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put it all together to find
[0: + (p/m)-V: — (Ve U(r) - Vp] fip,rit) =
~ fipr.t) qu figrt) dp”dq” Q(p,q * Pq")

+ [dq dp fipore) dq’ figirt) QPHA — P.a)

Since we have far too many symbols here, in the next steps we shall drop the r,t
everywhere. The next step notices that each collision must include conservation of
energy and of momentum. That means the Q’s must be proportional to delta functions
which enforce conservation of energy and momentum. Specifically,

Q(pq P59 )=R(pg *P,q") d(p+q - p-q) d(E(p)+ £(q) - £(P)-E(q))
We then find the equation

[0: + (p/m)-V, - (Ve U)- Vp] fip) =
-f dq dp” dq d(p+q - p'-q’) d(e(p)+ &(q) - £(p)-E(q))
[R(p,g *pPHq ) fip) fig -R(P>q" > pP,q)fiP) fig)]
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Symmetries of Boltzmann equation

One more statement is needed: This is a statement of time-reversal invariance in
which we demand that the inverse process have the same probability. Specifically.
the statement, called detailed balance, is

R(p,g * P9 )=R(P9 * P9q) detailed balance

This means that if we care to, we can write the Boltzmann equation as

[0 + (p/m)-Ve - (Ve U) - V] fip) =

= J‘J’ dq dp” dq d(p+q - p'-q") d(&(p)*+ &(q) - E(p)-€(q"))

R(p,g *P»q ) [f(P) fig - fip) fig)]

We shall need one more symmetry statement to obtain our last conservation
law, namely the statement that p and q play symmetrical roles in the scattering
event.

Rip,q *P,q )=R(q,p *q, P ) symmetrical scattering
but we do not need that now.
This symmetry is appropriate because we are thinking that particles of the same
kind are involved in the scattering event. If the particles were identical in the
quantum sense, we would also have
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Detailed Balance and Equilibrium
[0: + (p/m)- V¢ - (Ve U) - Vp] fip) =

& ” dq dp dq d(p+q - p'-q) d(e(p)* €(q) - E(p)-E(q)))

R(p,q *P»q) [fiP) fiq - fiP) fiq)]

Thermal equilibrium is the statement that the right hand side of the Boltzmann
equation vanishes, specifically that

fip) fiq) = fiP) fiq’)
so that relaxation to equilibrium is driven by the relatively slow prd&esses controlled
by the gradients on the left hand side of the equation. This provides a mechanism for
the system to provide relaxation times much slower than the collision rate of a typical
particle. In thermal equilibrium

fip) = exp{-Ble-p-pv- v¥/(2m)]}

Notice that the conservation laws for probability, momentum, and energy ensure that this
equation is satisfied. Except for the terms in v, this is just the Maxwell Bolzmann
distribution we might have expected to obtain. The chemical potential is just a different
way of expressing the fact that we can increase or decrease f to produce a larger or
smaller number of particles. The v-terms come from momentum conservation. They

express the fact that the system may be moving past us with speed v.
Pirsa: 10100026
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From local equilibrium to hydrodynamics

What | wrote down is the right solution of the Boltzmann equation for seeing the
equilibrium behavior. However, the demand that thr right hand side of the equation
vanish gives a more general result, names one in which the parameters in the Maxwell-
Boltzmann distribution vary in space and time.

fipsrt) = exp{-B(r.t)[E(P,r.0)-u(r.t)-p-v(r.)- v(r.)%(2m)]}
This “solution” only makes the right hand side zero. The left hand side remains non-zero.
It is described as a local equilibrium solution. The physics makes every portion of the
system almost in equilibrium, but has the temperature, local density, and wind velocity each
vary in space and time. In fact that is precisely what happens to a gas like the air in this
room of the earth’s atmosphere. Collisions among the molecules happen very rapidly. As |
recall every molecule collides with another with an interval between collisions of roughly
10-'2 seconds. In a time of this order, each region of the gas attains local termodynamic
equilibrium. Then slowly, much more slowly, energy diffuses through the gas equalizing the
temperature in the different regions. Momentum diffuses and travels in sound waves,
equalizing the local density and the local velocities. These slow transports of conserved
quantities are called transport process and described by hydrodynamic equations. The
latter equations are simply the results of the local forms of conservations laws. As | said
earlier, the conservation laws must be supplemented by constitutive equations to get
partial differential equations to describe these diffusions and motions. These equations are
called hydrodynamic equations.
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Conservation of Particle Number

To obtain the local law for the conservation of particles, integrate the Boltzmann equation
over all momentum, and look at the result term by term, starting from the left. The first
term is the time derivative of the number density:

d. n(r.t) with n(r,t) = [ dp fip.rt)
The second term is on the left is the divergence of the particle current:

Ve - j(r,v) with  j(rt) = [dp fip.r)p/m

The third term on the left vanishes because it contains a total derivative with respect to
momentum and we assume that the momentum integrands drop off fast enough at infinity
so that the integral of the total derivative is zero.

When integrated over momentum, the two collision terms are exactly the same except for
sign and thus cancel with one another.

We are left with the differential form of the number conservation law

den(re) + V. - j(re) = 0.
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Conservation of Particle momentum

To obtain the local law for the conservation of particles, multiply the Boltzmann equation b
P integrate over all momentum, and look at the result term by term, starting from the left.

The first term is the time derivative of the jth component of momentim density:

J: g(r.v) with g(rt) = [ dp fip.rt) p

The second term is on the left is the divergence of the momentum current, a tensor T

2. 0T (ry with Ti(r.o) = [ dp fip,rt)p; pe/m

Tix describes the current of the jth component of momentum in the direction k.

The third term on the left vanishes is a force density n(r,t) d; U ( r.t).

When integrated over momentum, the two collision terms are exactly the same except for
sign and thus cancel with one another.

We are left with the differential form of the momentum conservation law

O gi(rt) + Zk Ok Ti (1Y) = -n(rt) 0;U ( r)..
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Conservation of Particle momentum

To obtain the local law for the conservation of particles, multiply the Boltzmann equation b
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The second term is on the left is the divergence of the momentum current, a tensor T
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Tik describes the current of the jth component of momentum in the direction k.
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Constitutive Equation for Tjx

The stress tensor is particularly important in condensed matter physics, particle
physics, and relativity. In all cases its describes how momentum is moved around. In
relativistic theories it describes the flow of both energy and momentum.

In the fluid context, we have

Tik = Ojkp pressure comes from disordered flow of momentum
+ pviv flow of momentum due to motion of particles
- N [Oivi+Owvi-2 O;x dv] dissipation term from viscosity
-C[dx0v] another dissipation term

The pressure can be calculated from statisitical mechanics. The quantities | and T
describe non-equilibrium behavior. They cannot come from stat mech but they can be
calculated from the Boltzmann equation. In classical mechanics there is a splitting

between equilibrium and non-equilibrium calculations. In quntum theory they are mixed
together.
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H-Theorem

Boltzmann proved a result called the H-theorem, which is our first representation of a low
describing the non-equilibrium behavior of entropy. In fact, we have few other examples!
To obtain this take the Boltzmann equation, equation v. |4, and multiply by In f. Note that

(Inf)df=d|[fInf]l-d f=d[fIn fle]. Now, integrate over all momentum. The first term on
the left hand side of the Boltzmann equation becomes

0. h(r,t) with h(rt) = J. dp fip.rt) In [f (p.rt)/e]
The second term is on the left is the divergence of the particle current:
Veoinr  withjnir) = | dp pim fipct) In [F (pusoe]

A brief calculation, involving an integration by parts, shows that the third term on the left
vanishes because it contains a total derivative with respect to momentum and we assume

that the momentum integrands drop off fast enough at infinity so that the integral of the
total derivative is zero.

When integrated over momentum, the two collision terms on the right become
DH=— [[[[ dpdqdp dq d(p+q-p’-q) d(E(p)+ &(q) - £(p)-E(q)

Q(pq P9 ) [fip) fiq) - f(P) fiq)]Infip)

Prex 'Bé&ause this result, except for the factor in blue, is symmetrical in p and g, we cdif****

manlesscan ln ffa) bas ln fTm) A v thea svuarsaae ~fF thacea arm (e TR\l v £\ 1) avines
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e vanishes because it contains a total derivative with respect to momentum a I
r that the momentum integrands drop off fast enough at infinity so that the ing

e total derivative is zero.

When integrated over momentum, the two collision terms on the right beco|

DH=- [ [[[ dpdqdp” dq 5(p+q-p’-q) S(e(p)+ &(q) - :

Q(p,q * P>q ) [fiP) flq) - fip") fiq)]Infip)

— Because this result, except for the factor in blue, is symmetrical in p and g
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H-Theorem

Boltzmann proved a result called the H-theorem, which is our first representation of a low
describing the non-equilibrium behavior of entropy. In fact, we have few other examples!
To obtain this take the Boltzmann equation, equation v. |4, and multiply by In f. Note that

(Inf)df=d[fInf]l-d f=d[fIn fle]. Now,integrate over all momentum. The first term on
the left hand side of the Boltzmann equation becomes

0. h(r,) with h(r,t) = f dp fip.rt) In [f (p.rt)le]
The second term is on the left is the divergence of the particle current:
Ve - jn(r) with jn(r.t) = I dp p/m f(p,rt) In [f (p.rt)/e]

A brief calculation, involving an integration by parts, shows that the third term on the left
vanishes because it contains a total derivative with respect to momentum and we assume
that the momentum integrands drop off fast enough at infinity so that the integral of the
total derivative is zero.

When integrated over momentum, the two collision terms on the right become
DH=— [[[[ dpdqdp dq d(p+q-p-q) d(E(p)+ &(q) - £(p")-E(q)

R(p,q — Pq°) [fiP) fl@) - fip)) fq)]Infip))

Prex 'Bé&ause this result, except for the factor in blue, is symmetrical in p and g, we cdif****
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DH=-[ [ [ [dp dq dp” dq" d(p+q - p'-q") d(£(p)+ £(q) - &(Pp")-£(q")
Q(pq P9 ) [fip) fig - fiP) fig)][Infip)tinfiq)]/2

Now the whole integral, except for the factor in blue. is anti-symmetrical in the replacement of
unprimed variables by primed ones. For this reason we can make the replacements

[in fip)+In f(g))/2— - In fip")+In (g)}2 — [In fip)+In fig) - In fi(p") - In fiq")/4

Since In @ +In b = In(ab) we can rewrite our entire result as

DH=—[ [ [ [dp dq dp'dq” d(p+q - p'-q") d(¢(p)+ &(q) - &(p")-E(q")

Q(p,q — P»q) [fiP) fig) - fiP) fiq)]{In [fip) fig)]-In [fip") flg)]} /4

The entire integral is negative, except perhaps for the factor in red. However, this
factor is of the form [X = Y] [In X = In Y ]. This factor is positive if X >Y, equally
positive if Y>X, and only zero when X=Y. In that case, we are in local equilibrium!

Put it all together, our result is that
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DH=-[ [ [ [dp dq dp” dq" d(p+q - p'-q") d(£(p)+ £(q) - &(Pp")-£(q")
Q(pyq P9 ) [fip) fig - fiP) fig)][Infip)tinfiq)]/2

Now the whole integral, except for the factor in blue. is anti-symmetrical in the replacement of
unprimed variables by primed ones. For this reason we can make the replacements

[in fip)+in fi@))/2— - In f(p")+In fig")}2 = [In fip)+In fig) - In fip") - In fig")}/4

Since In a +In b = In(ab) we can rewrite our entire result as

DH==[ [ [ [dp dg dp’dq” d(p+q - p"-q") O(e(p)+ £(q) - &(p)-E(q))

Q(pyq — PHq ) [fip) flg - fip") fig)]{In[fip) fig)]-In [fip") flg)]} /4

The entire integral is negative, except perhaps for the factor in red. However, this
factor is of the form [X = Y] [In X = In Y ]. This factor is positive if X >Y, equally
positive if Y>X, and only zero when X=Y. In that case, we are in local equilibrium!

Put it all together, our result is that
Pirsa: 10100026
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DH=-[ [ [ [dp dq dp” dq" d(p+q - p'-q") O(&(p)+ &(q) - &(p")-E(q"))
Q(pq P, ) [fip) fig) - fip) fiqg)][Infip)+in fig)]/2

Now the whole integral, except for the factor in blue. is anti-symmetrical in the replacement of
unprimed variables by primed ones. For this reason we can make the replacements

[in fip)+In fi@))/2— - In fip")+In fig")}2 — [In fip)+In fig) - In fip") - In fig)}/4

Since In a +In b = In(ab) we can rewrite our entire result as

DH=-[ [ | [ dp dq dp’dq” 5(p+q - p’-q’) d(e(p)+ £(q) - £(p)-E(q)

Q(p,q — P,q ) [fiP) flg - fip) fig) ] {In[fip) flg)l-In [f(p) flg)]} /4

The entire integral is negative, except perhaps for the factor in red. However, this
factor is of the form [X = Y] [In X = In Y ]. This factor is positive if X >Y, equally
positive if Y>X, and only zero when X=Y. In that case, we are in local equilibrium!

Put it all together, our result is that
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Put it all together, our result is that
Och(rt) + Ve - ju(r,t) = DH

and that DH <0,
except in local equilibrium when DH =0.

Thus -DH is the rate of entropy production in the system.

S(t)/k = —f dr h(r.t) + conserved things

S is the entropy for a weakly coupled system and dS/dc>0.

Pirsa: 10100026
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Homework:

Assume our Brownian particle, as described by equation v.12, is charged? How can |
include electric and magnetic fields in this equation? Does the system go to
equilibrium in the presence of space and time-independent fields? What happens
when the field depends upon time?

How can we be sure that equation conserves the total probability of finding the
Brownian particle?  Should it conserve the momentum or energy of that particle’
What are the equations for the time dependence of the particle’s energy and
momentum? What about its angular momentum?

Find the laws of conservation of energy and momentum from the Boltzmann
equation, equation v. | 4.
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Put it all together, our result is that
Oc h(r,t) + Vy - ju(r,t) = DH

and that DH <0,
except in local equilibrium when DH =0.

Thus -DH is the rate of entropy production in the system.

S(t)/k = —f dr h(r.t) + conserved things

S is the entropy for a weakly coupled system and dS/dc>0.
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Homework:

Assume our Brownian particle, as described by equation v.12, is charged? How can |
include electric and magnetic fields in this equation? Does the system go to

equilibrium in the presence of space and time-independent fields? What happens
when the field depends upon time?

How can we be sure that equation conserves the total probability of finding the
Brownian particle?  Should it conserve the momentum or energy of that particle?
What are the equations for the time dependence of the particle’s energy and
momentum? What about its angular momentum?

Find the laws of conservation of energy and momentum from the Boltzmann
equation, equation v.| 4.
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Brownian motion:
Robert Brown (1773-1858) saw particles of pollen “dance around” in fluid under microscope. Thi

motion was caused by many tiny particles hitting the grains of pollen.

The many moving tiny particles are of course molecules of the
liquid. They were too small to see under a microscope when
Brownian motion was discovered, but it was obvious they were
there. You can see the molecules of liquid hitting the bigger particle
in the animation on the left. (The size of the molecules has been
dramatically increased in order to make them visible).
hup//weww.worsleyschool.net/science/files/brownian/motion.htmi

Albert Einstein (1905) explained this dancing by many, many collisions with molecules in fluid
dp/dt=.....+ n(t)-p/T

P=(Px Py. Pz) N= (Nx Ny N2 v.1

Nn(t) is a Gaussian random variable resulting from random kicks produced by collisions. Since
the kicks have random directions <n(t)>=0. Different collisions are assumed to be
statistically independent

<N(t) Ni(s)> =Md(t-5)d v.2

The relaxation time, T, describes friction slowing down as the particles moves through the

medium. In contrast I describes the extra momentum picked up via the collisions. Both

represent the same physical effect, little particles hitting our big one. However, they operate in

a somewhat different fashion. The individual kicks point in every which direction and only in
risgh@odeng run produce any concerted change in momentum. On the other hand the term irpage sonzs

is a friction tending to continually push our particle toward smaller speeds relative to the
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| . The relaxation time, T, describes friction slowing down as the particles moves throu

medium. In contrast [ describes the extra momentum picked up via the collisions.

represent the same physical effect, little particles hitting our big one. However, they
a somewhat different fashion. The individual kicks point in every which direction anc
the long run produce any concerted change in momentum. On the other hand the

is a friction tending to continually push our particle toward smaller speeds relative t
medium.
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medium. In contrast [ describes the extra momentum picked up via the collisions.
represent the same physical effect, little particles hitting our big one. However, they
a somewhat different fashion. The individual kicks point in every which direction anc
the long run produce any concerted change in momentum. On the other hand the
is a friction tending to continually push our particle toward smaller speeds relative t}
medium.
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Brownian motion:
Robert Brown (1773-1858) saw particles of pollen “dance around” in fluid under microscope. Thi

motion was caused by many tiny particles hitting the grains of pollen.

The many moving tiny particles are of course molecules of the
liguid. They were too small to see under a microscope when
Brownian motion was discovered, but it was obvious they were
there. You can see the molecules of liquid hitting the bigger particle
in the animation on the left. (The size of the molecules has been
dramatically increased in order to make them visible).
hupl/wew.worsleyschool.net/science/files/brownian/motion.htmi

Albert Einstein (1905) explained this dancing by many, many collisions with molecules in fluid
dp/dt=.....+ n(t)}-p/T

P=(Px. Py P:) n= (N 1N, N W

Nn(t) is a Gaussian random variable resulting from random kicks produced by collisions. Since
the kicks have random directions <n(t)>=0. Different collisions are assumed to be
statistically independent

<Nj(t) Ni(s)> =Td(t-5)d;x v.2

The relaxation time, T, describes friction slowing down as the particles moves through the

medium. In contrast I describes the extra momentum picked up via the collisions. Both

represent the same physical effect, little particles hitting our big one. However, they operate in

a somewhat different fashion. The individual kicks point in every which direction and only in
risgh@odeng run produce any concerted change in momentum. On the other hand the term irpage ssizs

is a friction tending to continually push our particle toward smaller speeds relative to the
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E P=(P Py px) N= (N Ny N e

n(t) is a Gaussian random variable resulting from random kicks produced by collisio

the kicks have random directions <n(t)>=0. Different collisions are assume
statistically independent

‘Shoes
n <Ni(t) Nifs)> =Md(t-s)d;k v.2
. The relaxation time, T, describes friction slowing down as the particles moves thro

medium. In contrast [ describes the extra momentum picked up via the collisions.

represent the same physical effect, little particles hitting our big one. However, they
a somewhat different fashion. The individual kicks point in every which direction anc
the long run produce any concerted change in momentum. On the other hand the

is a friction tending to continually push our particle toward smaller speeds relative t
medium.
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dp/dt=.....+ n(t}piT

P=(Pu Py P2) N= (N Ny Mo X1

Nn(t) is a Gaussian random variable resulting from random kicks produted by collisiol

the kicks have random directions <n(t)>=0. Different collisions are assume

statistically independent

<nj(t) Ni(s)> =d(t-5)dy v.2

The relaxation time, T, describes friction slowing down as the particles moves throu
medium. In contrast [ describes the extra momentum picked up via the collisions.
represent the same physical effect, little particles hitting our big one. However, they
a somewhat different fashion. The individual kicks point in every which direction an¢
the long run produce any concerted change in momentum. On the other hand the
is a friction tending to continually push our particle toward smaller speeds relative t
medium.
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Second Quantized versus Classical Description

In a classical description, or even in using an ordinary wave function in a
quantum description, we base everything on the particle. Particle 7 is sitting
right in front of me; particle 23 is in the upper left hand corner, etc. Or, particle 7
has a wave function \ ; particle 23 is described by the wave function . A
degenerate quantum system is one composed of identical particles sufficiently
squeezed so that their wave functions overlap. To describe such a system, we
cannot talk about the behavior of individual particles. We can only specify how
many particles are doing this or that. Thus we start with a description of
possible modes of the system and talk about their occupation. In this kind of
description, we would say that there are seven particles in mode 3 and none in
mode 2.

To discuss independent excitations in degenerate quantum theory, we use a
formulation in which we allow the number of excitations to vary. Hence we are
varying the number of particles. So instead of using exp(—3H), and keeping the
number of particles fixed, we use as our weight function exp[-f(H-uN)] and we are
allowing the number of particles to vary. The former approach is called using the
canonical ensemble, and is what we have done up to now. The latter approach uses
the grand canonical ensemble and it is the one we shall follow for this chapter.
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Second Quantized versus Classical Description

In a classical description, or even in using an ordinary wave function in a
quantum description, we base everything on the particle. Particle 7 is sitting
right in front of me; particle 23 is in the upper left hand corner, etc. Or, particle 7
has a wave function P ; particle 23 is described by the wave function . A
degenerate quantum system is one composed of identical particles sufficiently
squeezed so that their wave functions overlap. To describe such a system, we
cannot talk about the behavior of individual particles. We can only specify how
many particles are doing this or that. Thus we start with a description of
possible modes of the system and talk about their occupation. In this kind of
description, we would say that there are seven particles in mode 3 and none in
mode 2.

To discuss independent excitations in degenerate quantum theory, we use a
formulation in which we allow the number of excitations to vary. Hence we are

varying the number of particles. So instead of using exp(—[H), and keeping the

number of particles fixed, we use as our weight function exp[-p(H-uN)] and we are

allowing the number of particles to vary. The former approach is called using the

canonical ensemble, and is what we have done up to now. The latter approach uses

the grand canonical ensemble and it is the one we shall follow for this chapter.
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Quantum Description

To describe a degenerate quantum situation, we first specify the modes.We imagine placing
everything in a box of side L. One neat formulation has periodic boundary conditions. The
different modes of excitation are described by wave functions which are of the form (1/L)%2
exp(ik'r). The wave number k=(kj, ky, kz) must be of the form (2 TT/L)m = (2 TT/L) (m,,
my, m;) where the m’s are integers. This gives periodic wave functions, and what is more
important, a complete set of wave functions. Corresponding to these k's are momenta, p’s,
of the form p=h k

In the quantum mechanics of non-interacting particles, each mode is dynamically and
statistically independent of the others. That is to say, the Hamiltonian is a sum of terms each
referring to a different mode. We have a discrete infinity of modes, labelled by the m’s.

A sum over the independent modes in quantum theory can be written as E
m

Usually, but not always, many terms contribute from such a sum so that it
can be written as an integral over wave vectors or momenta in the form

L .3 L .3 -
— (=) Y (il vi. 1

Z ( ‘2:) o (Zerh ) op

m
This result is interpreted by saying that the quantum sum over m goes into a sum over
phase space in discrete pieces of size h?. Of course, there is no h?in any sensible
formulation of classical mechanics. So something funny will have to be done to patch

Pirsa: 10100026 - - Page 93/126
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One mode
In the grand canonical formulation, the only difference between bosons and

fermions is the possible values of the excitation number of a given type, n; .
For bosons this n can be any non-negative integer 0,1,2,... For fermions
the excitation or mode can either be empty or occupied, corresponding to
n=0 or 1. In either the bose or the fermi cases, the probabilities are given by
p(n)=(1/&) exp[-P(e-u)n], with ==sum over n’s of exp[-P(e-u)n]

In either case, <n>=dy, In &

We next look to a single mode of excitation. For the
fermion, the normalizing factor is &= 1 +exp[-f(s-u)]

The probability for finding the state full is
<n>=1/{1 +exp[p(e-u)|} vi.2a
The probability for finding the state empty is
1-<n> =1/ {1 +exp[-p(e-n)]} vi.2b
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Extreme Limits for fermions

The extreme quantum limit is the one
with large values of B u=p/(kT). In that
limit the mode is always completely full
(empty) depending on whether (€-J) is
negative (positive).

lhe extreme classical limit is the one
vith large values of - Y. In that limit,
n equilibrium, all modes have a very
ow probability of being occupied and

n>= exp[-B(&- W)]

Pirsa: 10100026
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kT=u/100

This picture gives plots of <n> versus &/J for
various values of 1/(f H).The large numbers
indicate highly degenerate situations, while the
smaller ones are closer to the classical limit.
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‘or the boson

he equilibrium probability distribution for occupation of the
ngle modeis p(n)=(1/5) exp[-p(e-u)n].  All integer
ilues of n between zero and infinity are permitted.

‘he normalizing factor is

=1 +exp[-p(e-n)] + exp[-2p(e-u)]+ exp[-3p(s-u)]

g=1/{1 -exp[-P(e-w)]}
lote that e-u must be positive.
he average occupation is <n> = 1/ {exp[p(e-un)]-1} vi.3

n extreme quantum limit is the one with very small positive
ilues of B (e-u). In that limit, the mode can have lots and
its of quanta in it. You can even have macroscopic
ccupation of a single mode, in which a finite fraction of the
ntire number of particles is in a single mode. This is also
illed Bose-Einstein condensation after the discoverers of

s effect.

Satyendra Nath Bose

he extreme classical limit is once more a very large value of - Y4 and a small
verage occupation of the state. Once more <n>= exp[-B(&- 4)] in this
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~or the boson

the equilibrium probability distribution for occupation of the
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Independent Excitations: waves

One example of a boson excitation is provided by a set of waves. There are two major
examples: light waves and sound waves. In these two cases, the quanta are called
respectively photons and phonons. In the simplest situation, the Hamiltonian for the
system is a sum over terms corresponding to the different excitations in the system

= Z FUT vi.4

and the statistical mechanics is given by the usual formula

p{n}=(1/Z) exp(-pH{n})

where the normalizer, =, is called the grand partition function.

Here, g; is the energy of a single excitation of type ) and n;is the number of excitations of

that type. These quanta have the property that they are not conserved. When the basic
objects under consideration are conserved quantities, e.g. atoms or molecules, and they
don’t interact, the Hamiltonian is of exactly the same form, but it is convenient to use a
statistical theory in which we allow the total number of particles to vary, and use a
probability function of the form

p{n}=(1/Z) exp(-p[H{n}-uN{n}])  where N is the total particle number

N = Z n;

Pirsa: 10100026 J Page 102/126

Here wu is called the chemical potential. The density of particles increases as u increases.



Waves=Special bosons

ge=hw, so in the classical limit the energy of a photon goes to zero.

the probability distribution for the single mode is
p(n)=(1/€) exp[-p ¢ n]
The normalizing factor is

=1 +exp[-p €] + exp[-2p €]+ exp[-3p €] +... so that

1
51 explB el

Note that £ must be positive or zero. The average energy in the mode is

<n>¢ = ¢/ {exp[p e]-1}=hw/ {exp[p hw]-1}

Classical limit = high temperature  <n>e=1/ 3 =kT

Therefore classical physics gives kT per mode. A cavity has an infinite number of
electromagnetic modes. Therefore, a cavity has infinite energy?!?

In quantum theory high frequency modes are cut off because they must have small
average occupations numbers, <n>. Therefore the classical result of kT per mode is
simply wrong. So there is no infinity.

In this way, Planck helped us get the right answer by introducing photons and starting off
the talk about occupation numbers! Page 1031126



photons in Cubic Cavity

k=(kxky,kz)=2TT(mymy,mz)/L where the m’s are integers describing the cavity’s modes
Here w=ck (There are two modes for each frequency)

H = Z Nm.o hck(m)

We can then find the average energy in the form

1
— l) Y
<H> —; .o R Bhck(m)) — 1

If the box is big enough, the sum over m can be converted into an integral over k.

L 3 - 1
=2(— 1’k hck
B (2;1') /‘ ' exp(Bheck) — 1

The integration variable can then be made dimensionless

2 L 3 : 1
_ 2 i.l
< > )’(?_}T)’hf‘-) / = PX[){(}') -1

and the integral rewritten in a form which converges nicely at zero and infinity.

3 = ,
<H>= Q(R‘T)l( = ) / dq 4nq® 1
Jo exp(
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Conserved Fermions in Box

In 2 metal electrons act as independent quasiparticles with energy an
momentum relation energy = &, For modes with energy near the
value of the chemical potential, these modes behave very much like
non-interacting particles with a changed energy-momentum relation.
For example they move with a velocity v=Vp&p. Only the electrons

Paul Dirac has a ) ) . - 2 :
beautiful quantum  With energies close to the chemical potential, called in this context

mechanics book the Fermi energy, play an important role in moving heat and particles

b o through the system. The electrons near the Fermi energy are said to
reading when | was

a grad student. be close to the top of the Fermi sea. For lesser energies, within that
sea, the electrons are mostly frozen into their momentum states
and cannot do much

For some materials, like Aluminum, &p = p%(2m). For these the
Fermi sea forms a ball with radius pr.

Calculate the T=0 energy density, particle density, and pressure of these
electrons in terms of pe You may use the free particle energy-momentum
relation. Harder: Calculate the entropy density as a function of T at low T.

i, Enrico (1926). "Sulla quantizzazione del gas perfetto monocatomico” (in Italian). Rend.
i 3: 145-9., translated as On the Quantization of the Monoatomic ldeal Gas. =
-12-14. doi:ar Xiv:cond-mat/991222%vI.
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Conserved Bosons in Box

At low temperatures fluid Helium?, that is bosonic helium, undergoes a
phase transition into a superfluid state in which it can move without
viscosity. This is believed to arise because a finite fraction of the entire
number of atoms falls into a single quantum mode, described by a single
wave function. The basic theory of how this ocurs is due to Nikolay
Nikolaevich Bogolyubov.

The Einstein-Bose theory of a phase
transition in a non-interaction Bose liquid is a
pale reflection of the real superfluid
transition. However, it is quite interesting
both in its own right and also because the
recent development of low temperature-low
density Bose atomic or molecular gases may
make it possible to observe this weak-
itk Bomiton interaction-effect.

| shall outline the three dimensional theory. The theory in two dimensions is more complex.
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Conserved Bosons in Box

At low temperatures fluid Helium?, that is bosonic helium, undergoes a
phase transition into a superfluid state in which it can move without
viscosity. This is believed to arise because a finite fraction of the entire
number of atoms falls into a single quantum mode, described by a single

wave function. The basic theory of how this ocurs is due to Nikolay
Nikolaevich Bogolyubov.

The Einstein-Bose theory of a phase
transition in a non-interaction Bose liquid is a
pale reflection of the real superfluid
transition. However, it is quite interesting
both in its own right and also because the
recent development of low temperature-low
density Bose atomic or molecular gases may
make it possible to observe this weak-
e interaction-effect.

| shall outline the three dimensional theory. The theory in two dimensions is more complex.
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Bose Transition

1 1
n=number of particles per unit volume = [3 § 1+ exp{pe(m) - u]}
Here the sum is over a vector of integers of length three, and the energy is
g(m)=m2 h2 /(2ZML2), M being the mass of the particle. For a sufficiently large box, there are
two qualitatively different contributions to the sum. The term in which m=0 can be
arbitrarily large because u can be arbitrarily small. The remaining terms contribute to an
integral which remains bounded as u goes to zero. The result is

1 dp 1
— ] _

The integration has a result that goes to zero as T? as the temperature goes to zero. [f this
system is to maintain a non-zero density as T goes to zero, which we believe it can, it can onl
do so by having the first term on the right become large enough so that a finite proportion
of the entire number of particles in the system will fall into the lowest mode. This is
believed to be the basic source of superfluidity.
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Dynamics of fermions at low temperature

Landau described fermions at low temperature by saying that they had a free energy which
depended upon, f(p,r,t) the occupations of the fermion modes with momentum in the
neighborhood of P and position in the neighborhood of r at time t. As the occupations
changed the free energy would change by

OF = "E’fr e(p.r.t) 6f(p.r.t)
X

Then, using the usual Poisson bracket dynamics the distribution function would obey, as in
equation v.| 3.

0 fipsr,t) + (Vp €(Pyrst) - Ve fiport) — (Ve E(Pyist)) - Vi fiPyrit)

= collision term

The collision term will be the same as in the classical Boltzmann equation with one important
difference: Since fermions cannot enter an occupied state, the probabilities of entering a final
state will be multiplied by a factor of (1-f). Thus, Landau proposed a “Boltzmann equation” for
degenerate fermions of the form below, with the few terms in red

[0: + (VpE) Ve - (Ve ) - V] fip) =

- [[[da dp" dq" 5(p+q - p"-q) B(E(P)* E(@) - £(P)-E(@)
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Dynamics of bosons

Some part of the story of bosons is much the same. A low temperature conserved boson
system could be expected to obey the same sort of equation, under circumstances in which the
bosons were conserved, and also the emission and absorption of phonons were not too
significant.

Specifically, the equation would look like

[0: + (VpE):Vr = (Ve g) - V] fip) =

- ﬂqu dp” dq’ d(p+q - p'-q") d(e(p)* &(q) - E(p)-E(q"))
Q(pq —* P,q ) [fiP) flQ(1+fip?) (1+flq)) - fip") fiq) (1+f(p)) (1+f(p)) ] vi9

Once again the new feature is shown in red. In the scattering events there are,
for bosons, more scattering when the final single particle states are occupied than
when they are empty. One says that fermions are unfriendly but bosons are
gregarious (or at least attractive to their own tribe.). The fin the 1+f term was
known in the |19th century in terms of the simulated emission of light, which is a
kind of boson. The 20th Century brought Planck, knd particularly Einstein, who
first saw the need for the “1” in the 1+f term. This extra piece was introduced to
make the bose dynamical equation have the right local equilibrium behavior. The
logic used by Einstein includes the fact that for local equilibrium via equation vi.9,
we must have f/(1+f) be, as in the fermion case, an exponential in conserved
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