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PERIMETER

INSTITUTE FOR THEORETICAL PHYSICS




Mean Field Theory: more is the same

one spin
Ising model, spin, simplified "y AR
atom
one spin in a magnetic field H = -ouB = -kToh
statistical average: < o >= tanh(h)

many spins
spin in a magnetic field, dimensiond -H / kT = KE 0,0, + hz o,
nn r

focus on one spin, at r: that spin feels h+K 2 Os

Ssnntor
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in MFT more is the same

one spin

statistical average: <O0>= tanh h

many spins

bcus on one spin “H.. /(kT)=0,[h + Kz <o, >]

tatistical average: h, = [h+Kz <o >] z=number of nn
<0 >= tanh(heﬁ)

or, if there is space variation, heg = hr +K Zs nntor <Os>

We shall focus on these equations for a time. This is an
approximation called MFT. It has many qualitatively useful
aspects.
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Look near criticality

The simplest interesting thing happens for small <0>, with no
field. Expand in <0> and h and find

h,=[h+Kz<o>]
< 0 >=tanh(h.4)

lowest order: heg=Kz<o>
<0 >=QNeff
which has the solution Kz=1.
Pick K=K:=1/z as a critical value of K.

Write Kz=1-t, tis temperature deviation from criticality, now write

next order expansion as <o> = (1-t) <o> +h - <0>3/3 or

t <o> = h - <0>°/3

this is now the result of mean field theory near the critical point.
Notice that MFT gives a simple cubic equation for order parameter
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hear critical point.



Conceptually, the
implest phase
ransitions occur in
erromagnetic materials
n which neighboring
pins tend to align in the
.ame direction making a
agnetic field in that
irection. Below a critical

mperature, Tc, this
lignment can occur
tven in the absence of
in applied magnetic

eIllq 10100028

Magnetic Phase Diagram

magnetic field

first order=
jump in magnetization at zero field

temperature

near critical point critical point
jump~ (71_ - jump=0
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in MFT more is the same

one spin
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easiest problem: Ising ferromagnet spin, Oy at each site of lattice,
each spin takes on values plus or minus one.

problem ~H/(kT)=KS or0.+hY o,
defined by Z Z

free energy /1) -1 expl-H{o,}/(kT
defined by et 1{021} xpf-H{o,}/(KT) ]

<g> depends on K and h. Even when h=0, if K>0
spins line up and <o> chooses to be non-zero.

Focus on Ising model to see nature of MFT's.
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in MFT more is the same

one spin

statistical average: <0>= tanh h

many spins

bcus on one spin “H.. /(kT)=0,[h + KE <o, >]

tatistical average: h,=[h+Kz <o >] z=number of nn
< o >=tanh(h_)

or, if there is space variation, hefs = hr +K Zs nntor <Os>

We shall focus on these equations for a time. This is an
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Look near criticality

The simplest interesting thing happens for small <0>, with no
field. Expand in <0> and h and find

h,=[h+Kz<o>]
< 0 >=tanh(h,;)

lowest order: hes=Kz<o>
<0 >=heff
which has the solution Kz=1.
Pick K=K:=1/z as a critical value of K.

Write Kz=1-t, tis temperature deviation from criticality, now write
next order expansion as <o> = (1-t) <o> +h - <0>3%/3 or

t <o>=h - <0>%/3

this is now the result of mean field theory near the critical point.
Notice that MFT gives a simple cubic equation for order parameter

Pirsa; 10100028

hear critical point.
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Look near criticality

The simplest interesting thing happens for small <G>, with no
field. Expand in <0> and h and find

heff =[h+KZ<0 >]
< o >=tanh(h.,)

lowest order: hes=Kz<o>
<0 >=heff
which has the solution Kz=1.
Pick K=K¢=1/z as a critical value of K.

Write Kz=1-t, tis temperature deviation from criticality, now write

next order expansion as <o> = (1-t) <o> +h - <0>3/3 or

t <o> =h - <0>3/3

this is now the result of mean field theory near the critical point.
Notice that MFT gives a simple cubic equation for order parameter
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Calculate results

t<o>=h-<0>33
h=0t>0 implies <o >=0 no magnetization for T>T. and zero field
h=0t<0 implies <o >=0 or <o >=%(-3t)® with B =%

spontaneous magnetization for T<T. and zero field

0 solution has higher free energy and is ruled out

(thermodynamics demands minimum free energy)
also att=0 we find <og>=h'® §=3

susceptibility =g<o>/dh =1/|t| for h=0t>0 note divergence

same qualitative results hold near all critical points,
qualitatively correct, near most d=3 critical points
quantitatively wrong (e.g. B approximately 3 )

The divergence in the susceptibility is an important result. It shows the
extreme sensitivity of the critical point region to parametric changes, These
divergences in the thermodynamics will be one key to understanding critical
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point behavior.
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field transition
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More MFT:Try to understand divergence of X = d<0>/dh
by finding form for correlation function

d<0r>/d hu is correlation function g(r=u)= <[Or - <Or>] [Ou — <Ou>]

since for t>0 and small h

<0,> =heg = hy +K 2 miwr <0s>  with K=(1-t)/z

0=8ru —t g(r=u) + 25 mwr [g(s-u) - g(r-u)]/z

define Fourier transform: G(q)=Zexp[-iq.(r-u)] g(r-u) so that

0=1 +[-t + 22.i=1,2..a [cos (aq)) - 1]/z ] G(q)

One can then see the long-wavelength form of G by expanding in
g to find G(q) =1/[t+a%q?/z].
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More MFT:Try to understand divergence of X = d<0>/dh
by finding form for correlation function

d<0r>/d hu is correlation function g(r=u)= <[Or - <Or>] [Ou — <Ou>]
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<0,> =he = hy +K 2 miwr <0s>  with K=(1-t)/z
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One can then see the long-wavelength form of G by expanding in
. g to find G(q) =1/[t+a%q?/z].
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Evaluate correlation function

we had G(q)=Zexp[-iq.(r-u)] g(r-u)

and the long-wavelength form G(q) =1/[t+a2q?/z].

One can then invert the Fourier transform and perform the
integral to find that , for d=3

a(r-5)= | da/amyexplia.(r-u)] G(a)
=exp[-| r-s |[EV[2TT | -5
The correlation length, &, is given by £=a/(zt)"?

Note that at fixed separation, the correlation function does not
diverge as criticality is approached. It is the range of correlations
which grows and causes the divergence. This is an important

irsa: 105&8 u It . Page 38/83
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One More Conclusion from MFT
Go after E=<H> when h=0, no variation in space

-H/ kT =KY 0,0, +h> o,

Ve assume neighboring spins are uncorrelated

<H>/(kT) = Kz<0> <0> + other effects

earTc <0>? =0 aboveT. <g>? = -3t below
1ence specific heat,d <H>/dT has a jump at T.. It looks like

A
dE/dT
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Evaluate correlation function

we had G(q)=2exp[-iq.(r-u)] g(r-u)

and the long-wavelength form G(q) =1/[t+a2q?/z].

One can then invert the Fourier transform and perform the
integral to find that , for d=3

g(r-5)= | dg/2myexpliq.(r-u)] ()
=exp[-| r=s |[/E]/[2TT | r=s |
The correlation length, €, is given by £=a/(zt)"?

Note that at fixed separation, the correlation function does not
diverge as criticality is approached. It is the range of correlations
which grows and causes the divergence. This is an important
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Evaluate correlation function

we had G(q)=2exp[-iq.(r-u)] g(r-u)

and the long-wavelength form G(q) =1/[t+a2q?/z].

One can then invert the Fourier transform and perform the
integral to find that , for d=3

g(r-s)= f dq/(2717) exp[iq.(r-u)] G(q)
=exp[-| r=s |[/E]/[21T | r-s |
The correlation length, €, is given by £=a/(zt)""?

Note that at fixed separation, the correlation function does not
diverge as criticality is approached. It is the range of correlations
which grows and causes the divergence. This is an important
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Evaluate correlation function

we had G(q)=2exp[-iq.(r-u)] g(r-u)

and the long-wavelength form G(q) =1/[t+a%q%/z].

One can then invert the Fourier transform and perform the
integral to find that , for d=3

g(r-5)= | dg/2myexpliq.(r-u)] G(@
=exp[-| r=s |/E)/[2TT | r=s |
The correlation length, &, is given by €=a/(zt)"?

Note that at fixed separation, the correlation function does not
diverge as criticality is approached. It is the range of correlations
which grows and causes the divergence. This is an important
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irsa:

Generalized Mean Field Schemes |

Landau generalized the many different MFT’s that
existed by assuming an expansion of the free energy in
an order parameter, here symbolized by M =
magnetization

F= [dr[a-hM+tM2+cM*+(VM)? ]

expansion assumes a small order
parameter (works near critical point) and
small fluctuations (works far away?!)

h is magnetic field
t is proportional to (T-T¢)

minimize F in M: result General Solution M(h, (T-T.))
singularity as t,h both go through zero!

10100

singularity as h goes through zero for T<T.

note: no
cubic term
This free
energy
applies to
symmetry C
Ising mode|
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Additional Information about fluctuations

Even as far back as 1937, there was evidence of divergent fluctuations
near the critical point, as evidenced by critical opalescence. As a clear
fluid is brought near the critical point, it becomes cloudy.

Smoluchowski (1908) and then Einstein (1910) argued that fluctuations
in density in the fluid produced scattering and that these fluctuations
would diverge at the critical point causing a divergence in the
compressibility of the fluid.

A little later, Ornstein and Zernike (1914,1916) argued that it was not the
magnitude of the local fluctuations which would diverge near criticality.
Instead the typical size of the fluctuation region, the coherence length,

¢, would diverge as the critical point was approached. That divergence
would produce the infinity in the susceptibility. Specifically the
divergence would appear in a correlation function

<[p(x)-<p>] [p(y)-<p>] > = (1/|x-yl|) exp( -|x-y|/g )

Haw-zould these divergences occur? Mean field theory does roughily-:

nradinate thoarm kit ite Aataillad nradicrtinne are inAcAarrart



Widom’s results

in terms of t=T-Tc h=p-pc

Widom 1965: scaling result He focuses attention on scaling near critical
point. In this region, averages and fluctuations have a characteristic size, for
example density jump ~ (-t)*F when h=0

density minus critical density ~ (h)'® when t=0

Therefore, Widom argues there is a characteristic size for h, which is
h* ~ (-t)Pd =(-t)2 with A=Bd

so that density minus critical density = (-t)® g(h/t?)

therefore, using a little thermodynamics, scaling for free energy is

F(t,h)=V tB+2 f*(h/t)+ Fron-singuiar:  (V is volume of system)

Further he says singular term in free energy given by excitations of size of
coherence length with kT per excitation. They fill all space, giving
F - Fnon-singular ~ (Volume of system)/ &9 ~ VtdV
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Application to Phase Transitions: today’s view..., continued

I o Isotherms
A I'= Constant\  [deal Gas
ll TR N Region
.
'. \

Inite size of real systems cuts off
finities, for example, in the

erivative of density with respect to/ -

ressure, at some very large value.

nite size of real systems produces
nall regions of rounding here rather

AN sharp corners

statistical mechanics mostly fails
in boiling region.
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his same approach is still in extensive use.

= Fn + f dr{ =—|V¥(r)|* + a(T)|¥(r)|" +U(’)|‘I’(")'z+g'q'(’)'d}

Superfluid density near the critical temperature in the presence of random planar
defects

D. Dalidovich, A.J. Berlinsky and C. Kallin

Department of Physics and Astronomy, McMaster University,
Hamalton, Ontaro, Canada L8S [(M]I
(Dated: November 14, 2008)
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“Hydrodynamics™ and transport in different
phase of matter

Different phases of matter are qualitatively different. The only
exception mentioned here is the liquid/vapor system in which both
phases are qualitatively similar.

Each kind of phase has its own kind of long-wave-length or transport
process. For example, a liquid has no rigidity so it cannot transfer a
torque over a long distance, but a solid can. At low frequencies
momentum transfer in liquids involve one kind of sound wave and two
components of diffusion limited by viscosity. The latter is described by
the Navier Stokes equations, extensively used in fluid research.

dwv(rt) = NV2w(rt) + Vp(rt) Vv(rt) =0
In contrast, solids have three modes of sound propagation: one
longitudinal and two transverse.

Liquid
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Superfluidity
Superfluidity is a phase of matter in which viscosity of a fluid
vanishes, while heat capacity becomes infinite. These unusual
effects are observed when liquids, typically of helium-4 or
helium-3, overcome friction in surface interaction at a stage
(known as the "lambda point", which is temperature and
pressure, for helium-4) at which the liquid's viscosity becomes
zero. Also known as a major facet in the study of guantum
hydrodynamics, it was discovered by Pyotr Kapitsa, John F.
Allen, and Don Misener in 1937 and has been described
through phenomenological and microscopic theories. In the
1950s Hall and Vinen performed experiments establishing the
existence of quantized vortex lines. In the 1960s, Rayfield and
Reif established the existence of quantized vortex rings.
Packard has observed the intersection of vortex lines with the
free surface of the fluid, and Avenel and Varoquaux have

studied the Josephson effect in superfluid ‘He.
Wikipedia
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Evaluate correlation function

we had G(q)fZexp[-iq.(r-u)] g(r-u)

and the long-wavelength form G(q) =1/[t+a2q?/z].

One can then invert the Fourier transform and perform the
integral to find that , for d=3

a(r-5)= | dg/@myexplia.r-u)] (@
=exp[-| r-=s |[E}/[2TT | r-s|
The correlation length, &, is given by €=a/(zt)"?

Note that at fixed separation, the correlation function does not
diverge as criticality is approached. It is the range of correlations
which grows and causes the divergence. This is an important
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Evaluate correlation function

we had G(q)=2exp[-iq.(r-u)] g(r-u)
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Evaluate correlation function

we had G(q)=2exp[-iq.(r-u)] g(r-u)

and the long-wavelength form G(q) =1/[t+a’q%/z].

One can then invert the Fourier transform and perform the
integral to find that , for d=3

g(r-s)= f dq/(217) exp[iq.(r-u)] G(q)
=exp[-| r-s |/E]/[2TT | r-s |
The correlation length, €, is given by £=a/(zt)"?

Note that at fixed separation, the correlation function does not
diverge as criticality is approached. It is the range of correlations
which grows and causes the divergence. This is an important
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One More Conclusion from MFT
Go after E=<H> when h=0, no variation in space

-H / kT = KEU,US +h20lr

Ve assume neighboring spins are uncorrelated

<H>/(kT) = Kz<0> <0> + other effects

earTc <0>? =0 aboveT. <0g>? = -3t below
lence specific heat,d <H>/dT has a jump at T.. It looks like

A
dE/dT
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More applications

| have just described in an abbreviated form mean field theory,
particularly as it is applied near critical points. Putting aside the
specialization for behavior near critical points, a tremendous
amount of this kind of work has been done. For each one of a
huge variety of phase transitions, scientists have discovered their
order parameters, and constructed theories describing the
discontinuities in these parameters that we characterize as
“phase transitions”’.

This work has been very important and enlightening. It has led
us to a working understanding of some of the different phases of
matter and the uses to which they might be put. It is not
precisely accurate but it gives a good working understanding of
the many different kinds of phase transitions.

The high point of this work was the 1957 Bardeen, Cooper,
Schrieffer theory of superconductivity, which provided a very
dectirdte description if the superconductors then under study. s
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Go after E=<H> when h=0, no variation in space

-H/ kT =KY 0,0, +h> o,

Ve assume neighboring spins are uncorrelated

<H>/(kT) = Kz<0> <0> + other effects

earTc <0>? =0 aboveT. <0g>? = -3t below
lence specific heat,d <H>/dT has a jump at T.. It looks like

A
dE/dT

irsa: 10100028 - Page 66/83

27



L —
0

= & One More Lonclusion from MFT
: Go after E=<H> when h=0, no variation in space

-H/ kT = KZG,GS +h2 o,

We assume neighboring spins are uncorrelated

-<H>/(kT) = Kz<0> <0> + other effects

. nearT, <0>? =0 aboveT. <g>? = -3t below

0’ Hence specific heat,d <H>/dT has a jump at T.. It looks like

A
1 dE/dT

1234567890-=
- BwepTyurot(]..

* xodPYNOKA[

Page 67/83




Page 68/83




or Atoms  \olecv

Pl

Page 69/83




Superfluidity
Superfluidity is a phase of matter in which viscosity of a fluid
vanishes, while heat capacity becomes infinite. These unusual
effects are observed when liquids, typically of helium-4 or
helium-3, overcome friction in surface interaction at a stage
(known as the "lambda point", which is temperature and
pressure, for helium-4) at which the liquid's viscosity becomes
zero. Also known as a major facet in the study of guantum
hydrodynamics, it was discovered by Pyotr Kapitsa, John F.
Allen, and Don Misener in 1937 and has been described
through phenomenological and microscopic theories. In the
1950s Hall and Vinen performed experiments establishing the
existence of quantized vortex lines. In the 1960s, Rayfield and
Reif established the existence of quantized vortex rings.
Packard has observed the intersection of vortex lines with the
free surface of the fluid, and Avenel and Varoquaux have

studied the Josephson effect in superfluid ‘He.
Wikipedia
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Order Parameter, generalized

One very important moment occurred in
1937, when Landau pointed out the
basic unity among all the different
MFT's.

» Landau suggested that phase
transitions were manifestations of a
broken symmetry, and used the order
parameter to measure the extent of
breaking of the symmetry.

* in ferromagnet, parameter =
magnetization

* in fluid, order parameter = density

* in Ising model, order parameter = <g>
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irsa:

Generalized Mean Field Schemes |

Landau generalized the many different MFT’s that
existed by assuming an expansion of the free energy in
an order parameter, here symbolized by M =
magnetization

F= [dr[a-hM+tM2+cM*+(VM)? |

expansion assumes a small order
parameter (works near critical point) and
small fluctuations (works far away?!)

h is magnetic field
t is proportional to (T-T¢)

minimize F in M: result General Solution M(h, (T-T.))
singularity as t,h both go through zero!

10100

singularity as h goes through zero for T< T.

note: no
cubic term
This free
energy
applies to
symmetry c
Ising mode|
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Superconductors

An analogous situations holds in the normal low-temperature
superconductors of the sort described by BCS. These have the
usual solid transport processes, produced by the
superconducting quasi-particles and in addition an equation for
the condensate, called the Landau-Ginzburg equation.The latter
is a form of Landau’s equation for a critical system, with a
complex wave function representing the behavior of the order
parameter. Their equations take the form

d 7 1 . 2
o + B¢ + E{—fﬁV —2eA)" v =0

2_.
j = —Re {v" (—ihV — 2eA) )

m

where | is the electrical current produced by the superflow. Note the
2e. That's because the wave function describes Cooper pairs. One

¢an. include a time derivative in the first equation to describe glg
temporal chanqes.

/



Brian Josephson

. Harwell

inneling

)C Josephson effect
[C Josephson effect
ardeen

he Mahareshee

he King of Belgium
t The Mahareshee’s

Josephson, B.D., 1964: "Coupled Superconductors”, Review of Modern Physics, 36 [1P1].
Josephson, B.D., 1965: "Supercurrents through Barriers”, Advances in Physics, 14 [56].
Josephson, B.D., 1992: "Telepathy Works", New Scientist, 135 [1833], 50-50.

Josephson, B.D., 1992: "Defining Consciousness", Nature, 358 [6388], 618-618.

anecdote tells of Werner Heisenberg and Dirac sailing on a cruise ship to a conference in Japan in August
9. "Both still in their twenties, and unmarried, they made an odd couple. Heisenberg was a ladies' man who
pstantly flirted and danced, while Dirac—'an Edwardian geek’, as [biographer] Graham Farmelo puts it—
fered agonies if forced into any kind of socialising or small talk. "Why do you dance?' Dirac asked his
npanion. 'When there are nice girls, it is a pleasure,’ Heisenberg replied. Dirac pondered this notion, then

rted out: 'But, Heisenberg, how do you know beforehand that the girls are nice?™|
Pirsa: 10100028

Page 80/83




Superfluidity
Superfluidity is a phase of matter in which viscosity of a fluid
vanishes, while heat capacity becomes infinite. These unusual
effects are observed when liquids, typically of helium-4 or
helium-3, overcome friction in surface interaction at a stage
(known as the "lambda point", which is temperature and
pressure, for helium-4) at which the liquid's viscosity becomes
zero. Also known as a major facet in the study of guantum
hydrodynamics, it was discovered by Pyotr Kapitsa, John F.
Allen, and Don Misener in 1937 and has been described
through phenomenological and microscopic theories. In the
1950s Hall and Vinen performed experiments establishing the
existence of quantized vortex lines. In the 1960s, Rayfield and
Reif established the existence of quantized vortex rings.
Packard has observed the intersection of vortex lines with the
free surface of the fluid, and Avenel and Varoquaux have

studied the Josephson effect in superfluid “He.
Wikipedia
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transport in different phases ...continued

Superfluids have special “super” flow processes which cannot occur in
an ordinary liquid. In the simplest time-independent limit the slow

changes are described by a non-linear Schrodinger equation of the
form

h? P ) Amh?a,

2m or? m

IL'(r)IE) (r) = py(r),

The right hand side comes from a term in i (h/21T)d:\}, in a situation in
which the energy is given by the chemical potential M.

This is called the Gross-Pitaevski equation, and applies at very low
temperatures. At higher temperatures, the flow equations are
described as two-fluid equations, because the flow can be roughly
understood as a simultaneous flow of normal fluid and superfluid.
Some very special effects are produced. For example film flow.
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