p

$$T_{\star}[\varphi,j] = S_{\star}[\varphi] + \left[e^{-\bar{j}\cdot\underline{\varrho}\cdot\delta/\delta\varphi} - 1\right] \left[S_{\star}[\varphi] + \frac{1}{2}\varphi\cdot f\cdot\varphi\right]$$

- $\bar{j}(p) \equiv j(p)/p^2$
- $\varrho = \varrho(p^2), f = f(p^2)$

A Source-Dependent Fixed-Point

Suppose that we have found a critical fixed-point

$$\partial_t S_{\star}[\varphi] = 0$$

Then there is always a source-dependent f-p

$$T_{\star}[\varphi,j] = S_{\star}[\varphi] + \left[e^{-\bar{j}\cdot\varrho\cdot\delta/\delta\varphi} - 1\right] \left[S_{\star}[\varphi] + \frac{1}{2}\varphi\cdot f\cdot\varphi\right]$$

- $\bar{j}(p) \equiv j(p)/p^2$
- $\varrho = \varrho(p^2)$, $f = f(p^2)$

Two crucial points

- The solution only works if $d_J = (D + 2 \eta_\star)/2$
- In dimensionful variables

$$\lim_{\Lambda \to \infty} T_{\Lambda}[\phi, J] - S_{\Lambda}[\phi] = -J \cdot \phi$$

A Source-Dependent Fixed-Point

Suppose that we have found a critical fixed-point

$$\partial_t S_{\star}[\varphi] = 0$$

Then there is always a source-dependent f-p

$$T_{\star}[\varphi,j] = S_{\star}[\varphi] + \left[e^{-\bar{j}\cdot\varrho\cdot\delta/\delta\varphi} - 1\right] \left[S_{\star}[\varphi] + \frac{1}{2}\varphi\cdot f\cdot\varphi\right]$$

- $\bar{j}(p) \equiv j(p)/p^2$
- $\varrho = \varrho(p^2)$, $f = f(p^2)$

Two crucial points

- The solution only works if $d_J = (D + 2 \eta_{\star})/2$
- In dimensionful variables

$$\lim_{\Lambda \to \infty} T_{\Lambda}[\phi, J] - S_{\Lambda}[\phi] = -J \cdot \phi$$

A Source-Dependent Fixed-Point

Suppose that we have found a critical fixed-point

$$\partial_t S_{\star}[\varphi] = 0$$

Then there is always a source-dependent f-p

$$T_{\star}[\varphi,j] = S_{\star}[\varphi] + \left[e^{-\bar{j}\cdot\varrho\cdot\delta/\delta\varphi} - 1\right] \left[S_{\star}[\varphi] + \frac{1}{2}\varphi\cdot f\cdot\varphi\right]$$

- $\bar{j}(p) \equiv j(p)/p^2$
- $\varrho = \varrho(p^2)$, $f = f(p^2)$

Two crucial points

- The solution only works if $d_J = (D + 2 \eta_{\star})/2$
- In dimensionful variables

$$\lim_{\Lambda \to \infty} T_{\Lambda}[\phi, J] - S_{\Lambda}[\phi] = -J \cdot \phi$$

And more...

And more...

• For each critical f-p, we can find the eigenperturbations

$$S_{t}[\varphi] = S_{\star}[\varphi] + \sum_{i} \alpha_{i} e^{\lambda_{i} t} \mathcal{O}_{i}[\varphi]$$

ullet Every eigenperturbation, \mathcal{O}_i has a source-dependent extension

$$\tilde{\mathcal{O}}_{i}[\varphi,j] = e^{\bar{j}\cdot\varrho\cdot\delta/\delta\varphi}\mathcal{O}_{i}$$

At the linear level

$$T_t[\varphi,j] = T_*[\varphi,j] + \sum_i \alpha_i e^{\tilde{\lambda}_i t} \tilde{\mathcal{O}}_i[\varphi,j]$$

And more. . .

For each critical f-p, we can find the eigenperturbations

$$S_{t}[\varphi] = S_{\star}[\varphi] + \sum_{i} \alpha_{i} e^{\lambda_{i} t} \mathcal{O}_{i}[\varphi]$$

ullet Every eigenperturbation, \mathcal{O}_i has a source-dependent extension

$$\tilde{\mathcal{O}}_{i}[\varphi,j] = e^{\bar{j}\cdot\varrho\cdot\delta/\delta\varphi}\mathcal{O}_{i}$$

At the linear level

$$T_t[\varphi,j] = T_{\star}[\varphi,j] + \sum_i \alpha_i e^{\tilde{\lambda}_i t} \tilde{\mathcal{O}}_i[\varphi,j]$$

And more. . .

• For each critical f-p, we can find the eigenperturbations

$$S_{t}[\varphi] = S_{\star}[\varphi] + \sum_{i} \alpha_{i} e^{\lambda_{i} t} \mathcal{O}_{i}[\varphi]$$

ullet Every eigenperturbation, \mathcal{O}_i has a source-dependent extension

$$\tilde{\mathcal{O}}_{i}[\varphi,j] = e^{\bar{j}\cdot\varrho\cdot\delta/\delta\varphi}\mathcal{O}_{i}$$

At the linear level

$$T_{t}[\varphi,j] = T_{\star}[\varphi,j] + \sum_{i} \alpha_{i} e^{\tilde{\lambda}_{i} t} \tilde{\mathcal{O}}_{i}[\varphi,j]$$

And more...

• For each critical f-p, we can find the eigenperturbations

$$S_{t}[\varphi] = S_{\star}[\varphi] + \sum_{i} \alpha_{i} e^{\lambda_{i} t} \mathcal{O}_{i}[\varphi]$$

ullet Every eigenperturbation, \mathcal{O}_i has a source-dependent extension

$$\tilde{\mathcal{O}}_{i}[\varphi,j] = e^{\bar{j}\cdot\varrho\cdot\delta/\delta\varphi}\mathcal{O}_{i}$$

At the linear level

$$T_{t}[\varphi,j] = T_{\star}[\varphi,j] + \sum_{i} \alpha_{i} e^{\tilde{\lambda}_{i} t} \tilde{\mathcal{O}}_{i}[\varphi,j]$$

where $\tilde{\lambda}_i = \lambda_i$

Page 225/268 Pirsa: 10100037

- Every critical f-p has a particular source-dependent extension
- Every renormalized trajectory has a source-dependent extension
- This source-dependence corresponds to the boundary condition

$$\lim_{\Lambda \to \infty} T_{\Lambda}[\phi, J] - S_{\Lambda}[\phi] = -J \cdot \phi$$

Conclusion

Correlation Functions in the ERG

- Every critical f-p has a particular source-dependent extension
- Every renormalized trajectory has a source-dependent extension
- This source-dependence corresponds to the boundary condition

$$\lim_{\Lambda \to \infty} T_{\Lambda}[\phi, J] - S_{\Lambda}[\phi] = -J \cdot \phi$$

Conclusion

- Every critical f-p has a particular source-dependent extension
- Every renormalized trajectory has a source-dependent extension
- This source-dependence corresponds to the boundary condition

$$\lim_{\Lambda \to \infty} T_{\Lambda}[\phi, J] - S_{\Lambda}[\phi] = -J \cdot \phi$$

Conclusion

- Every critical f-p has a particular source-dependent extension
- Every renormalized trajectory has a source-dependent extension
- This source-dependence corresponds to the boundary condition

$$\lim_{\Lambda \to \infty} T_{\Lambda}[\phi, J] - S_{\Lambda}[\phi] = -J \cdot \phi$$

Conclusion

If we use the modified Polchinski equation with $\psi = -\eta \varphi/2$

Renormalizability of S_{Λ} implies renormalizability of the standard correlation functions

- Every critical f-p has a particular source-dependent extension
- Every renormalized trajectory has a source-dependent extension
- This source-dependence corresponds to the boundary condition

$$\lim_{\Lambda \to \infty} T_{\Lambda}[\phi, J] - S_{\Lambda}[\phi] = -J \cdot \phi$$

Conclusion

If we use the modified Polchinski equation with $\psi = -\eta \varphi/2$

Renormalizability of S_{Λ} implies renormalizability of the standard correlation functions

Pirsa: 10100037

Page 230/268

- Every critical f-p has a particular source-dependent extension
- Every renormalized trajectory has a source-dependent extension
- This source-dependence corresponds to the boundary condition

$$\lim_{\Lambda \to \infty} T_{\Lambda}[\phi, J] - S_{\Lambda}[\phi] = -J \cdot \phi$$

Conclusion

If we use the modified Polchinski equation with $\psi = -\eta \varphi/2$

Renormalizability of S_{Λ} implies renormalizability of the standard correlation functions

- Decide which correlation functions to compute
- Introduce appropriate source term e.g. $J \cdot \phi$
- Analyse renormalizability of correlation functions

- Allow arbitrary source dependence
- Search for fixed-point solutions
- Deduce the correlation functions to which the solution(s) correspond

Philosophy

- Decide which correlation functions to compute
- Introduce appropriate source term e.g. $J \cdot \phi$
- Analyse renormalizability of correlation functions

- Allow arbitrary source dependence
- Search for fixed-point solutions
- Deduce the correlation functions to which the solution(s) correspond

- Decide which correlation functions to compute
- Introduce appropriate source term e.g. $J \cdot \phi$
- Analyse renormalizability of correlation functions

- Allow arbitrary source dependence
- Search for fixed-point solutions
- Deduce the correlation functions to which the solution(s) correspond

- Decide which correlation functions to compute
- Introduce appropriate source term e.g. $J \cdot \phi$
- Analyse renormalizability of correlation functions

- Allow arbitrary source dependence
- Search for fixed-point solutions
- Deduce the correlation functions to which the solution(s) correspond

- Decide which correlation functions to compute
- Introduce appropriate source term e.g. $J \cdot \phi$
- Analyse renormalizability of correlation functions

- Allow arbitrary source dependence
- Search for fixed-point solutions
- Deduce the correlation functions to which the solution(s) correspond

- Decide which correlation functions to compute
- Introduce appropriate source term e.g. $J \cdot \phi$
- Analyse renormalizability of correlation functions

- Allow arbitrary source dependence
- Search for fixed-point solutions
- Deduce the correlation functions to which the solution(s) correspond

- Decide which correlation functions to compute
- Introduce appropriate source term e.g. $J \cdot \phi$
- Analyse renormalizability of correlation functions

- Allow arbitrary source dependence
- Search for fixed-point solutions
- Deduce the correlation functions to which the solution(s) correspond

- Decide which correlation functions to compute
- Introduce appropriate source term e.g. $J \cdot \phi$
- Analyse renormalizability of correlation functions

- Allow arbitrary source dependence
- Search for fixed-point solutions
- Deduce the correlation functions to which the solution(s) correspond

Philosophy

- The Wilsonian effective action is fundamental
- QFT determines which quantities we should compute

- Decide which correlation functions to compute
- Introduce appropriate source term e.g. $J \cdot \phi$
- Analyse renormalizability of correlation functions

- Allow arbitrary source dependence
- Search for fixed-point solutions
- Deduce the correlation functions to which the solution(s) correspond

Philosophy

- The Wilsonian effective action is fundamental
- QFT determines which quantities we should compute

- Decide which correlation functions to compute
- Introduce appropriate source term e.g. $J \cdot \phi$
- Analyse renormalizability of correlation functions

- Allow arbitrary source dependence
- Search for fixed-point solutions
- Deduce the correlation functions to which the solution(s) correspond

Philosophy

- The Wilsonian effective action is fundamental
- QFT determines which quantities we should compute

Pirsa: 10100037 Page 241/268

Modified Polchinski Equation $\psi = -\eta \varphi/2$

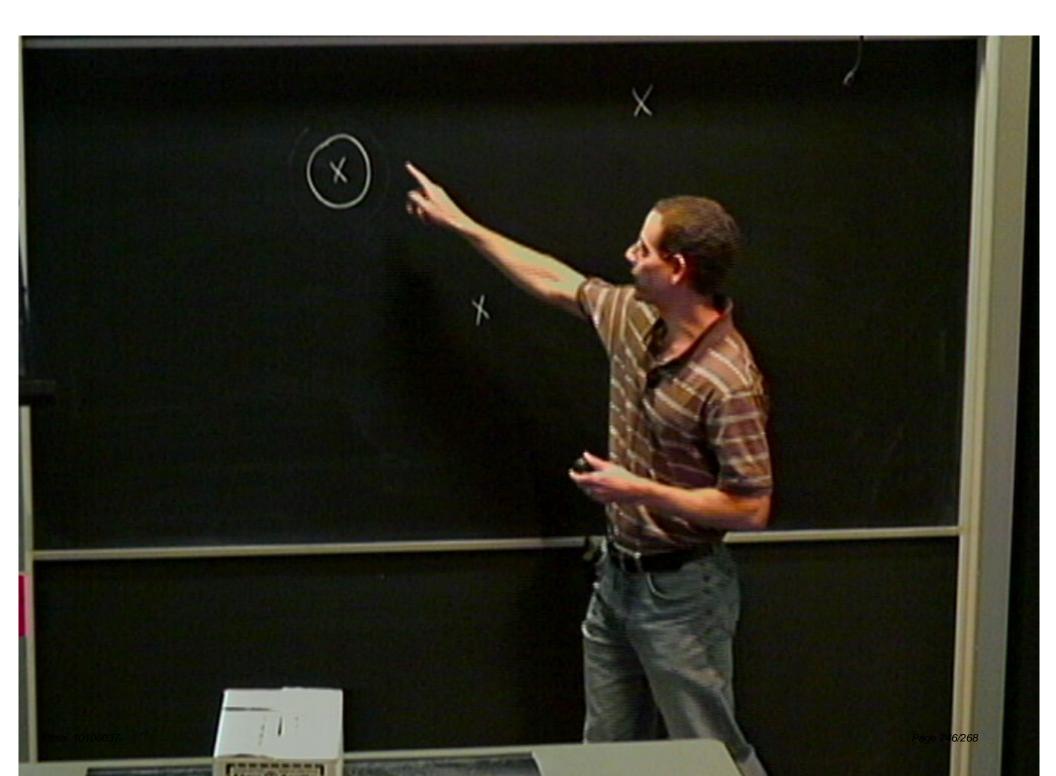
- What other renormalizable source-dependent solutions exist?
- How does the OPE play a role?
- Can a link be made with methods of CFT?

Other flow equations

Modified Polchinski Equation $\psi = -\eta \varphi/2$

- What other renormalizable source-dependent solutions exist?
- How does the OPE play a role?
- Can a link be made with methods of CFT?

Other flow equations



Modified Polchinski Equation $\psi = -\eta \varphi/2$

- What other renormalizable source-dependent solutions exist?
- How does the OPE play a role?
- Can a link be made with methods of CFT?

Other flow equations

Modified Polchinski Equation $\psi = -\eta \varphi/2$

- What other renormalizable source-dependent solutions exist?
- How does the OPE play a role?
- Can a link be made with methods of CFT?

Other flow equations

Modified Polchinski Equation $\psi = -\eta \varphi/2$

- What other renormalizable source-dependent solutions exist?
- How does the OPE play a role?
- Can a link be made with methods of CFT?

Other flow equations

Modified Polchinski Equation $\psi = -\eta \varphi/2$

- What other renormalizable source-dependent solutions exist?
- How does the OPE play a role?
- Can a link be made with methods of CFT?

Other flow equations

- What happens for other flow equations?
- What does this imply for gauge theories?

Modified Polchinski Equation $\psi = -\eta \varphi/2$

- What other renormalizable source-dependent solutions exist?
- How does the OPE play a role?
- Can a link be made with methods of CFT?

Other flow equations

- What happens for other flow equations?
- What does this imply for gauge theories?

Pirsa: 10100037 Page 251/268

Modified Polchinski Equation $\psi = -\eta \varphi/2$

- What other renormalizable source-dependent solutions exist?
- How does the OPE play a role?
- Can a link be made with methods of CFT?

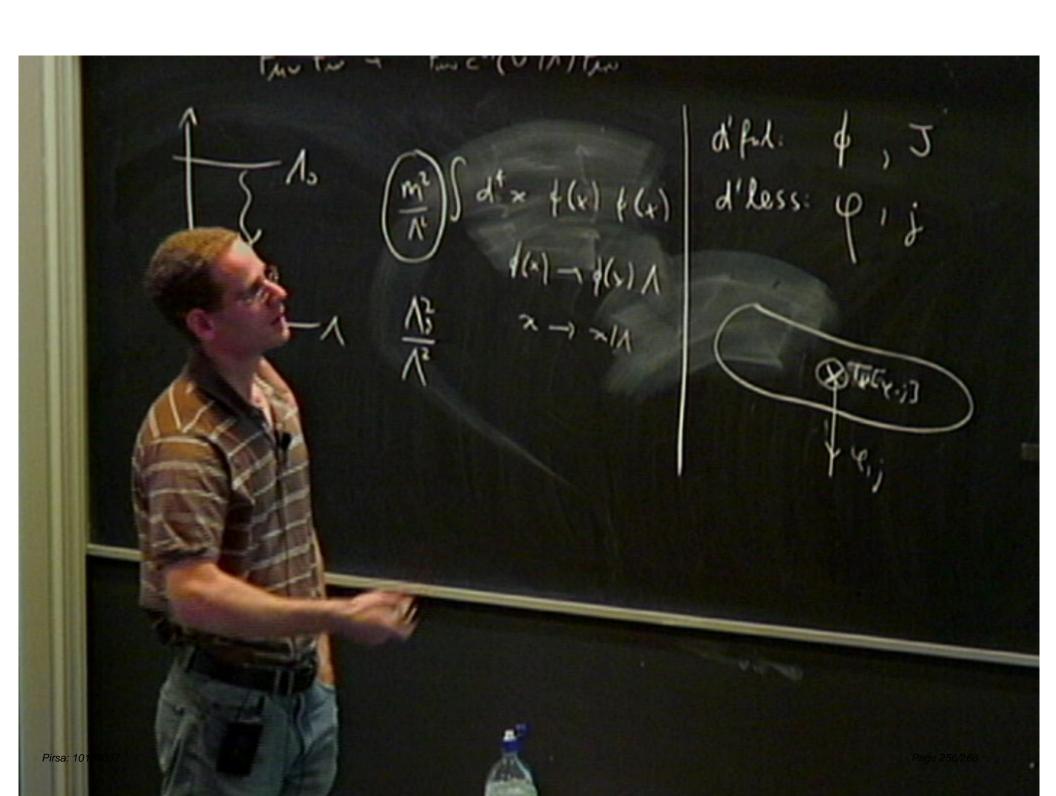
Other flow equations

- What happens for other flow equations?
- What does this imply for gauge theories?

Pirsa: 10100037

- It is possible to construct a gauge invariant cutoff, using
 - Covariant higher derivatives
 - Pauli-Villars fields
- Ψ can be chosen to give a manifestly gauge invariant flow equation
- No gauge fixing is required at any stage!
- The formalism is very complicated

- It is possible to construct a gauge invariant cutoff, using
 - Covariant higher derivatives
 - Pauli-Villars fields
- Ψ can be chosen to give a manifestly gauge invariant flow equation
- No gauge fixing is required at any stage!
- The formalism is very complicated



- It is possible to construct a gauge invariant cutoff, using
 - Covariant higher derivatives
 - Pauli-Villars fields
- Ψ can be chosen to give a

manifestly gauge invariant flow equation

- No gauge fixing is required at any stage!
- The formalism is very complicated

- It is possible to construct a gauge invariant cutoff, using
 - Covariant higher derivatives
 - Pauli-Villars fields
- Ψ can be chosen to give a

manifestly gauge invariant flow equation

- No gauge fixing is required at any stage!
- The formalism is very complicated

- It is possible to construct a gauge invariant cutoff, using
 - Covariant higher derivatives
 - Pauli-Villars fields
- Ψ can be chosen to give a

manifestly gauge invariant flow equation

- No gauge fixing is required at any stage!
- The formalism is very complicated

- It is possible to construct a gauge invariant cutoff, using
 - Covariant higher derivatives
 - Pauli-Villars fields
- Ψ can be chosen to give a

manifestly gauge invariant flow equation

- No gauge fixing is required at any stage!
- The formalism is very complicated

- It is possible to construct a gauge invariant cutoff, using
 - Covariant higher derivatives
 - Pauli-Villars fields
- Ψ can be chosen to give a

manifestly gauge invariant flow equation

- No gauge fixing is required at any stage!
- The formalism is very complicated

Correlation Functions

- The standard correlation functions play no role
- How do manifestly gauge invariant operators renormalize?
- Throw in sources and let the ERG tell us!

Pirsa: 10100037 Page 261/268

- It is possible to construct a gauge invariant cutoff, using
 - Covariant higher derivatives
 - Pauli-Villars fields
- Ψ can be chosen to give a

manifestly gauge invariant flow equation

- No gauge fixing is required at any stage!
- The formalism is very complicated

Correlation Functions

- The standard correlation functions play no role
- How do manifestly gauge invariant operators renormalize?
- Throw in sources and let the ERG tell us!

Pirsa: 10100037 Page 262/268

- It is possible to construct a gauge invariant cutoff, using
 - Covariant higher derivatives
 - Pauli-Villars fields
- Ψ can be chosen to give a

manifestly gauge invariant flow equation

- No gauge fixing is required at any stage!
- The formalism is very complicated

Correlation Functions

- The standard correlation functions play no role
- How do manifestly gauge invariant operators renormalize?
- Throw in sources and let the ERG tell us!

Pirsa: 10100037 Page 263/268

- It is possible to construct a gauge invariant cutoff, using
 - Covariant higher derivatives
 - Pauli-Villars fields
- Ψ can be chosen to give a

manifestly gauge invariant flow equation

- No gauge fixing is required at any stage!
- The formalism is very complicated

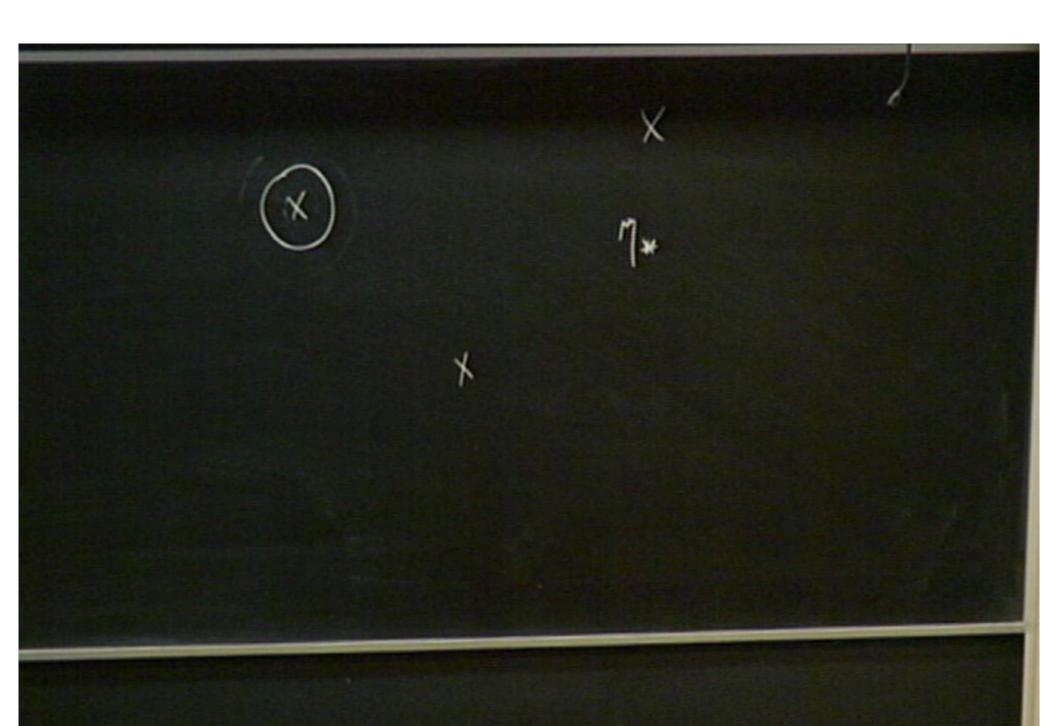
Correlation Functions

- The standard correlation functions play no role
- How do manifestly gauge invariant operators renormalize?
- Throw in sources and let the ERG tell us!

Pirsa: 10100037 Page 264/268

Ask not what quantum field theory can compute for you, but what you can compute for quantum field theory

Pirsa: 10100037



Ask not what quantum field theory can compute for you, but what you can compute for quantum field theory

Pirsa: 10100037

