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Bose Transition

1 1
n=number of particles per unit volume 13 2-- 1+ expll fetrsal}
Here the sum is over a vector of integers of length three, and the energy is
g(m)=m2 h2 /(2ZML2), M being the mass of the particle. For a sufficiently large box, there are
two qualitatively different contributions to the sum. The term in which m=0 can be
arbitrarily large because u can be arbitrarily small. The remaining terms contribute to an
integral which remains bounded as u goes to zero. The result is

ne—1l_ + [ ® -
Lpu ) B Avexpl (p2(2M)u)

The integration has a result that goes to zero as T? as the temperature goes to zero. |[f this
system is to maintain a non-zero density as T goes to zero, which we believe it can, it can on|
do so by having the first term on the right become large enough so that a finite proportion
of the entire number of particles in the system will fall into the lowest mode. This is
believed to be the basic source of superfluidity.
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Bose Transition
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Here the sum is over a vector of integers of length three, and the energy is
e(m)=m2 h2 /(2ML2), M being the mass of the particle. For a sufficiently large box, there are
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H-theorem for bosons
Boltzmann equation gives an an increasing entropy for bosons of the form of an sum over m
and integral over r of -[f In f-(1+f) In (1+f)]. Notice how when there is a very large value of
e.g. when there is macroscopic occupation of a single state, the contribution of this
combination turns out to be quite small. The condensed mode does not add appreciably to

the entropy.

Pirsa: 10100027 Page 13/97



H-theorem for bosons
Boltzmann equation gives an an increasing entropy for bosons of the form of an sum over m
and integral over r of -[f In f-(1+f) In (1+f)]. Notice how when there is a very large value of
e.g. when there is macroscopic occupation of a single state, the contribution of this
combination turns out to be quite small. The condensed mode does not add appreciably to

the entropy.

Pirsa: 10100027 Page 14/97






Dynamics of bosons

Some part of the story of bosons is much the same. A low temperature conserved boson
system could be expected to obey the same sort of equation, under circumstances in which the
bosons were conserved, and also the emission and absorption of phonons were not too
significant.

Specifically, the equation would look like

[0: + (VpE) Ve - (Ve €) - V] fip) =

- [[[dq dp dq" 3(p+q - p-q) B(E(p)* £(q) - £(p)-£(q)
R(P,G — P5a°) [fIP) Q)1+ fip) (1+fg)) - fip) fig) (1+ip)) (1+fip) ] vi

Once again the new feature is shown in red. In the scattering events there are,
for bosons, more scattering when the final single particle states are occupied than
when they are empty. One says that fermions are unfriendly but bosons are
gregarious (or at least attractive to their own tribe.). The fin the 1+f term was
known in the |9th century in terms of the simulated emission of light, which is a
kind of boson. The 20th Century brought Planck, and particularly Einstein, who
first saw the need for the “1” in the 1+f term. This extra piece was introduced to
make the bose dynamical equation have the right local equilibrium behavior. The
logic used by Einstein includes the fact that for local equilibrium via equation vi.9,
we must have f/(-1+f) be, as in the fermion case, an exponential in conserved
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Landau’s equation for low temperature fermion systems:
[0: + (VpE)- Ve - (Vi g) - Vp] fip) =

- [f[da 9P da"d(p*q - p-q) B(E(P)* E(q) - £(P)-E(T)
R(pq — P5q°) [fip) flg(1-fip) (1-9)) - fip) fig") (1ip)) (14ip)) ]

We can do just about everything with this equation that Boltzmann did with his more classical
result. For example this equation also has an H theorem with H being an integral of

fIn f+(1-f) In(1-f). This contribution to minus the entropy goes to zero when f goes to either
Zero or one.

An important difference from the non-degenerate case is that this equation gives us a
particularly low scattering rate at low temperatures. Only modes with energies within kT of
the fermi surface can participate in the scattering. As a result, the scattering rate ends up
being proportional to T? at low temperatures. This low scattering rate guarantees that the
excitations with energy &(p,r,t) is stable and can be treated as if it were a particle descibed by
Hamiltonian mechanics. This kind of stable excitation is called a quasi-particle. Quasi-particles
are very important in condensed matter physics, particle physics, and many other areas.

This approach gives us a piece of a theory of He?, the fermion form of helium. To complete the

"reHE8PY one should also consider the emission and absorption of phonons, i.e. sound*wée
avyritartimanec
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Dynamics of fermions at low temperature

Landau described fermions at low temperature by saying that they had a free energy which
depended upon, f(p,r,t) the occupations of the fermion modes with momentum in the
neighborhood of P and position in the neighborhood of r at time t. As the occupations
changed the free energy would change by

5F = "f'_‘fr e(p.r.t) 6f(p,r.1)
-

Then, using the usual Poisson bracket dynamics the distribution function would obey, as in
equation v.| 3.

. fipsrit) + (Vp €(Pynst) - Ve fipyrit) = (Ve €(pyrst)) - Vi fip,rit)

= collision term

The collision term will be the same as in the classical Boltzmann equation with one important
difference: Since fermions cannot enter an occupied state, the probabilities of entering a final
state will be multiplied by a factor of (1-f). Thus, Landau proposed a “Boltzmann equation” for
degenerate fermions of the form below, with the new terms in red

[0: + (VpE)- Ve = (Vrg)- V] fip) =

- J‘J‘ J'dq dp” dq’ d(p+q - p'-q) D(e(p)* £(q) - £(P)-E(q))
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derivation of equilibrium f(p) from Boltzmann equation

equation has

{fip) flQ(1-fip’) (1-fiq) - fip") fiq) (1-ip)) (1-fiq)) }
divide through by all 1-f’s. After division { } becomes

{fip) fiQ/[(1-fip)) (1-flq)] - fi(p") fiq)I(1-fp7) (1-fiq)) 1}

by previous argument this difference vanishes when
fip) /(1-fip)) =exp[-B[ep-M4 +pP.¥] ] so that we get the familiar fermion expression

f(p) =1/{exp[-Bles-u +p.v]] +1}
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Landau’s equation for low temperature fermion systems:
[Oc + (VpE) Ve - (Vi E) - V] fip) =

- J' J' J'dq dp” dq” 5(p+q - p'-q") d(e(p)+ £(q) - £(p")-£(q))
R(pyq — PHq ) [fip) flg(1-fip)) (1-fig) - fip") fiq") (1-fip)) (1-fip)) ]

We can do just about everything with this equation that Boltzmann did with his more classical
result. For example this equation also has an H theorem with H being an integral of

fIn f+(1-f) In(1-f). This contribution to minus the entropy goes to zero when f goes to either
Zero or one.

An important difference from the non-degenerate case is that this equation gives us a
particularly low scattering rate at low temperatures. Only modes with energies within kT of
the fermi surface can participate in the scattering. As a result, the scattering rate ends up
being proportional to T?at low temperatures. This low scattering rate guarantees that the
excitations with energy &(p,r,t) is stable and can be treated as if it were a particle descibed by
Hamiltonian mechanics. This kind of stable excitation is called a quasi-particle. Quasi-particles
are very important in condensed matter physics, particle physics, and many other areas.

This approach gives us a piece of a theory of He?, the fermion form of helium. To complete the

"reHE8PY one should also consider the emission and absorption of phonons, i.e. sound*w#e
Aavritfatianc
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derivation of equilibrium f{p) from Boltzmann e

equation has
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derivation of equilibrium f(p) from Boltzmann e

equation has

e {fip) figQ(i-fip)) (1q)) - fip) fiq) (1-fip) (1-iq)) }=0

.........

{fip) fig/[(1-fip)) (1-flq)] - fip") fig)I(1-f(p)) (1-f(q") I}

by previous argument this difference vanishes when
fip) /(1-fip)) =exp[-B[Ep-H +p.v] ] so that we get the familiar fermi

Yulalof
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Landau’s equation for low temperature fermion systems:
[0 + (VpE) Vi - (Vi €)- V] fip) =

- J' J' dq dp” dq” 5(p+q - p'-q") S(e(p)+ &(q) - £(p)-&(q)
R(p,q P9 ) [fiP) fl@(-fip)) (1-flq)) - fip’) fiq) (1-fp)) (1-fp)) ]

We can do just about everything with this equation that Boltzmann did with his more classical
result. For example this equation also has an H theorem with H being an integral of

fIn f+(1-f) In(1-f). This contribution to minus the entropy goes to zero when f goes to either
Zero or one.

An important difference from the non-degenerate case is that this equation gives us a
particularly low scattering rate at low temperatures. Only modes with energies within kT of
the fermi surface can participate in the scattering. As a result, the scattering rate ends up
being proportional to T2 at low temperatures. This low scattering rate guarantees that the
excitations with energy &(p,r,t) is stable and can be treated as if it were a particle descibed by
Hamiltonian mechanics. This kind of stable excitation is called a quasi-particle. Quasi-particles
are very important in condensed matter physics, particle physics, and many other areas.

This approach gives us a piece of a theory of He?, the fermion form of helium. To complete the

"reHE8¥Y one should also consider the emission and absorption of phonons, i.e. sound*w#vé
avyritatiane
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Dynamics of bosons

Some part of the story of bosons is much the same. A low temperature conserved boson
system could be expected to obey the same sort of equation, under circumstances in which the
bosons were conserved, and also the emission and absorption of phonons were not too
significant.

Specifically, the equation would look like

[0 + (Vpg)- Ve = (VrE)- Vp] fip) =

- [[[dq dp" dg 5(p+q - p-q) B(e(p)* £(q) - £(p)-£(Q)
R(Pq — P59°) [fip) fl@(1+fp) (1+fg)) - fip) fig) (1+fip)) (1+fip)) ] vi.9

Once again the new feature is shown in red. In the scattering events there are,
for bosons, more scattering when the final single particle states are occupied than
when they are empty. One says that fermions are unfriendly but bosons are
gregarious (or at least attractive to their own tribe.). The fin the 1+f term was
known in the 19th century in terms of the simulated emission of light, which is a
kind of boson. The 20th Century brought Planck, and particularly Einstein, who
first saw the need for the “1” in the 1+f term. This extra piece was introduced to
make the bose dynamical equation have the right local equilibrium behavior. The
logic used by Einstein includes the fact that for local equilibrium via equation vi.9,
we must have f/(-1+f) be, as in the fermion case, an exponential in conserved
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abstract

In present-day physics, the renormalization method, as developed by
Kenneth G. Wilson, serves as the primary means for constructing the

connections between theories at different length scales. This
method is rooted in both particle physics and the theory of phase
transitions. It was developed to supplement mean field theories like those

developed by van der Waals and Maxwell, followed by Landau.

Sharp phase transitions are necessarily connected with singularities in
statistical mechanics, which in turn require infinite systems for their realization.
(I call this result the extended singularity theorem.) A discussion of this point
apparently marked a 1937 meeting in Amsterdam celebrating van der Waals.

Mean field theories neither demand nor employ spatial infinities in their
descriptions of phase transitions. Another theory is required that weds a
breaking of internal symmetries with a proper description of spatial infinities.
The renormalization (semi-)group provides such a wedding. Its nature is
described. The major ideas surrounding this point of view are described
including especially scaling, universality, and the development of connections

among different theories.
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Who am I?

A condensed matter theorist, with an interest in
the history of science, who intends to talk about
a subject closely related to condensed matter,
but also to the philosophy of science and
particle physics. | am not an expert in either of
the latter subjects.

condensed matter physics: formulations clear (stat mech,
Schrodinger equation, etc.) goal: explain amazing variety of
nature. Nature = an Onion, exposed layer after layer. We hope to
see mathematical and conceptual beauty arise from the mundane.

particle physics: simple results=masses, cross-sections goal:
seek clear and final (!') theoretic formulations based upon
experiment and observations. Hope to see the mundane arise
from the mathematical beauty of a single truth.
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Connections in Condensed Matter Physics

Condensed matter physics relates the observable, often
macroscopic, properties of liquids, gases, solids and all
everyday materials to more microscopic theories, often the
quantum theory of atoms and molecules. Since the
macroscopic theories are themselves non-trivial, e.g.
elasticity, hydrodynamics, the electrodynamics of materials, it
follows that condensed matter physics is largely an exercise
in connecting different kinds of theories.

Typically this connection involves different length scales
Size of molecule = 10-° meter. Size of laboratory= 5 meter

One of the deepest aspects of this area of
science is the existence of different
thermodynamic phases, each with qualitatively
different properties. E.g., freezing is a sudden
qualitative change in which the material
abruptly gains rigidity. How can this happen?

irsa: 10100027 Page 46/97

All thermodvnamic behaviar ic haced on <tatietical mechanire



Connections in Particle Physics

Particle physics often wishes to relate its present,
phenomenological, theory to a deeper (?!) theory at a much
shorter or longer length scale. e.g. Connect the standard
model to physics at a LHC, unification, or Planck scale.

Previously the search for a final theory has been
impeded by ugliness or singularities arising at scales
far from observation. These singularities show up
directly as infinities in perturbation theory and indirectly
as algebraic behavior (1/|x-y|P) in a correlation function

| am going to follow condensed matter physics for the next parts of this
talk, but particle physics and condensed matter physics are essentially

similar.
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Further Connections

-ield Theory and Statistical Mechanics are closely
connected. A Wick rotationt — i /(kT) will take you from one

0 the other.

Quantum Mechanics and Classical Mechanics are closely
connected. Both employ Hamiltonians as basic generators
of time development as do Field Theory and Statistical
Mechanics.

All four have a dual structure in which terms in the
Hamiltonian both describe measurable quantities and
equally generate changes in development.

All four have the same structure: Poisson Bracket and
Commutator, conjugate variables = p’'s and g’s.

shall talk mostly about statistical mechanics.

irsa: 10100027
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STATISTICAL MECHANICS AND
SINGULARITIES

Statistical mechanics (defined by Ludwig Boltzmann in 1870s) states
that the probability for finding a equilibrium system in a volume element
dy about a position, Y, in phase (position and momentum) space is
equal to dy exp[ -B(H{y}-F)]. Here B is the inverse temperature,
H{Y} the Hamiltonian or energy and F the free energy of the system.
The latter is given by the normalization condition

exp[-B FI= [ dy exp[-BH{Y}]

where the integral covers all the configurations of the system.

Thus the free energy is proportional to a logarithm of a sum (or
integral) of exponentials. For a system that is finite in extent, such

a sum is always a smooth (real analytic) function of its arguments.
Consequently phase transitions, which involve discontinuous
~hanges as parameters like temperature or pressure are varied, ...
can onlv be found in infinite svstems.



..A phase transition appears as a sharp
change in the form of thermodynamic functions,
s you go from one kind of behavior to another.
[hese sharp changes are mathematical
singularities. A singularity will not happen in
any finite system, as in a finite liquid. The
singularity can (and does) happen in an infinite
system. | call this result the extended
singularity theorem. This theorem has been
extensively used, but not really extensively
liscussed, in the previous literature.

t follows that any proper description of a phase
ransition requires a theory which makes an
explicit use of the infinite size of the system.
Most theories constructed before Wilson's

Pirsa: 10100027

enormalization group (1971) fail this test.

swim in liquid water
abrupt change
walk on soldi ice

htto://azahar files. wordoress.com/
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History:

(1869 ) Thomas Andrews, experimentally studied Phil. Trans. Roy. Soc.
the P-V diagram of CO2. He discovered the critical 159 p. 575 (1869 )
point. His data look roughly like:

P Isotherms

A I'= Constant ldeal Gas

Note qualitative changes.

» as boiling takes one from liquid
to vapor

'

» as one passes from isotherm to
iIsotherm through critical point

These qualitative changes are

Cartoon is PVT plot for water, mathematical singularities.
but CO; is similar, with a

Pirsa: 10100027
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..A phase transition appears as a sharp
change in the form of thermodynamic functions,
s you go from one kind of behavior to another.
[hese sharp changes are mathematical
singularities. A singularity will not happen in
any finite system, as in a finite liquid. The
singularity can (and does) happen in an infinite
system. | call this result the extended
singularity theorem. This theorem has been
extensively used, but not really extensively
liscussed, in the previous literature.

t follows that any proper description of a phase
ransition requires a theory which makes an
explicit use of the infinite size of the system.
Most theories constructed before Wilson's

IIIII 10100027

efdrmalization group (1971) fail this test.

http//blogs.trb.com/news/local/
longisland/politics/blog/2008/04/

swim in liquid water
abrupt change
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History:

(1869 ) Thomas Andrews, experimentally studied Phil. Trans. Roy. Soc.
the P-V diagram of CO2. He discovered the critical 159 p. 575 (1869 )
point. His data look roughly like:

P Isotherms

A I'= Constant ldeal Gas

Note qualitative changes.

» as boiling takes one from liquid
to vapor

e

» as one passes from isotherm to
iIsotherm through critical point

These qualitative changes are

Cartoon is PVT plot for water, mathematical singularities.
but CO: is similar, with a
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more accessible critical point.
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In 1873 van der Waals

derives an approximate

equation of state for fluids:

k

15 vy
\\15

y - i
O
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o

Reduced pressure, p/p
o
()

0.1 1
Reduced volume, W/
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Starts from pV=NkKT, he gets
cubic equation

(p+aN2/\/2)(V-Nb)=NkT

Takes into account

« strong repulsive interaction via
excluded volume (bN), and also

- attractive interactions via potential
of mean force (aN?/V?), (accurate
for long-ranged forces.)

This work gives the first
example of a mean field theory

(MFT).
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History:
(1869 ) Thomas Andrews, experimentally studied Phil. Trans. Roy. Soc.

the P-V diagram of CO2. He discovered the critical 159 p. 575 (1869 )
Point. His data look roughly like:

f Isotherms

A I"= Constant Ideal Gas

Note qualitative changes.

» as boiling takes one from liquid
to vapor

F

» as one passes from isotherm to
iIsotherm through critical point

>V These qualitative changes are

Cartoon is PVT plot for water, mathematical singularities.
but CO: is similar, with a
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more accessible critical point.
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Part 7. Mean Field Theory and Phase

Transitions
Materials can exist in quite “
different phases with quite |

different properties. Phase ? E t. -
transitions describe the change | | R
from one phase to another.

The traditional theories of phase
transitions are mean field
theories, MFT. We shall describe
the nature of MFT’s by looking
particularly at the MFT that
applies to the Ising model. Then
we shall look at Landau’s theory
generalizing this work to many
ditfesent phase transitions.




Gibbs: A phase transition is a sharp
change in thermodynamic behavior.

Ehrenfest:

* First order phase transition =
discontinuous jump in
thermodynamic quantities.

* Now we also talk about
continuous phase transitions. In
these phase transition the system
finds itself between two different
behaviors. There is no jump in any
in thermodynamic quantitie.
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Cartoon is PVT plot for water,
but CO; is similar, with a
more accessible critical point.

Note qualitative changes.

« as boiling takes one from liquid
to vapor

» as one passes from isotherm to
isotherm through critical point

These qualitative changes are
mathematical singularities.
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History:

(1869 ) Thomas Andrews, experimentally studied Phil. Trans. Roy. Soc.
the P-V diagram of CO2. He discovered the critical 159 p. 575 (1869 )
point. His data look roughly like:

Isotherms

A

"
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I'= Constant ldeal Gas
\ Note qualitative changes.

» as boiling takes one from liquid
to vapor

» as one passes from isotherm to
isotherm through critical point

>V These qualitative changes are

Cartoon is PVT plot for water, mathematical singularities.
but CO: is similar, with a
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In 1873 van der Waals

derives an approximate
equation of state for fluids:
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]
Reduced volume, W/

isotherms

Starts from pV=NkT, he gets
cubic equation

(p+aN2/\2)(V-Nb)=NkT

Takes into account

- strong repulsive interaction via
excluded volume (bN), and also

« attractive interactions via potential
of mean force (aN%/V?), (accurate
for long-ranged forces.)

This work gives the first
example of a mean field theory
(MFT).
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History:

(1869 ) Thomas Andrews, experimentally studied Phil. Trans. Roy. Soc.
the P-V diagram of CO2. He discovered the critical 159 p. 575 (1869 )
point. His data look roughly like:

" Isotherms

A I'= Constant ldeal Gas

Note qualitative changes.

» as boiling takes one from liquid

P,
to vapor

» as one passes from isotherm to
iIsotherm through critical point

>V These qualitative changes are

Cartoon is PVT plot for water, mathematical singularities.
but CO: is similar, with a
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In 1873 van der Waals

derives an approximate
equation of state for fluids:

\\\1s

isotherms

Starts from pV=NkKT, he gets
cubic equation

(p+aN2/\V2)(V-Nb)=NkT

Takes into account

» strong repulsive interaction via
excluded volume (bN), and also

» attractive interactions via potential
of mean force (aN?/V?), (accurate
for long-ranged forces.)

This work gives the first
example of a mean field theory
(MFT).
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In 1873 van der Waals

derives an approximate
equation of state for fluids:
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Starts from pV=NkT, he gets
cubic equation

(p+aN2/V2)(V-Nb)=NKT

Takes into account

- strong repulsive interaction via
excluded volume (bN), and also

» attractive interactions via potential
of mean force (aN?/V?), (accurate
for long-ranged forces.)

This work gives the first
example of a mean field theory
(MFT).

Note that there is here no
reference to infinite size of
system, no singularities*affd no
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But van der Waals' result is
not entirely stable.
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(TS 70) NIaXWET TIXES
up phase diagram

he puts in density jumps
required by thermodynamics

Isotherms

e
A I'=C an:tan!vﬂal
Rewi

P

> V

Cartoon P-V diagram for water
but CO2is quite similar.
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J.C. Maxwell Nature, 10
407 (1874),11 418 (1875).
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(TS 70) VIaXWET TIXES
up phase diagram

he puts in density jumps
required by thermodynamics

P Isotherms

T'= (‘amr!an!t{ Gas

> V

Cartoon P-V diagram for water
but CO2is quite similar.
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J.C. Maxwell Nature, 10
407 (1874),11 418 (1875).

Then, P. Curie, Ann. Chem.
Phys. 5, 289 (1895).

P. Weiss, J. Phys. 6, 661
(1907). use very similar mean
field theory arguments to
derive properties of
paramagnetic to ferromagnetic
transition. This is followed by
a host of mean field
calculations mostly used to
describe many different kinds
of phase transitions, with
many different kinds of order.
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Cartoon P-V diagram for water
but CO:is quite similar.

Then, P. Curie, Ann. Chem.
Phys. 5, 289 (1895).

P. Weiss, J. Phys. 6, 661
(1907). use very similar mean
field theory arguments to
derive properties of
paramagnetic to ferromagnetic
transition. This is followed by
a host of mean field
calculations mostly used to
describe many different kinds
of phase transitions, with
many different kinds of order.
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Conceptually, the
implest phase
ransitions occur in
erromagnetic materials
n which neighboring
pins tend to align in the
.ame direction making a
agnetic field in that
irection. Below a critical

mperature, Tc, this
lignment can occur
tven in the absence of
in applied magnetic

eillq 10100027

Magnetic Phase Diagram

magnetic field

first order=
jump in magnetization at zero field

temperature

near critical point critical point
jump~ (T, - TY jump=0
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Magnetic Phase Diagram

magnetic field
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easiest problem: Ising ferromagnet spin, O, at each site of lattice,
each spin takes on values plus or minus one.

problem ~H/(kT)=KY o,0,+h) o,
defined by nn

freeenergy . o _1, expl-H{o,}/ (kT
defined by D l{mgﬂ} i

<g> depends on K and h. Even when h=0, if K>0
spins line up and <o> chooses to be non-zero.

Focus on Ising model to see nature of MFT's.
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in MFT more is the same

one spin

statistical average: <0>= tanh h

many spins
bCus on one spin -H_ . / (kT)=0.[h_ + Kz <o, >]

tatistical average: h., =[h+Kz <o >] z=number of nn

< o >=tanh(h_4)

or, if there is space variation, heg = hr +K Zs nntor <Os>

We shall focus on these equations for a time. This is an
approximation called MFT. We would like to understand the
ualitative structure of the phase diagram for the ising

Pifsa: 10100027

model by looking at the MFT results.




Look near saturation for positive K

The maximum possible value of <0> is 1 and that happens when
K is large or when h is a large positive number, so hes is large too

heﬂ, = [h +Kz <o >]
< 0 >=tanh(h.,)

lowest order: hes=h +Kz large and positive

<g >=1- 2 exp[-2he]
with large K and negative h we also have the flipped solution
<o >=-1+ 2 exp[2hesf]  -hes=-h +KZz large and positive

Thus there are two different solutions with almost saturated values
of <o> which both arise for large K. The stable solution has the
lowest free energy, and a little analysis shows that this lowest
solution has <o> with the same sign as h. Therefore <o> can
jump when the sign of h changes.
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easiest problem: Ising ferromagnet spin, O, at each site of lattice,
each spin takes on values plus or minus one.

problem —H/(kKT) =K 0,0+ h o,
defined by Z Z

freeenergy . . _ expl-H{o,}/(kT
defined by D 1{021} S

<0> depends on K and h. Even when h=0, if K>0
spins line up and <o> chooses to be non-zero.

Focus on Ising model to see nature of MFT's.
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easiest problem: Ising ferromagnet spin, Oy at each site of lattice,
each spin takes on values plus or minus one.

problem ~H/(kT) =K oy0.+h) o,
defined by 58

free energy Wy o T
defined by JART]) ‘{U;” xpl-H{o,}/(kT)]

<0> depends on K and h. Even when h=0, if K>0
spins line up and <o> chooses to be non-zero.

Focus on Ising model to see nature of MFT's.
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in MFT more is the same

one spin

statistical average: <O0>=tanh h

many spins

bcus on one spin “H.. /(kT)=0,[h + KE <o, >]

tatistical average: h,=[h+Kz <o >] S z=number of nn
< o >=tanh(h_4)

or, if there is space variation, hef = hr +K Zs nntor <Os>

We shall focus on these equations for a time. This is an
approximation called MFT. We would like to understand the
qualitative structure of the phase diagram for the ising
model by looking at the MFT results.
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in MFT more is the same

one spin

statistical average: <O0>=tanh h

many spins

bcus on one spin “H.. /(kT)=0,[h + Kz <o, >]

tatistical average: heﬁ =[h+Kz <o >] s z=number of nn
< oy>= tanh(h_)

or, if there is space variation, hef = hr +K Z, nnto r <Ts>

We shall focus on these equations for a time. This is an
approximation called MFT. We would like to understand the
ualitative structure of the phase diagram for the ising
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model by looking at the MFT results.




