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PERIMETER

INSTITUTE FOR THEORETICAL PHYSICS




Symmetries of 2d Critical Behavior

According to the Extended Singularity Theorem the
symmetries of infinite uniform space are crucial for
understanding critical phenomena. The question is not so much
what is that space like: it is simple and boring. The question is
what can happen in that space.We really do not very well know
the answer to that question in three dimensions or four or
higher, but we have a good start on answering it in two
dimensions. That is because two dimensional space has a rich
symmetry structure which we, in some measure, understand.
We are interested in the topological structure of the space in
the presence of the operators oq«(r). Each of these produces a
puncture of some sort in the topology at its coordinate. We
are interested in understanding this punctured space.

Symmetries:

Look for symmetries in simplest correlation functions in
simplest model (Ising model), at simplest part of phase diagram
(critical point), involving the simplest quantities: spin, energy
oisa: 16430351y, and stress tensor density. These are best expressed in ——
terms of a pair of complex coordinates:



Symmetries of 2d Critical Behavior

According to the Extended Singularity Theorem the
symmetries of infinite uniform space are crucial for
understanding critical phenomena. The question is not so much
what is that space like: it is simple and boring. The question is
what can happen in that space.We really do not very well know
the answer to that question in three dimensions or four or
higher, but we have a good start on answering it in two
dimensions. That is because two dimensional space has a rich
symmetry structure which we, in some measure, understand.
We are interested in the topological structure of the space in
the presence of the operators oqa(r). Each of these produces a
puncture of some sort in the topology at its coordinate. We
are interested in understanding this punctured space.

Symmetries:

Look for symmetries in simplest correlation functions in
simplest model (Ising model), at simplest part of phase diagram
(critical point), involving the simplest quantities: spin, energy
oisa: 1630381y, and stress tensor density. These are best expressed in -
terms of a pair of complex coordinates:



Operator Product Expansion
short distance expansion

f ris close to s, one can replace the product o«(F) 0g(s) according to

F') O8(5) =y Capy [P-spriess oy(s

e idea is that when r and s approach one another, the product looks like an operator at s.
ince the number of different operators is quite limited, one must get a sum of the operators

n the theory.

expressions like the one’s in operator product expansions provide a sort of algebra for the
luctuating operators in the theory. Even before Wilson'’s work on the renormalization group,
. was hoped that algebraic methods would enable a classification of, and perhaps an analytic
olution for, d=2 critical phenomena. That was roughly in 1970. Somewhat later, in 1984
Daniel Friedan, Zongan Qiu and Stephen Shenker used algebraic methods related to short
listance expansion to find the behavior of all the most familiar problems in two dimensional
ritical phenomena. They worked with an extra ingredient which was just starting to be
vailable in 1970, the deep understanding of symmetries provided by conformal invariance. |
m going to fill in some pieces of the theory of these symmetries.
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Symmetries of 2d Critical Behavior

According to the Extended Singularity Theorem the
symmetries of infinite uniform space are crucial for
understanding critical phenomena. The question is not so much
what is that space like: it is simple and boring. The question is
what can happen in that space.VWe really do not very well know
the answer to that question in three dimensions or four or
higher, but we have a good start on answering it in two
dimensions. That is because two dimensional space has a rich
symmetry structure which we, in some measure, understand.
We are interested in the topological structure of the space in
the presence of the operators oqx(r). Each of these produces a
puncture of some sort in the topology at its coordinate. We
are interested in understanding this punctured space.

Symmetries:

Look for symmetries in simplest correlation functions in
simplest model (Ising model), at simplest part of phase diagram
(critical point), involving the simplest quantities: spin, energy
oisa: 16380381y, and stress tensor density. These are best expressed in -
terms of a pair of complex coordinates:



Symmetries in d=2

The best way to represent the symmetries of space in two dimensions is to use
instead of the two components of the spatial vector r=(xy) a pair of complex
coordinates z=x+iy and z*=x-iy. (The usual notation employs bars on top of
symbols but that’s too hard in Apple’s Keynote.) Therefore the spin operator, Oy, is
written as 0(z,z*) and the energy density as £(z,z*). The two complex coordinates
are thought of as being independent of one another. Derivative operations apply
to both. Thus, dx = 0; + d+ We shall make considerable use of analytic function
of z, which are termed holomorphic function, and similar functions of z*, called
antiholomorphic. In fact, we shall mostly look at z-dependence, and ignore z*-.

Our generic operator oq(r) will thus be written as oa(z,z*) in this notation.We
focus on scalar operators like 0(z,z*) and &(z,z¥). In addition we will later devote
considerable attention to the rank two tensor, the stress tensor Tj. Instead of using
a scaling index xq for the operators, we use two indices ha and h*x which
respective describe the scaling in z and z*. Thus, xq = ha + h*a. For scalar
operators ha = h*x In the Ising model, for the spin operator h=1/16; while for the
energy h=1/4. (Christe & Henkel use a notation in which h is replaced by A.)

Note h*y is not the complex conjugate of h 4. They are both real.
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Operator Product Expansion
short distance expansion

f ris close to s, one can replace the product oa(F) 0g(s) according to
ofr) og(s) =2y CaBy |r=sP=s oy(s)
e idea is that when r and s approach one another, the product looks like an operator at s.
ince the number of different operators is quite limited, one must get a sum of the operators
the theory.

pressions like the one’s in operator product expansions provide a sort of algebra for the
uctuating operators in the theory. Even before Wilson’s work on the renormalization group,
. was hoped that algebraic methods would enable a classification of, and perhaps an analytic
olution for, d=2 critical phenomena. That was roughly in 1970. Somewhat later, in 1984
Daniel Friedan, Zongan Qiu and Stephen Shenker used algebraic methods related to short
listance expansion to find the behavior of all the most familiar problems in two dimensional
ritical phenomena. They worked with an extra ingredient which was just starting to be
vailable in 1970, the deep understanding of symmetries provided by conformal invariance. |
m going to fill in some pieces of the theory of these symmetries.
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Symmetries of 2d Critical Behavior

According to the Extended Singularity Theorem the
symmetries of infinite uniform space are crucial for
understanding critical phenomena. The question is not so much
what is that space like: it is simple and boring. The question is
what can happen in that space.We really do not very well know
the answer to that question in three dimensions or four or
higher, but we have a good start on answering it in two
dimensions. That is because two dimensional space has a rich
symmetry structure which we, in some measure, understand.
We are interested in the topological structure of the space in
the presence of the operators ou«(r). Each of these produces a
puncture of some sort in the topology at its coordinate. We
are interested in understanding this punctured space.

Symmetries:

Look for symmetries in simplest correlation functions in
simplest model (Ising model), at simplest part of phase diagram
(critical point), involving the simplest quantities: spin, energy
oisa: 16380381y, and stress tensor density. These are best expressed in S
terms of a pair of complex coordinates:



Symmetries in d=2

The best way to represent the symmetries of space in two dimensions is to use
instead of the two components of the spatial vector r=(xy) a pair of complex
coordinates z=x+iy and z*=x-iy. (The usual notation employs bars on top of
symbols but that’s too hard in Apple’s Keynote.) Therefore the spin operator, Oy, is
written as 0(z,z*) and the energy density as £(z,z*). The two complex coordinates
are thought of as being independent of one another. Derivative operations apply
to both. Thus, dx = 0; + d+ We shall make considerable use of analytic function
of z, which are termed holomorphic function, and similar functions of z*, called
antiholomorphic. In fact, we shall mostly look at z-dependence, and ignore z*-.

Our generic operator oq(r) will thus be written as oa(z,z*) in this notation. We
focus on scalar operators like 0(z,z*) and &(z,z*). In addition we will later devote
considerable attention to the rank two tensor, the stress tensor T Instead of using
a scaling index xq« for the operators, we use two indices ha and h* which
respective describe the scaling in z and z*. Thus, xq = ha + h*a. For scalar
operators ha = h*y In the Ising model, for the spin operator h=1/16; while for the
energy h=1/4. (Christe & Henkel use a notation in which h is replaced by A.)

Note h*y is not the complex conjugate of h . They are both real.
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Symmetries are reflected in correlations

0(z,z*) = magnetization density
£(z,z¥) = energy density

At criticality, for the d=2 Ising model, <0(z)>=<g(z)>=0

<0(z,z*) o(w,w*)>=1/|z-w|"4 =1/[(z-w) "8 (z*-w*)8 ] The “1” sets normalization
<g(z.z¥)e(w,w*)>=1/|z-w|? =1/[(z-w)(z-w)] The “1" sets normalization

<g(z,z*) o(w,w*) >=0

<g(z,z*) o(w,w*) O(t,t*) >=A |w-t|34/[|z-w| |z-t]] Once the normalization is set, as
above, the value of A is fixed by the theory.

The correlations above apply in a continuum limit in which we look at distances
large enough so that the lattice structure has disappeared. In this limit, our usual
Ising model has translational invariance and rotational invariance, That is the
correlation functions are unchanged if we very each coordinate according to z--
>z ‘=z+a (translation) or z'=A z with |A|=1, while holding scalar operators fixed,
l.e. by varying the operators according to 0q4(zZ,Z*)--> 04(Z’, Z%).

One can further extend this analysis to include scale invariance, represented

by extending z'=A z to values of A with magnitude different from one. Then

the operators will change according to 04(z,z*)—->A" (A*)""e 04(z", Z*7). So far,
att-wetrave is a rather neat representation of well-known symmetries of TR
critical ohenomena nrobleme



Symmetries in d=2

The best way to represent the symmetries of space in two dimensions is to use
instead of the two components of the spatial vector r=(xy) a pair of complex
coordinates z=x+iy and z*=x-iy. (The usual notation employs bars on top of
symbols but that’s too hard in Apple’s Keynote.) Therefore the spin operator, Oy, is
written as 0(z,z*) and the energy density as £(z,z*). The two complex coordinates
are thought of as being independent of one another. Derivative operations apply
to both. Thus, dx = 0; + d+ We shall make considerable use of analytic function
of z, which are termed holomorphic function, and similar functions of z*, called
antiholomorphic. In fact, we shall mostly look at z-dependence, and ignore z*-.

Our generic operator oq(r) will thus be written as o«(z,z*) in this notation. We
focus on scalar operators like 0(z,z*) and &(z,z*). In addition we will later devote
considerable attention to the rank two tensor, the stress tensor Tj. Instead of using
a scaling index xq« for the operators, we use two indices ha and h*x which
respective describe the scaling in z and z*. Thus, xa = ha + h*a. For scalar
operators ha = h*x In the Ising model, for the spin operator h=1/16; while for the
energy h=1/4. (Christe & Henkel use a notation in which h is replaced by A.)

Note h*y is not the complex conjugate of h 4. They are both real.
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Symmetries are reflected in correlations

0(z,z*) = magnetization density
£(z,z¥) = energy density

At criticality, for the d=2 Ising model, <0(z)>=<g(z)>=0

<0(z,z*) o(w,w*)>=1/|z-w|"4 =1/[(z-w) "8 (z*-w*)8 ] The “1” sets normalization
<g(z.z¥)e(w,w*)>=1/|z-w|? =1/[(z-w)(z-w)] The “1" sets normalization

<g(z,z*) o(w,w*) >=0

<g(z,z*) o(w,w*) O(t,t*) >=A |w-t|*4/[|z-w| |z-t]] Once the normalization is set, as
above, the value of A is fixed by the theory.

The correlations above apply in a continuum limit in which we look at distances
large enough so that the lattice structure has disappeared. In this limit, our usual
Ising model has translational invariance and rotational invariance, That is the
correlation functions are unchanged if we very each coordinate according to z--
>z ‘=z+a (translation) or z'=A z with |A|=1, while holding scalar operators fixed,
l.e. by varying the operators according to 0q4(zZ,Z*)--> 04(Z', Z%).

One can further extend this analysis to include scale invariance, represented

by extending z'=A z to values of A with magnitude different from one. Then

the operators will change according to 04(z,z*)-->A" (A*)"e 04(z°, z*7). So far,
atl-wehvave is a rather neat representation of well-known symmetries of R
critical ohenomena nroblemes
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Symmetries are reflected in correlations

0(z,z*) = magnetization density
€(z.z¥) = energy density

At criticality, for the d=2 Ising model, <0(z)>=<g(z)>=0

<0(z,z*) o(ww*)>=1/|z-w|"4 =1/[(z-w) "8 (z*-w*)8 ] The “1” sets normalization
'g:—:(z.z*)e(w.w*)>=1f|z-w|2 =1/[(z-w)(z-w)] The “1" sets normalization

<g(z,z*) o(w,w*) >=0

<g(z,z*) o(w,w*) O(t,t*) >=A |w-t|34/[|z-w| |z-t]] Once the normalization is set, as
above, the value of A is fixed by the theory.

The correlations above apply in a continuum limit in which we look at distances
large enough so that the lattice structure has disappeared. In this limit, our usual
Ising model has translational invariance and rotational invariance, That is the
correlation functions are unchanged if we very each coordinate according to z--
>z ‘=z+a (translation) or z'=A z with |A|=1, while holding scalar operators fixed,
l.e. by varying the operators according to 0q4(z,Z*)--> 04(Z’, Z%").

One can further extend this analysis to include scale invariance, represented

by extending z'=A z to values of A with magnitude different from one. Then

the operators will change according to 04(z,z*)—->AM (A*)""e 04(z", 2*7). So far,
att-wehave is a rather neat representation of well-known symmetries of Page 15/67
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Application of Complex Analysis

in two dimensions

In two dimensions we can study the effect of analytic function maps upon
correlation functions. In general a transformation z-->w=w(z) maps a portion of the
space defined by z plane into some portion of the space defined by w. This
transformation provides no local shears except at points of non-analyticity. Local
angles are preserved at all points of analyticity. The general rule is that this change
transforms oq according to

Oq (2,2%)-->b(w)b(W")0a(W(z),W*(z))

with b(w)= [dw/dz]"+ and b(w*)= [dw*/dz*]""=

This is particularly simple for the global transformations described so far. It is
trivial for the translation w=z+a, easy for w=Az, which is a pure dilation for A real,
together with a rotation through the phase of A for complex A.

The analogous calculation for any other analytic function requires additional
thought. No other function can smoothly (analytically) map the plane into itself.
So any other function will change the region under consideration. (Special
attention will have to be given to the “point” at infinity.)

Transformations like this are called conformal transformations. They were
introduced into critical phenomena work in 1970 by A. A. Polyakov. John Cardy
showed us how to make use of specific transformations, like the one in the next
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Symmetries are reflected in correlations

0(z,z*) = magnetization density
£(z,z¥) = energy density

At criticality, for the d=2 Ising model, <0(z)>=<g(z)>=0

<U(Zigz*) o(w,w*)>=1/|z-w| V4 =1/[(z-w) "8 (z*-w*)8 ] The “1” sets normalization
<g(z,z*)e(w,w*)>=1/|z-w|?2 =1/[(z-w)(z-w)] The “1" sets normalization

<g(z,z*) o(w,w*) >=0

<g(z,z*) o(w,w*) O(t,t*) >=A |w-t|34/[|z-w| |z-t]] Once the normalization is set, as
above, the value of A is fixed by the theory.

The correlations above apply in a continuum limit in which we look at distances
large enough so that the lattice structure has disappeared. In this limit, our usual
Ising model has translational invariance and rotational invariance, That is the
correlation functions are unchanged if we very each coordinate according to z--
>z ‘=z+a (translation) or z'=A z with |A|=1, while holding scalar operators fixed,
l.e. by varying the operators according to 0q4(z,Z2*)--> 0q(Z', Z%').

One can further extend this analysis to include scale invariance, represented

by extending z'=A z to values of A with magnitude different from one. Then

the operators will change according to 0q(z,z*)—->A" (A*)M"e 04(z", Z*7). So far,
atl-wehvave is a rather neat representation of well-known symmetries of TR
critical ohenomena nrobleme



Symmetries are reflected in correlations

0(z,z") = magnetization density
£(z,z¥) = energy density

At criticality, for the d=2 Ising model, <0(z)>=<g&(z)>=0

<0'(z‘z*) o(w,w*)>=1/|z-w| "4 =1/[(z-w) "8 (z*-w*)8 ] The “1” sets normalization
<g(z,z%)e(w,w*)>=1/|z-w|? =1/[(z-w)(z-w)] The “1” sets normalization

<g(z,z*) o(w,w*) >=0

<g(z,z*) o(w,w*) O(t,t*) >=A |w-t|34/[|z-w| |z-t]] Once the normalization is set, as
above, the value of A is fixed by the theory.

The correlations above apply in a continuum limit in which we look at distances
large enough so that the lattice structure has disappeared. In this limit, our usual
Ising model has translational invariance and rotational invariance, That is the
correlation functions are unchanged if we very each coordinate according to z--
>z '=z+a (translation) or z'=A z with |A|=1, while holding scalar operators fixed,
l.e. by varying the operators according to 0a(z,2*)--> 04(zZ’, Z*").

One can further extend this analysis to include scale invariance, represented

by extending z'=A z to values of A with magnitude different from one. Then

the operators will change according to 0q(z,z*)—->AM (A*)""e 04(z", z*7). So far,
atl-wehave is a rather neat representation of well-known symmetries of TR A
critical ohenomena nrobleme



Symmetries in d=2

The best way to represent the symmetries of space in two dimensions is to use
instead of the two components of the spatial vector r=(xy) a pair of complex
coordinates z=x+iy and z*=x-iy. (The usual notation employs bars on top of
symbols but that’s too hard in Apple’s Keynote.) Therefore the spin operator, Oy, is
written as 0(z,z*) and the energy density as &(z,z*). The two complex coordinates
are thought of as being independent of one another. Derivative operations apply
to both. Thus, dx = 0; + d+ We shall make considerable use of analytic function
of z, which are termed holomorphic function, and similar functions of z*, called
antiholomorphic. In fact, we shall mostly look at z-dependence, and ignore z*-.

Our generic operator oq(r) will thus be written as oa(z,z*) in this notation. We
focus on scalar operators like 0(z,z*) and &(z,z*). In addition we will later devote
considerable attention to the rank two tensor, the stress tensor T Instead of using
a scaling index xq« for the operators, we use two indices ha and h*x which
respective describe the scaling in z and z*. Thus, xq = ha + h*s. For scalar
operators ha = h*x In the Ising model, for the spin operator h=1/16; while for the
energy h=1/4. (Christe & Henkel use a notation in which h is replaced by A.)

Note h*y is not the complex conjugate of h o. They are both real.
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Symmetries of 2d Critical Behavior

According to the Extended Singularity Theorem the
symmetries of infinite uniform space are crucial for
understanding critical phenomena. The question is not so much
what is that space like: it is simple and boring. The question is
what can happen in that space.VWe really do not very well know
the answer to that question in three dimensions or four or
higher, but we have a good start on answering it in two
dimensions. That is because two dimensional space has a rich
symmetry structure which we, in some measure, understand.
We are interested in the topological structure of the space in
the presence of the operators oqa(r). Each of these produces a
puncture of some sort in the topology at its coordinate. We
are interested in understanding this punctured space.

Symmetries:

Look for symmetries in simplest correlation functions in
simplest model (Ising model), at simplest part of phase diagram
(critical point), involving the simplest quantities: spin, energy
oisa: 16330381y, and stress tensor density. These are best expressed in page 22/67
terms of a pair of complex coordinates:



Application of Complex Analysis

in two dimensions

In two dimensions we can study the effect of analytic function maps upon
correlation functions. In general a transformation z-->w=w(z) maps a portion of the
space defined by z plane into some portion of the space defined by w. This
transformation provides no local shears except at points of non-analyticity. Local
angles are preserved at all points of analyticity. The general rule is that this change
transforms oq according to

Oq (2,2%)-->b(W)b(W")0a(W(Z),W"(z))

with b(w)= [dw/dz]"+ and b(w*)= [dw*/dz*]""«

This is particularly simple for the global transformations described so far. It is
trivial for the translation w=z+a, easy for w=Az, which is a pure dilation for A real,
together with a rotation through the phase of A for complex A.

The analogous calculation for any other analytic function requires additional
thought. No other function can smoothly (analytically) map the plane into itself.
So any other function will change the region under consideration. (Special
attention will have to be given to the “point” at infinity.)

Transformations like this are called conformal transformations. They were
introduced into critical phenomena work in 1970 by A. A. Polyakov. John Cardy
showed us how to make use of specific transformations, like the one in the next
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Example: w=(L/21T) In z,

which then implies z=exp( 2rTw/L)

This function is analytic in z except at z=0. This function takes the entire complex z
plane, except for this point into a strip in the complex w-plane |Im w| < L/2. Now
consider the correlation function <o(z,z*)o (y,y*) >=1/|z-y|"* If we make the
appropriate substitution, we find

<0a (W,W*) 0a (u,u*)>= 1/[(z-y)?" (Z*-y*¥" [2" z* "y  y*" " with y=exp( 2TTu/L)
= (2L [z z° y y* I(z-y)?" (Z-y* )] =[(2T/L)2 (zy)2/(z-y) |

=|(2m/L)? /|(zly) V2-(y/z) 1

= (2m/L)*/{2 cosh[2mm(w1-u1)/L]- 2 cos [21r(w2-uz)/L]}*

Notice that the denominator only passes through zero on the unit strip when w=u.
That's the only point of singularity. Although it is not obvious, the singularity is
proportional to 1/|w-u|?*, as it should be. Further the result looks exactly as if the
behavior was caused by repeated placements of the singularities at positions
displaced by 2 1 i times any integer, so that we have an infinite number of strips
side by side. The solution is rather like the one with image charges in
electrostatics.

In fact, two dimensional electrostatics may be analyzed by exactly the same
cdhféfial invariance trick.
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Application of Complex Analysis

in two dimensions

In two dimensions we can study the effect of analytic function maps upon
correlation functions. In general a transformation z-->w=w(z) maps a portion of the
space defined by z plane into some portion of the space defined by w. This
transformation provides no local shears except at points of non-analyticity. Local
angles are preserved at all points of analyticity. The general rule is that this change
transforms oq according to

Oq (2,Z")—->b(W)b(W")0a(W(z),W*(z"))

with b(w)= [dw/dz]*= and b(w*)= [dw*/dz*]""=

This is particularly simple for the global transformations described so far. It is
trivial for the translation w=z+a, easy for w=Az, which is a pure dilation for A real,
together with a rotation through the phase of A for complex A.

The analogous calculation for any other analytic function requires additional
thought. No other function can smoothly (analytically) map the plane into itself.
So any other function will change the region under consideration. (Special
attention will have to be given to the “point” at infinity.)

Transformations like this are called conformal transformations. They were
introduced into critical phenomena work in 1970 by A. A. Polyakov. John Cardy
showed us how to make use of specific transformations, like the one in the next
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Application of Complex Analysis

in two dimensions

In two dimensions we can study the effect of analytic function maps upon
correlation functions. In general a transformation z-->w=w(z) maps a portion of the
space defined by z plane into some portion of the space defined by w. This
transformation provides no local shears except at points of non-analyticity. Local
angles are preserved at all points of analyticity. The general rule is that this change
transforms oq according to

Oq (2,Z7)-->b(W)b(W")0a(W(Z),W*(Z))

with b(w)= [dw/dz]"+ and b(w*)= [dw*/dz*]""«

This is particularly simple for the global transformations described so far. It is
trivial for the translation w=z+a, easy for w=Az, which is a pure dilation for A real,
together with a rotation through the phase of A for complex A.

The analogous calculation for any other analytic function requires additional
thought. No other function can smoothly (analytically) map the plane into itself.
So any other function will change the region under consideration. (Special
attention will have to be given to the “point” at infinity.)

Transformations like this are called conformal transformations. They were
introduced into critical phenomena work in 1970 by A. A. Polyakov. John Cardy
showed us how to make use of specific transformations, like the one in the next
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Example: w=(L/21T) In z,

which then implies z=exp( 2mTw/L)

This function is analytic in z except at z=0. This function takes the entire complex z
plane, except for this point into a strip in the complex w-plane |Im w| < L/2. Now
consider the correlation function <a(z,z*)o (y,y*) >=1/|z-y|"* If we make the
appropriate substitution, we find

<0q (W,W") 0q (U,u*)>= 1/[(z-y)?" (Z*-y*)" [z z*"y" y*" ]" with y=exp( 2TTu/L)
= (2L [z 2y y* I(z-y)?" (2*-y*)"] =|(2mL)? (zy) 2 l(z-y) |2

=|(2m/L)? /|(zly) "2-(y/z) 12|

= (2m/L)*/{2 cosh[2mm(w1-u1)/L]- 2 cos [21r(wz2-u2)/L]}*

Notice that the denominator only passes through zero on the unit strip when w=u.
That's the only point of singularity. Although it is not obvious, the singularity is
proportional to 1/|w-u|?:, as it should be. Further the result looks exactly as if the
behavior was caused by repeated placements of the singularities at positions
displaced by 2 1 i times any integer, so that we have an infinite number of strips
side by side. The solution is rather like the one with image charges in
electrostatics.

In fact, two dimensional electrostatics may be analyzed by exactly the same
cdhférimal invariance trick.
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Example: w=(L/21T) In z,

which then implies z=exp( 2mTw/L)

This function is analytic in z except at z=0. This function takes the entire complex z
plane, except for this point into a strip in the complex w-plane |Im w| < L/2. Now
consider the correlation function <a(z,z*)o (y,y*) >=1/|z-y|"* If we make the
appropriate substitution, we find

<0a (W,W*) 0a (u,u*)>= 1/[(z-y)?" (Z*-y*¥" [2" z*"y" y*" ]" with y=exp( 2TTu/L)
= (2L [z z° y y* I(z-y)?" (Z-y™ )] =[(2T/L)2 (zy)V2/(z-y) [

=|(2m/L)? /|(zly) V2-(y/z) 14

= (2m/L)*/{2 cosh[21m(w1-u1)/L]- 2 cos [21r(w2-uz)/L]}*

Notice that the denominator only passes through zero on the unit strip when w=u.
That's the only point of singularity. Although it is not obvious, the singularity is
proportional to 1/|w-u|?:, as it should be. Further the result looks exactly as if the
behavior was caused by repeated placements of the singularities at positions
displaced by 2 1 i times any integer, so that we have an infinite number of strips
side by side. The solution is rather like the one with image charges in
electrostatics.

In fact, two dimensional electrostatics may be analyzed by exactly the same
cdhférial invariance trick.
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Symmetries, Continued: Inversion
<0(z:z*) O(ww*)>=1/[(z-w) " (z5-w*) 18 |

For the two dimensional Ising model, scale invariance would permit
<g(z,z*) o(w,w*) >=B/|z-w|1716 = B/(z-w)he*he (Zz*-w*)h"o*h
However in fact this correlation function is zero at the critical point (B=0).

Inversion invariance: Only holds at the critical point or other massless situations:
This is a transformation which takes the point at infinity into the origin of the complex
plane. The content of this invariance is that the point at infinity is like every other point.
That is true at the critical point for most, but not all, models.

The transform is r -->r/r?  oqa(r) -->r 2= oq(r/r?). In two dimensions, we have

0a(z,2*) -->z"2he z*-2M"a04(1/2,1/2*). As pointed out by Polyakov, this invariance
produces significant limitations upon the form of correlation functions. For
example it permits two-point correlations like <oq«(z,z*) og(w,w*)> to be non-zero
only if ha=hg and h*x=h*g. | ask you to prove this in a homework exercise
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Symmetries, Continued: Inversion
<0(zz*) o(w,w*)>=1/[(z-w) /8 (z*-w*)1/8 ]

For the two dimensional Ising model, scale invariance would permit
<g(z,z¥) Oo(w,w*) >=B/|z-w|'716 = B/(z-w)ho*he (z*-w*)"e*h’

However in fact this correlation function is zero at the critical point (B=0).

Inversion invariance: Only holds at the critical point or other massless situations:
This is a transformation which takes the point at infinity into the origin of the complex
plane. The content of this invariance is that the point at infinity is like every other point.
That is true at the critical point for most, but not all, models.

The transform is r -->r/r2  oq(r) -->r oq(r/r?). In two dimensions, we have

0a(Z,2*) —->z2he z*-2M"a04(1/2,1/2*). As pointed out by Polyakov, this invariance
produces significant limitations upon the form of correlation functions. For
example it permits two-point correlations like <oa(z,z*) og(w,w*)> to be non-zero
only if ha=hg and h*a=h*g. | ask you to prove this in a homework exercise
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Correlation Functions

(from conformal symmetry in two dimensions)

Conformal symmetry gives a tremendous amount of information about the structure
of critical point correlation functions. A few results are listed here.

One point function. In an infinite system < 04(z,2*)>=0 (from scale invariance)

Two point functions. With only a few reservations and restrictions one can that
the two-point function is only non-zero if the two operators have the same h's. Then
by taking linear combinations we can ensure that

< 04(2,2*) og(W,W*) >=8q g /(z-w)?"s (z*-w*)?""e in the infinite system.
& point function. In an infinite system < 0q,(21,21%) 0ay(22,22%)... 0a,(Zn,2n*) > can be
written as a product of any term with the correct scaling behavior times a function
of combinations which are invariant under all global conformal transformations.
One combination of this kind is (z1-z2)(z3-z4)/[(z1-23)(Zz2-24)]. The complex conjugate
of this combination is also invariant. Except for changes in indices, there are no
other invariants.

Three point function. As a consequence of conformal symmetry, in an infinite
system < 0q4(21,217) 0ay(Z2,22%) 0a5(23,23") > is uniquely determined except for a

multiplicative coefficient. This same argument will give relations among the
coefficients in operator product expansions. Page 37/67



Distortions in the Plane

We already know that distortions of our planar system will produce interesting
changes in our correlation functions. The coordinate transform in question is of the
form rj-->r” =ri+njwhere n; is infinitesimal and might depend upon position. We
can build up all the finite changes we would like from infinitesimal ones except for
inversions which can be generated from special transformations of the form

1/z° =1/z +a, with an infinitesimal a, ( This is an inversion, followed by an
infinitesimal translation, followed by an inversion.) Equivalently itis z* =z -a z2
We want to include all kinds of small distortions except those which produce
shears. We do not expect our correlation functions to be invariant under shearing
operations. This no-shear requirement is the statement

dink + o)y =(divn) djx 2/d. This can be viewed as the statement that an
infinitesimal polygon drawn in the material would retain all of its angles (but not the
lengths of its sides) under the transformation.

Students of complex analysis will recognize this no-shear requirement as the

precise requirement that produce conformal transformations of the sort
z =z +n(z) with n(z) being an analytic function in some region of z.
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Symmetries, Summary

global conformal group: z-->z+a z-->Az z--> 1/z. These
transformation are global analytic transforms of the complex plane.
All other transforms have singularities somewhere. This group
transforms a function of the form (az+b)/(cz+d) into itself. We can
think of it as performing transformations upon the matrix

()

c d

Another equally good way of thinking about the complex analytic transforms
is to think about the infinitesimal version of these transforms. These are
generated by the operators: £, =-z"*'d; which then have the commutator
structure [fn, {m] = (n-m) {h+m The algebra of this structure is closed if we let
n run over all integers and closed if we allow it to run over only n=0,-1,1. The
former represents the entire conformal structure, the latter is the global
transforms, with n=-1 corresponding to translations, n=0 corresponding to
rotations and scale transformations, and n=1 corresponding to the special
transformations.

The extension beyond this limited range of n (n=0,+1,-1) to all n works
because the critical problem is local and permits slowly varying local changes

in n(z).
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Distortions in the Plane

We already know that distortions of our planar system will produce interesting
changes in our correlation functions. The coordinate transform in question is of the
form rj-->r” =ri+njwhere n; is infinitesimal and might depend upon position. We
can build up all the finite changes we would like from infinitesimal ones except for
inversions which can be generated from special transformations of the form

1/z° =1/z +a, with an infinitesimal a, ( Thas is an inversion, followed by an
infinitesimal translation, followed by an inversion.) Equivalently itis z" =z -a z2
We want to include all kinds of small distortions except those which produce
shears. We do not expect our correlation functions to be invariant under shearing
operations. This no-shear requirement is the statement

dink + dx);  =(divn) 6jx 2/d. This can be viewed as the statement that an
infinitesimal polygon drawn in the material would retain all of its angles (but not the
lengths of its sides) under the transformation.

Students of complex analysis will recognize this no-shear requirement as the

precise requirement that produce conformal transformations of the sort
z =z +n(z) with n(z) being an analytic function in some region of z.
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Correlation Functions

(from conformal symmetry in two dimensions)

Conformal symmetry gives a tremendous amount of information about the structure
of critical point correlation functions. A few results are listed here.

One point function. In an infinite system < 04(z,z*)>=0 (from scale invariance)

Two point functions. With only a few reservations and restrictions one can that
the two-point function is only non-zero if the two operators have the same h's. Then
by taking linear combinations we can ensure that

< 04(2,Z*) 0p(W,W*) >=8q g /(z-W)?Ne (z*-w*)2""e in the infinite system.
n point function. In an infinite system < 0q,(21,21*) 0ay(22,22%)... 0a,(Zn,2n*) > can be
written as a product of any term with the correct scaling behavior times a function
of combinations which are invariant under all global conformal transformations.
One combination of this kind is (z1-z2)(z3-z4)/[(z1-z3)(Zz2-z4)]. The complex conjugate
of this combination is also invariant. Except for changes in indices, there are no
other invariants.

Three point function. As a consequence of conformal symmetry, in an infinite
system < 0q4(21,21%) 0ay(Z2,22%) 0a3(23,23*) > is uniquely determined except for a

multiplicative coefficient. This same argument will give relations among the
coefficients in operator product expansions. Page 41/67



Symmetries, Continued: Inversion
<0(z:z*) O(ww*)>=1/[(z-w) " (z5-w*) 18 ]

For the two dimensional Ising model, scale invariance would permit
<g(z,7%) O(w,w*) >=B/|z-w|17/16 = B/(z-w)ho*he (z*-w*)h"o+h’e

However in fact this correlation function is zero at the critical point (B=0).

Inversion invariance: Only holds at the critical point or other massless situations:
This is a transformation which takes the point at infinity into the origin of the complex
plane. The content of this invariance is that the point at infinity is like every other point.
That is true at the critical point for most, but not all, models.

The transform is r -->r/r?  oq(r) -->r = oq(r/r?). In two dimensions, we have

0a(z,2*) -->z"2he z*-2M"a04(1/2,1/2*). As pointed out by Polyakov, this invariance
produces significant limitations upon the form of correlation functions. For
example it permits two-point correlations like <oq«(z,z*) og(w,w*)> to be non-zero
only if ha=hg and h*=h*g. | ask you to prove this in a homework exercise
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The Stress Tensor, tix(r), is the jth component of the momentum current defined by
the momentum in the direction k. The momentum is conserved so ty(r) has
divergence zero.The momentum acts like a spatial gradient. Its current density, t,

is important because that induces deformations in the plane.The structure of the
plane and its deformations defines and describes all the usual models of critical
phenomena. In fact, it is doubly important: its correlation functions with all the
basic operators in the theory describe how they fit into the space, and its
correlation functions with stress tensors at other points in space describes how the
space responds to things acting on it.

From a study of mechanics or field theory we learn that the effect of stressing a

system is studied by adding to its Hamiltonian (or free energy functional) a term of
the form

H/T ---> H/T -(1/ 217)2; tj x(r) [0 Nk(r)]
where n(r) is an infinitesimal displacement of the coordinate at r. This change then
produces a small distortion of the system. The stress tensor itself is, at the critical

point, a traceless tensor with t11=-t22 and t12=t21. It can be split into two parts via tz
=2(t1n +it2) tzz =2(tn -i te2)

We are going to calculate the change induced by this variation of the Hamiltonian
upon a product of operators

< 0a4(21,21%) 0ay(22,22")... Oqy(Zn,zn*) >

but first we have to learn a bit more about the stress tensor itself.
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The Stress Tensor, ti(r), is the jth component of the momentum current defined by
the momentum in the direction k. The momentum is conserved so tj(r) has
divergence zero.The momentum acts like a spatial gradient. Its current density, t,

is important because that induces deformations in the plane.The structure of the
plane and its deformations defines and describes all the usual models of critical
phenomena. In fact, it is doubly important: its correlation functions with all the
basic operators in the theory describe how they fit into the space, and its
correlation functions with stress tensors at other points in space describes how the
space responds to things acting on it.

From a study of mechanics or field theory we learn that the effect of stressing a
system is studied by adding to its Hamiltonian (or free energy functional) a term of
the form

H/T —> H/T ~(1/ 2m) 2+ t.i(r) [0) Nk(r)]
where n(r) is an infinitesimal displacement of the coordinate at r. This change then
produces a small distortion of the system. The stress tensor itself is, at the critical

point, a traceless tensor with t11=-t22 and t12=t21. It can be split into two parts via tz;
= 2(t11 +it12)  tzezr =2(t11 -i t12)

We are going to calculate the change induced by this variation of the Hamiltonian
upon a product of operators

< 0a¢(21,21%) 0ay(Z2,22")... Oay(Zn,zn") >

but first we have to learn a bit more about the stress tensor itself.
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The Stress Tensor

One can form these tensors, plus things which are smaller in a scaling sense by
using

t11(j,k) = const Ojk [Ojk+1 - Oj+1 k +Tjk-1 - Oj-1x |
t12(j,k) = const Ojk [Oj+1.k+1 + Oj-1 k-1 = Oj+1 k-1 = Oj-1 k+1 ]

These two tensors have the effect of distorting the system by pulling it in one
direction and compressing it in another. For example

Zj,k < t11(j,K) OrOs > =-[r1 d/dr1 -r2 dldr2 + S1 dlds1-S2 dldsz2] < O, Os >

Using coordinates z and z*, T decomposes into two components Tz and Tzz. It
follows from the condition for momentum conservation”

Z,‘ 3} tix =0
that these are respectively holomorphic,dz+tzz=0 so that tz=t(z),

and antiholomorphic, t>= t*(z*). Summed over all space, they respectively have
the effect

2k < t(j+ik) 0(z,2*) E(y.y*).... > =-(z dloz+y 8ldy) < o(z.2*) €(y.y*).... >
Zj,k < t*(j-ik) 0(z,z*) &(y,y").... > =-(z* dlaz*+y* dlay™) < o(z,Zz*") e(y,y")....>

Pirsa: 10100032 Page 53/67

Remember that T ic the current for momentum and in etatistical eauilibrinium the momentum i not chanaina in time



The stress tensor as an eigenvalue operator

Z; <t(z) 0a1(21,21*) 0a1(Z2,22%).... > =-(Z1 8/0Z1+Z2 dldzz) <TTi=1" 0ai(Z;,Z*) >
=-(z1 8l3z1+22 l0zZ2+ ) [TTj=1"(2Z) - Zn V] fl(z1-Z2)(Z5-2a)/(Z1-23)(23-22), .... >
= (hi+ha+ . hn) [TTi=1"(2) - 2a V] fl(Z1-22)(23-20)/(21-23)(25-22), ... >

= (hi+hz+ ...hy) <TTj=1" 0a(2;,2%) >
therefore eigenvalue property:
t(z) when multiplying 04i(2;,z;*) and summed over z has eigenvalue h; + h*

This result provides a solid starting point that serves as a base for an algebric
approach to two dimensional critical phenomena. The result is of course based upon
the scale invariance of the theory, and the eigenvalue is precisely the scaling index.

We expect t(z) to itself have simple scaling properties. Since it is holomorphic it
should have h* =0. On dimensional grounds, we expect operators which change
he scaling behavior of other operators to be marginal, i.e. to have x=2. Therefore
or t(z), we expect to find the eigenvalue h=2.
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The stress tensor as an eigenvalue operator

Z; < t(z) 0a1(Z1,21*) 0a1(Z2,22"). ... > =-(Z1 dldz1+Z2 9/9z2) <TTj=1" 0qi(Z;,Z") >
=-(21 0/021+22 0l0Z2+ ) [TTj=1"(2 - Zn V] fl(Z1-Z2)Z5-2Za)(Z1-23)(25-22), ... >
= (hi+hz+ ..hn) [TTi=1"(2; - 20 V] fl(Z1-22)(23-24)/(21-23)(25-22), ... >

= (h+hz+ ..hn) <TTi=1" 0a(2;,2%) >
therefore eigenvalue property:
t(z) when multiplying og(z;,z;*) and summed over z has eigenvalue h; + h*

This result provides a solid starting point that serves as a base for an algebric
approach to two dimensional critical phenomena. The result is of course based upon
the scale invariance of the theory, and the eigenvalue is precisely the scaling index.

We expect t(z) to itself have simple scaling properties. Since it is holomorphic it
should have h* =0. On dimensional grounds, we expect operators which change
he scaling behavior of other operators to be marginal, i.e. to have x=2. Therefore
or t(z), we expect to find the eigenvalue h=2.
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Put it together

One can put the change in the free energy functional induced by the strain
n in better form by starting with

H/T —> H/T ~(1/ 21) s tis(r) [8; Ni(r)]

Now, imagine that we wished to calculate the effect of this kind of distortion
upon a correlation function of operators at points, zi, in a certain compact
bounded region, R, of the complex plane, with n(z) being analytic in that region.
If we are in the continuum limit, so that sums over lattice points can be replaced
by integrals, Stokes law gives us a result

H/T —> H/T +(1/ 2ni)fdz t(z) n(z) -(1/ 21Ti)jd2* t*(z*)n*(z")
after we split the stress tensor into its component parts and make use of its
divergence-free character. The integrals go around the boundary of the region R

in a positive sense. VWe now have a change in the correlation function which is
constructed in the form

O <TM1" oa(z2%)> = (1/ 21'ri)jdz N(z) <t(z) =" 0a(z),z") >+ complex conjugate
Now we shall evaluate this integral, using the fact that t(z) is holomorphic and our
expectation that it will have a simple short distance expansion with the og;

Short distance expansion for basic operators o (called primary operators)
rird{Z)oRe(WW*) = h (Z-W)Z0q(wW,w*) + (z-w)' Jw 0a(W,w") + higher powers of (z-w) Page 57/67
for z in the neighborhood of w. Shrink the contour to surround the singularities at z



change in correlator of primary operators

O <T1" 0a(z,2")> = Ziet" [ i (I N(2K))* (N(2k) )] < TT=1" 0a(z;,2*) >+ complex conjugate
This is exactly the result we expect from our discussion of scaling properties of primary
operators. What we previously called b is, for infinitesimal n, 1+ hi (dk n(z«x)) while the term
(n(zx) dx describes a shift in coordinates caused by the deformation. This formula does not
exhibit the change in the shape of the boundaries produced by the coordinate change.

One very important case not encompassed among the primary operators is the change in

t(z) itself. One kind of information about this can be obtained by studying the correlation
functions in the solvable models that have been studied. These studies show that the
correlations of t(z) contain an extra term not encompassed in the primary operators,
specifically <t(z) t(w)> = const/ (w-z)%. The fourth power is expected from scaling the
“const” differs from model to model. In addition, one can find that the short distance
expansion for t(z) contains terms just like the ones with the primary operators so that

t(z) t(w) = c/2 (w-2)* +2 (z-w)2t(w) + (z-w)"' dw t(w) + higher powers of z-w
Here, c is a constant which varies from model to model. It is called the conformal charge. It

measures the non-linearity of the distortions of the space caused b y the stress tensor. Itis
for example, 2 in the two-dimensional Ising model.

shar distance expansions provide us with what we need to know about the algebraig, girjicture ol
the primary operators and of t(z). In fact they will provide us with an algebra which will tell us



Algebraic Structure

One can analyze the structure of the stress tensor by using an analog of Fourier
Transformation. One writes the tensor as a sum of terms

1(z)=2.n La(w) (z-W) 2

This summation structure is a reflection of the holomorphic structure if t(z) which
does not allow it to have singularities except is very special places and keeps the
rest of the z-dependence to be akin to a power law. The series expansion enables
one to analyze t(z) by looking in the Heisenberg (quantum) representation a a time
equal to the imaginary part of w. This point of view enables us to look at the short-
distance expansion

t(z) t(w) =c/(z-w)* + (2/(z-w)?) t(w) + 1/(z-W) dw t(w) +

and think about the relatively simple algebra of commutators, as produced by the
equal time expression

1/(x-u i€ ) with Re z=x, Re w=u and & being infinitesimal. Here

1/(x-u i€ )= Pr 1/(x-u) -% TTi 8(x-u)

After a little fancy footwork, which | am talking about but not doing, this analysis
gives equal-time commutation relations for the basic operators

[Ln, Lm] =CBn.-m (n?-1)n/12 +(n-m)Ln+m

This statement defines the Virasoro algebra. Taken together with algebraic relations
~Detyeen ox and the L, we get enough information to find allowed values of cand hg ..
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Application of Complex Analysis

in two dimensions

In two dimensions we can study the effect of analytic function maps upon
correlation functions. In general a transformation z-->w=w(z) maps a portion of the
space defined by z plane into some portion of the space defined by w. This
transformation provides no local shears except at points of non-analyticity. Local
angles are preserved at all points of analyticity. The general rule is that this change
transforms oq according to

Oa (2,Z")—->b(W)b(W")0a(W(Z),W*(z"))

with b(w)= [dw/dz]"= and b(w*)= [dw*/dz*]""=

This is particularly simple for the global transformations described so far. It is
trivial for the translation w=z+a, easy for w=Az, which is a pure dilation for A real,
together with a rotation through the phase of A for complex A.

The analogous calculation for any other analytic function requires additional
thought. No other function can smoothly (analytically) map the plane into itself.
So any other function will change the region under consideration. (Special
attention will have to be given to the “point™ at infinity.)

Transformations like this are called conformal transformations. They were
introduced into critical phenomena work in 1970 by A. A. Polyakov. John Cardy
showed us how to make use of specific transformations, like the one in the next
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Part 9: Critical Phenomena and 2d Space
| follow Cardy chapter 11

see also Di Francesco, Mathieu, Sénéchal
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Operator Product Expansion
short distance expansion

f ris close to s, one can replace the product oq(r) og(s) according to

ofr) 0g(s) =2y CaBy |r=sP=s oy(s)
[’he idea is that when r and s approach one another, the product looks like an operator at s.

ince the number of different operators is quite limited, one must get a sum of the operators
n the theory.

rxpressions like the one’s in operator product expansions provide a sort of algebra for the
luctuating operators in the theory. Even before Wilson'’s work on the renormalization group,
. was hoped that algebraic methods would enable a classification of, and perhaps an analytic
olution for, d=2 critical phenomena. That was roughly in 1970. Somewhat later, in 1984
Daniel Friedan, Zongan Qiu and Stephen Shenker used algebraic methods related to short
listance expansion to find the behavior of all the most familiar problems in two dimensional
ritical phenomena. They worked with an extra ingredient which was just starting to be
vailable in 1970, the deep understanding of symmetries provided by conformal invariance. |
m going to fill in some pieces of the theory of these symmetries.
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