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From one step to many steps

We start from the two statements that <o; >=0 and that <0 Ok >=dx

On the average, on each step the walker goes left as much as right. Thus as a result the
average displacement of the entire walk is zero

M
< X(t) >= 32«: g; >= 0
J=1

iv.1

However, of course the mean squared displacement is not zero, since

M M
< X(t)? >= a° 2 <00 >= a E ‘jj.k = a‘M iv.2

j!k-I )'!k-ll

Our statement is the same that in a zero field uncoupled Ising system, the maximum

magnetization is proportional to the number of spins, but the typical magnetization is
only proportional to the square root of that number. Typical fluctuations are much,

much smaller than maximum deviations.

We can see this fact by noting that the root mean square average of X2is a VM,
which is the typical end-to-end distance of this random walk. This distance is is
much smaller than the maximum distance which would be covered were all the

orsa: 10100024 STEPS tO go in the same direction. In that case we would have had a distangg.g¥.
Thus, a random walk does not, in net, cover much ground.



Gaussian Properties of Continuous Random Walk

In the limit of large n, we can think of X(t) as composed of a sum of many
pieces which are uncorrelated with one another. According to the central
limit theorem, such a sum is a Gaussian random variable. Hence, we know
everything there is to know about it. Its average is zero and its variance is
a’t/t where t is the number of steps. Consequently, it has a probability

distribution

1/2
e—x‘Jr!{Z‘?‘:r) IV9

\
2ra‘t J

< p(X(t) = x) >= (

Now we have said everything there is to say about the continuous random walk.
As an extra we can exhibit the generating function for this walk:

< exp[in(t)] am e-q:alr/(zr'r
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Gaussian Properties of Continuous Random Walk

In the limit of large n, we can think of X(t) as composed of a sum of many
pieces which are uncorrelated with one another. According to the central
limit theorem, such a sum is a Gaussian random variable. Hence, we know
everything there is to know about it. Its average is zero and its variance is
a’t/t where t is the number of steps. Consequently, it has a probability

distribution

< p(X(t) = x) >=(

1/2

\
2ra‘t J

e—x‘r:’fza;” IV.9

Now we have said everything there is to say about the continuous random walk.
As an extra we can exhibit the generating function for this walk:

“t/(2¢)

< exp[igX(t)] >= e
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An example:

The difference between maximum length and RMS length (root mean square length) needs to
be emphasized by an example. Consider a random walk that consists of M= one million
steps steps. If each step is one centimeter long the maximum distance traveled is M
centimeters, or |0 thousand meters or |10 kilometers. On the other hand the typical end to
end distance of such a walk is 1/'/? centimeters or ten meters. That is quite a difference!
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Higher Dimensions

Reason for putting many different calculations on a
lattice is that the lattice provides a simplicity and

control not available in a continuum system. There gy m—
is no ambiguity about how things very close to one
another behave, because things cannot get very close. Body-centered cubic

They are either at the same point or different points.

So now | would like to talk about a random walk in a d-dimensional system by considerin
a system on a simple lattice constructed as in the picture. The lattice sites are given by

= a(n1,n2, N3, ....)/2 . The n’s are integers. There are two possible kinds of assignments
for the n’s: Either they are all even e.g. x = a(0,2,-4, ....)/2 or they are all odd, for
example x =a(1,3,-1,....)/2. If all hopping occurs from one site to a nearest neighbor
site, the hops are through one of 2¢ vectors of the form {.= a(m1,m2, m3, ....)/2, where
each of the m’s have magnitude one, but different signs for example a(1,-1,-1, ...). We
use a lattice constant, a, which is twice as big as the one shown in the picture.

We then choose to describe the system by saying that in each step, the coordinate hops
through one of the nearest neighbor vectors, ¢, , which one being choosen at random.
This particular choice makes the entire coordinate, X, have components which behave

entirely independently of one another, and exactly the same as the one-dimensional
Pisa: 1010002¢ gordinate we have treated up to now. Page 71127



RANDOM WALKS

0
L
n HE
Tl | »
Lilil |
| =
.
A
:
1L E
J

v -

BT
By b s
B [ i Pt

EEL[ ' i%( dspace.mit. edu/./CourseHome/index.htm

hopil/particlezoo files. wordpress.com/2008/09/randomwalk png

- r
B
g
= H |
3 b | 4
I . » 1
- n x - .- v
4 Ao r-|
3y - B o by
4 | . »
1 . s
= e -

CL
’ o
Ll

Pirsa: 10100024 Page 8/127



Higher Dimensions.....continued

We denote the probability density of this d-dimensional case by a superscript d and
the one for the previous one-dimensional case of by a superscript 1. As an additional
difference, the d-dimensional object will be a function of space and time rather than n
and M. After a while, we shall focus entirely upon the higher dimensional case and
therefore drop the superscripts. We have

d
d - 1
Pan. M+ — H pn,,..’”

a=1

However, we can jump directly to the answer for the continuum case, If the
probability distribution for the discrete case is simply the product of the one-
dimensional distributions so must be the continuum distribution. The one-dimension
equation answer in eq iv.9 was

T e 2 - iv.9
< P(X(t) = X) >= ] e—X"r/lea"t)
2rxa‘t

so that the answer in d dimensions must be

xa’t

d/2
< p(R(t) = I') >= (2 L ) e’ /(2at)
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Here the bold faced auantities are vectors viz P2 = x2 +y2 +



Higher dimensional probability density: again

one dimension d dimensions is a product of ones

d/2

T e-rgr!(ZalrJ

2xa‘t

172
T ] e-xzr/(zfr) < p(R(t) =r) >= (

< p(X(t) = x) >= (2332['

Notice that the result is a rotationally invariant quantity, coming from adding the x* and y? and....
in separate exponents to get r2 = x? +y2 +..... This is an elegant result coming from the fact tha

the hopping has produced a result which is independent of the lattice sitting under it. We would
get a very similar result independent of the type of lattice underneath. In fact, the result come
from what is called a diffusion process and is typical of long-wavelenth phenomena in a wide

variety of systems.
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Higher Dimensions.....continued

We denote the probability density of this d-dimensional case by a superscript d and
the one for the previous one-dimensional case of by a superscript 1. As an additional
difference, the d-dimensional object will be a function of space and time rather than n
and M. After a while, we shall focus entirely upon the higher dimensional case and
therefore drop the superscripts. We have

d
d - 1
Pan M+ = H Pn .M

=]

However, we can jump directly to the answer for the continuum case, If the
probability distribution for the discrete case is simply the product of the one-
dimensional distributions so must be the continuum distribution. The one-dimension
equation answer in eq iv.9 was

T v 2 : iv.9
< p(X(t) = X) >= e‘x‘rflea"I)
2ra‘t

so that the answer in d dimensions must be

d/2
< PR =) >=[ T | ere
’ (Zfrazt
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Diffusion Process

Diffusion here is a result of a conservation law: a global statement that the total
amount of something is unchanged by the time development of the system. dQ/dt=0. In
our case the Q in question is the total probability of finding the diffusing particle
someplace. Diffusion has a second element: locality. The local amount of Q, called p,
changes because things flow into and out of a region of space. The flow is called a
current, j, and the conservation law is written as

3 conservation law
Pt . j(r,t)=0
dt
The time derivative of the density is produced by a divergence of the curent flowing into

point. On a one dimension lattice, the rule takes the simpler form:

Pama = Pam = Tnavem — Tnavem conservation law

This equation says that the change of probability over one time step is produced by the
flow of probability in from the left minus the flow out to the right.

Here, I'm going to visualize a situation once more in which we have a discrete time
coordinate M and a discrete space coordinate, n. | shall assume that the initial
probabilities is sufficiently smooth so that even and odd n-values have rather similar
occupation probabilities so that we can get away with statement like

~ P =Py / M The conservation law then takes the form
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Diffusion Process

Diffusion here is a result of a conservation law: a global statement that the total
amount of something is unchanged by the time development of the system. dQ/dt=0. In
our case the Q in question is the total probability of finding the diffusing particle
someplace. Diffusion has a second element: locality. The local amount of Q, called p,
changes because things flow into and out of a region of space. The flow is called a
current, j, and the conservation law is written as

- conservation law
W) L v. jr,t)=0
at
The time derivative of the density is produced by a divergence of the curent flowing into

point. On a one dimension lattice, the rule takes the simpler form:

Pama = Pam = Inayzm — Inasem conservation law

This equation says that the change of probability over one time step is produced by the
flow of probability in from the left minus the flow out to the right.

Here, I'm going to visualize a situation once more in which we have a discrete time
coordinate M and a discrete space coordinate, n. | shall assume that the initial
probabilities is sufficiently smooth so that even and odd n-values have rather similar
occupation probabilities so that we can get away with statement like

o PaMal = Py = 0Py [ OM The conservation law then takes the form
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Diffusion Process

Diffusion here is a result of a conservation law: a global statement that the total
amount of something is unchanged by the time development of the system. dQ/dt=0. In
our case the Q in question is the total probability of finding the diffusing particle
someplace. Diffusion has a second element: locality. The local amount of Q, called p,
changes because things flow into and out of a region of space. The flow is called a
current, j, and the conservation law is written as

- conservation law
W) L v. jr,t)=0
at
The time derivative of the density is produced by a divergence of the curent flowing into
point. On a one dimension lattice, the rule takes the simpler form:

Pama =~ Pam = Ianz,M - ’m'l:‘Z.M conservation law

This equation says that the change of probability over one time step is produced by the
flow of probability in from the left minus the flow out to the right.

Here, I'm going to visualize a situation once more in which we have a discrete time
coordinate M and a discrete space coordinate, n. | shall assume that the initial
probabilities is sufficiently smooth so that even and odd n-values have rather similar
occupation probabilities so that we can get away with statement like

o Ppma = Py = 0Py [ IM The conservation law then takes the form
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Diffusion Process

Diffusion here is a result of a conservation law: a global statement that the total
amount of something is unchanged by the time development of the system. dQ/dt=0. In
our case the Q in question is the total probability of finding the diffusing particle
someplace. Diffusion has a second element: locality. The local amount of Q, called p,
changes because things flow into and out of a region of space. The flow is called a
current, j, and the conservation law is written as

9 - conservation law
(p(r’t)+V-j(r,t) =0

at
The time derivative of the density is produced by a divergence of the curent flowing into

point. On a one dimension lattice, the rule takes the simpler form:

pn,M+1 = Pam = Tnzm — Tnaszm conservation law

This equation says that the change of probability over one time step is produced by the
flow of probability in from the left minus the flow out to the right.

Here, I'm going to visualize a situation once more in which we have a discrete time
coordinate M and a discrete space coordinate, n. | shall assume that the initial
probabilities is sufficiently smooth so that even and odd n-values have rather similar
occupation probabilities so that we can get away with statement like

e P = Py = 0Py [ IM The conservation law then takes the form
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Diffusion Process

Diffusion here is a result of a conservation law: a global statement that the total
amount of something is unchanged by the time development of the system. dQ/dt=0. In
our case the Q in question is the total probability of finding the diffusing particle
someplace. Diffusion has a second element: locality. The local amount of Q, called p,
changes because things flow into and out of a region of space. The flow is called a
current, j, and the conservation law is written as

conservation law

W) L v. jr,t)=0
dt

The time derivative of the density is produced by a divergence of the curent flowing into
point. On a one dimension lattice, the rule takes the simpler form:

Pama ~— Pam = Inayzm — Ihasem conservation law

This equation says that the change of probability over one time step is produced by the
flow of probability in from the left minus the flow out to the right.

Here, I'm going to visualize a situation once more in which we have a discrete time
coordinate M and a discrete space coordinate, n. | shall assume that the initial
probabilities is sufficiently smooth so that even and odd n-values have rather similar
occupation probabilities so that we can get away with statement like

e Poma = Py = 0Py [ IM The conservation law then takes the form
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The Current

We do not have a full statement of the of what is happening until we can specify the

current. An approximate definition of a current in a conservation law is called a
constitutive equation. VWe now write this down.

Our hopping model says that a |,+12.M is given a contribution +1 when the site at n is
occupied at time M, and on is equal to +1.  On the other hand it is given a
contribution -1 when the site at n +1 is occupied at time M, and On, is equal to -1.
Since there is a probability 1/2 for each of the o-events the value of | is

R (Pn.m = pn+1.m) /2 constitutive equation

Once again, we write the difference in terms of a derivative, getting

I =—p,, /on)/2

constitutive equation
This can then be combined with the conservation law to give the diffusion equation

0pop / M =3%p, /3N /2

which can be written in dimensional form as
ap _ A azp
at d x> diffusion equation
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with the diffusion coefficient being given by A=a2/(2 1). It has dimensions LZ/t.



Diffusion Process

Diffusion here is a result of a conservation law: a global statement that the total
amount of something is unchanged by the time development of the system. dQ/dt=0. In
our case the Q in question is the total probability of finding the diffusing particle
someplace. Diffusion has a second element: locality. The local amount of Q, called p,
changes because things flow into and out of a region of space. The flow is called a
current, j, and the conservation law is written as

- conservation law
W) L v. jr,t)=0
at
The time derivative of the density is produced by a divergence of the curent flowing into

point. On a one dimension lattice, the rule takes the simpler form:
Pama = Pam = Inaizm =~ Inazzm conservation law

This equation says that the change of probability over one time step is produced by the
flow of probability in from the left minus the flow out to the right.

Here, I'm going to visualize a situation once more in which we have a discrete time
coordinate M and a discrete space coordinate, n. | shall assume that the initial
probabilities is sufficiently smooth so that even and odd n-values have rather similar
occupation probabilities so that we can get away with statement like

e Ppma = Py = 0P [ M The conservation law then takes the form
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The Current

We do not have a full statement of the of what is happening until we can specify the

current. An approximate definition of a current in a conservation law is called a
constitutive equation. VWe now write this down.

Our hopping model says that a l,+12.m is given a contribution +1 when the site at n is
occupied at time M, and on is equal to +1.  On the other hand it is given a
contribution -1 when the site at n +1 is occupied at time M, and On,; is equal to -1.
Since there is a probability 1/2 for each of the o—-events the value of | is

’n+'|.«’2,m = (Pn.m = pn+1.m) /2 constitutive equation

Once again, we write the difference in terms of a derivative, getting

I =—p,, /on)/2

constitutive equation
This can then be combined with the conservation law to give the diffusion equation

ppp / M =3%p,, /3 N* /2
which can be written in dimensional form as
ap A 62p
at a x° diffusion equation
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with the diffusion coefficient being given by A=a2/(2 1). It has dimensions LZ/t.



Higher Dimension

In higher dimensions, the current is proportional to the gradient of the current

j(rst) - _)"Vp(rst)
so that the diffusion equation becomes, as before,

a,p(r,t) = AVZp(r,t)
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The Current

We do not have a full statement of the of what is happening until we can specify the

current. An approximate definition of a current in a conservation law is called a
constitutive equation. VWe now write this down.

Our hopping model says that a l,+12.M is given a contribution +1 when the site at n is
occupied at time M, and on is equal to +1.  On the other hand it is given a

contribution -1 when the site at n +1 is occupied at time M, and On,, is equal to -1.
Since there is a probability 1/2 for each of the o—events the value of | is

’mh’Z,m = (Pn.m = pm].m) e constitutive equation

Once again, we write the difference in terms of a derivative, getting

I =—3p,, /n)/2

constitutive equation
This can then be combined with the conservation law to give the diffusion equation

pop / M =3°p,\ /3N /2
which can be written in dimensional form as
ip _ A r’izp
at J x° diffusion equation
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The Current

We do not have a full statement of the of what is happening until we can specify the

current. An approximate definition of a current in a conservation law is called a
constitutive equation. VWe now write this down.

Our hopping model says that a |,+12.M is given a contribution +1 when the site at n is
occupied at time M, and on is equal to +1.  On the other hand it is given a
contribution -1 when the site at n +1 is occupied at time M, and On, is equal to -1.
Since there is a probability 1/2 for each of the o—events the value of | is

harzm = Pom = Paam) [ £ constitutive equation

Once again, we write the difference in terms of a derivative, getting

I =—3p,, /on)/2

constitutive equation
This can then be combined with the conservation law to give the diffusion equation

ppn / M =d°p, /3 N* /2
which can be written in dimensional form as
ap _ a°p
at d x° diffusion equation
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with the diffusion coefficient being given by A=a2/(2 1). It has dimensions LZ/t.






Diffusion Process

Diffusion here is a result of a conservation law: a global statement that the total
amount of something is unchanged by the time development of the system. dQ/dt=0. In
our case the Q in question is the total probability of finding the diffusing particle
someplace. Diffusion has a second element: locality. The local amount of Q, called p,
changes because things flow into and out of a region of space. The flow is called a
current, j, and the conservation law is written as

. conservation law
() L. j(rt)=0
ot
The time derivative of the density is produced by a divergence of the curent flowing into

point. On a one dimension lattice, the rule takes the simpler form:

Pama = Pam = Tncvzm — Thavem conservation law

This equation says that the change of probability over one time step is produced by the
flow of probability in from the left minus the flow out to the right.

Here, I'm going to visualize a situation once more in which we have a discrete time
coordinate M and a discrete space coordinate, n. | shall assume that the initial
probabilities is sufficiently smooth so that even and odd n-values have rather similar
occupation probabilities so that we can get away with statement like

o Pama = Py = 9Py [ OM The conservation law then takes the form
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Diffusion Process

Diffusion here is a result of a conservation law: a global statement that the total
amount of something is unchanged by the time development of the system. dQ/dt=0. In
our case the Q in question is the total probability of finding the diffusing particle
someplace. Diffusion has a second element: locality. The local amount of Q, called p,
changes because things flow into and out of a region of space. The flow is called a
current, j, and the conservation law is written as

conservation law

W) L v. jr,t)=0
dt

The time derivative of the density is produced by a divergence of the curent flowing into
point. On a one dimension lattice, the rule takes the simpler form:

Pama = Pam = lnavzm = ’mvz..u conservation law

This equation says that the change of probability over one time step is produced by the
flow of probability in from the left minus the flow out to the right.

Here, I'm going to visualize a situation once more in which we have a discrete time
coordinate M and a discrete space coordinate, n. | shall assume that the initial
probabilities is sufficiently smooth so that even and odd n-values have rather similar
occupation probabilities so that we can get away with statement like

o P = Pam = 0Py [ M The conservation law then takes the form
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Higher dimensional probability density: again

one dimension d dimensions is a product of ones

d/2
T ) e-rsztzaﬂrl
2

1/2
T -x*r/(2at) < p(R(t) =r) >=
] © g 2rxact

< p(X(t) = x) >= (2;[32['

Notice that the result is a rotationally invariant quantity, coming from adding the x2 and y? and....
in separate exponents to get r2 = x2 +y2 +_... This is an elegant result coming from the fact tha
the hopping has produced a result which is independent of the lattice sitting under it. We would
get a very similar result independent of the type of lattice underneath. In fact, the result come
from what is called a diffusion process and is typical of long-wavelenth phenomena in a wide

variety of systems.
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Diffusion Process

Diffusion here is a result of a conservation law: a global statement that the total
amount of something is unchanged by the time development of the system. dQ/dt=0. In
our case the Q in question is the total probability of finding the diffusing particle
someplace. Diffusion has a second element: locality. The local amount of Q, called p,
changes because things flow into and out of a region of space. The flow is called a
current, j, and the conservation law is written as

. conservation law
"f’(‘; D, v jir,t)=0
d

The time derivative of the density is produced by a divergence of the curent flowing into
point. On a one dimension lattice, the rule takes the simpler form:

pn,Mﬂ N pn,M =Tna2em ~ ’m]:‘Z.M conservation law

This equation says that the change of probability over one time step is produced by the
flow of probability in from the left minus the flow out to the right.

Here, I'm going to visualize a situation once more in which we have a discrete time
coordinate M and a discrete space coordinate, n. | shall assume that the initial
probabilities is sufficiently smooth so that even and odd n-values have rather similar
occupation probabilities so that we can get away with statement like

e Ppma = Pom = 0P, [ M The conservation law then takes the form
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The Current

We do not have a full statement of the of what is happening until we can specify the
current. An approximate definition of a current in a conservation law is called a
constitutive equation. VWe now write this down.

Our hopping model says that a |,+12.M is given a contribution +1 when the site at n is
occupied at time M, and oy is equal to +1. On the other hand it is given a

contribution -1 when the site at n +1 is occupied at time M, and On4 is equal to -1.
Since there is a probability 1/2 for each of the o-events the value of | is

R (Pn.m = pn+1.m) /2 constitutive equation

Once again, we write the difference in terms of a derivative, getting

by =-(0p,, / 0N)/ 2

constitutive equation
This can then be combined with the conservation law to give the diffusion equation

pop / M =3°p, /3N /2

which can be written in dimensional form as
ap _ A r'izp
at a x° diffusion equation
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with the diffusion coefficient being given by A=a2/(2 1). It has dimensions LZ/t.



Higher Dimension

In higher dimensions, the current is proportional to the gradient of the current

J(r,t) = -AVp(r,t)
so that the diffusion equation becomes, as before,

a.p(r,t) = AVep(r,t)
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Diffusion Equation

This equation is one of several equations describing the slow transport of physical
quantities from one part of the system to another. When there is slow variation is
space, the conservation law guarantees that the rate of change in time will also be
slow. In fact this is part of a general principle which permits only slow changes as a
result of a conservation law. This general principle is much used in the context of
quantum field theory and condensed matter physics. The idea is connected with the
construction of the kind of particle known as a Nambu-Goldstone boson, named for
two contemporary physicists, my Chicago colleague Yoichiro Nambu and the MIT
theorist |effrey Goldstone.




Higher Dimension

In higher dimensions, the current is proportional to the gradient of the current

j(rst) = —)LV;(}(r,t)
so that the diffusion equation becomes, as before,

a.p(r,t) = AVep(r,t)
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Diffusion Equation

This equation is one of several equations describing the slow transport of physical
quantities from one part of the system to another. When there is slow variation is
space, the conservation law guarantees that the rate of change in time will also be
slow. In fact this is part of a general principle which permits only slow changes as a
result of a conservation law. This general principle is much used in the context of
quantum field theory and condensed matter physics. The idea is connected with the
construction of the kind of particle known as a Nambu-Goldstone boson, named for
two contemporary physicists, my Chicago colleague Yoichiro Nambu and the MIT
theorist |effrey Goldstone.




Solution to Diffusion Equation Cannot be Carried
Backward in Time

The wave equation is (0.2 -C20x2 )F =0
Its general solution is F(x,t)=G(x-ct)+H(x+ct)
This is a global solution. It enables you to look forward or back infinitely far in the future

or the past without losing accuracy. Find solution from F(x,0) =dx F(x,0) =1 for 0<x<1
and F(x,0) =0x F(x,0) =0 otherwise. Use ¢=2

A global solution to the diffusion equation is p(x,t)= J::Ik exp[ikx-Ak?t] g(k)

with g(k)=J.dx exp[-ikx] p(x,0)/(21T) as initial data.

Small rapidly varying errors at t=0 will produce small errors for positive t and
huge errors for negative t. You cannot extrapolate backward in time. Information
gets lost as time goes forward.

Solve for p(x,0)=1 for 0<x<1 and p(x,0) =0 otherwise. Use A=2.Plot
solution for t=0,2,4. What happens for t= -2?

Boltzmann noted that equations of classical mechanics make sense if t is
replaced by —t. (In fact, it just replaces momenta, p, by -p.) But diffusion
equation has a solution which does not make sense. Where did we go from
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Solution to Diffusion Equation Cannot be Carried
Backward in Time

The wave equation is (0.2 -C20x2 )F =0
Its general solution is F(x,t)=G(x-ct)+H(x+ct)
This is a global solution. It enables you to look forward or back infinitely far in the future

or the past without losing accuracy. Find solution from F(x,0) =dx F(x,0) =1 for 0<x<1
and F(x,0) =0x F(x,0) =0 otherwise. Use ¢=2

A global solution to the diffusion equation is p(x,t)= J::ik exp[ikx-Ak?t] g(k)

with g(k)=Idx exp[-ikx] p(x,0)/(21T) as initial data.

Small rapidly varying errors at t=0 will produce small errors for positive t and
huge errors for negative t. You cannot extrapolate backward in time. Information
gets lost as time goes forward.

Solve for p(x,0)=1 for 0<x<1 and p(x,0) =0 otherwise. Use A=2.Plot
solution for t=0,2,4. What happens for t= -2?

Boltzmann noted that equations of classical mechanics make sense if t is
replaced by —t. (In fact, it just replaces momenta, p, by -p.) But diffusion
equation has a solution which does not make sense. Where did we go from
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Brownian motion:
Robert Brown (1773-1858) saw particles of pollen “dance around” in fluid under microscope. Thi

motion was caused by many tiny particles hitting the grains of pollen.

The many moving tiny particles are of course molecules of the
liquid. They were too small to see under a microscope when
Brownian motion was discovered, but it was obvious they were
there. You can see the molecules of liquid hitting the bigger particle
in the animation on the left. (The size of the molecules has been
dramatically increased in order to make them visible).

hop:!/weww.worsleyschool.net/science/files/brownian/motion.hemi

Albert Einstein (1905) explained this dancing by many, many collisions with molecules in fluid
dp/dt=...+ n(t)}-p/T

P=(pu Py P:) N= (N Ny N v

Nn(t) is a Gaussian random variable resulting from random kicks produced by collisions. Since
the kicks have random directions <n(t)>=0. Different collisions are assumed to be
statistically independent

<Ni(t) Ni(s)> =Md(t-5)d v.2

The relaxation time, T, describes friction slowing down as the particles moves through the

medium. In contrast I describes the extra momentum picked up via the collisions. Both

represent the same physical effect, little particles hitting our big one. However, they operate in

a somewhat different fashion. The individual kicks point in every which direction and only in
risghacdeng run produce any concerted change in momentum. On the other hand the term irpage 27

is a friction tending to continually push our particle toward smaller speeds relative to the
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Calculate momentum from dp/dt=....+ n(t)-pr
In physics, an equation with a random term is called a Langevin equation

t —t/
T

t
Solution: P(t) =/ dt’ r;(!’)exp(— ) v.3

Because P(t) is a sum of many random variables according to the central
limit theorem, it must be a Gaussian random variable. = Therefore it
has a Gaussian probability distribution. In equilibrium, P(t) should have
the variance, M kT, with M now being the mass of the Brownian particle.
In equilibrium it will have the Maxwell-Boltzmann probability distribution

3
2o M

p(p) = ( )3’!2 PKI)[—JPE/(QJI)]

Notice that if this works out for us, it will be our first “proof” that the ideas of
Gibbs, Boltzmann, and Maxwell about the canonical distribution was correct.

So we would have a proof that this “law” works, at least in this situation. [n
physics, we often use laws long before there is any substantial proof that they are
correct. We use little bits of evidence, intuition, and guesswork and gradually
convince ourselves that idea X “must be” right. If X is attractive, we hold on to
that view until there is overwhelming evidence to the contrary.
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Calculate momentum from dp/de=....+ n(t)-pi
In physics. an equation with a random term is called a Langevin equation

t —t'

T

v.3

t
Solution: P(t) Z[ dt’ n(t") exp(—

Because P(t) is a sum of many random variables according to the central
limit theorem, it must be a Gaussian random variable.  Therefore it

has a Gaussian probability distribution. In equilibrium, P(t) should have
the variance, M kT, with M now being the mass of the Brownian particle.
In equilibrium it will have the Maxwell-Boltzmann probability distribution

3
27 M

p(p) = ( )*'% exp[—Bp?/(2M))]

Notice that if this works out for us, it will be our first “proof” that the ideas of
Gibbs, Boltzmann, and Maxwell about the canonical distribution was correct.

So we would have a proof that this “law” works, at least in this situation. In
physics, we often use laws long before there is any substantial proof that they are
correct. We use little bits of evidence, intuition, and guesswork and gradually
convince ourselves that idea X "must be " right. If X is attractive, we hold on to
that view until there is overwhelming evidence to the contrary.
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Calculate momentum from dp/dt=....+ n(t)-pr
In physics. an equation with a random term is called a Langevin equation

t —t'

T

v.3

f
Solution: P(t) :/ dt’ n(t') exp(—

Because P(t) is a sum of many random variables according to the central
limit theorem, it must be a Gaussian random variable. Therefore it
has a Gaussian probability distribution. In equilibrium, P(t) should have
the variance, M kT, with M now being the mass of the Brownian particle.
In equilibrium it will have the Maxwell-Boltzmann probability distribution

3
2a M

p(p) = (=) exp[-Bp*/(2M)]

Notice that if this works out for us, it will be our first “proof” that the ideas of
Gibbs, Boltzmann, and Maxwell about the canonical distribution was correct.

So we would have a proof that this “law” works, at least in this situation. In
physics, we often use laws long before there is any substantial proof that they are
correct. We use little bits of evidence, intuition, and guesswork and gradually
convince ourselves that idea X “must be” right. If X is attractive, we hold on to
that view until there is overwhelming evidence to the contrary.
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Calculate Average

< p;lt)pr(s) >= ]it du ]::"L dv < n;(u)n(v) > exp[-(t-uts-v)/T]
v.4
<p,()p(s)>= [ duf” dvrs; d(u-v)exp[~(t-u)/t-(s-v)/]

....... if t > s the integral over v always gets a contribution from the delta-function integral in u s
that this expression then becomes

<p,(O)p(s) >= [* dvTd, exp[-(t+s-2v)/ 1] 5

o)
- E" rrexp[-1t-sl/z]

so we see that pj?/(2M), where M is the mass of the Brownian particle is on one hand given by
2

< P >=I'1 / (4M) note: no Einstein summation convention

On the other hand, we know that in classical physics this quantity is kT/2. Thus we obtain t
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Calculate momentum from dp/dt=....+ n(t)-pr
In physics. an equation with a random term is called a Langevin equation

t —t'

T

t
Solution: Plt) = [ dt’ r;(f’)(,‘.\:p(— ) v.3

Because P(t) is a sum of many random variables according to the central
limit theorem, it must be a Gaussian random variable.  Therefore it
has a Gaussian probability distribution. In equilibrium, P(t) should have
the variance, M kT, with M now being the mass of the Brownian particle.
In equilibrium it will have the Maxwell-Boltzmann probability distribution

3
27 M

p(p) = (5=)"" exp[-3p*/(2M))]

Notice that if this works out for us, it will be our first “proof” that the ideas of
Gibbs, Boltzmann, and Maxwell about the canonical distribution was correct.

So we would have a proof that this “law” works, at least in this situation. In
physics, we often use laws long before there is any substantial proof that they are
correct. We use little bits of evidence, intuition, and guesswork and gradually
convince ourselves that idea X “must be " right. If X is attractive, we hold on to
that view until there is overwhelming evidence to the contrary.
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Calculate Average

< pit)pr(s) >= ]ix du IEX dv < n;(u)ne(v) > exp[-(t-uts-v)/T]
v.4
<p,()p,(s)>= [ duf” avrs, o(u-v)exp[~(t-u)/t-(s-v)/ ]

....... if t > s the integral over v always gets a contribution from the delta-function integral in u s
that this expression then becomes

< P;(t)Pk(S) >= fi dv ro;, exp[-(t+s-2v)/ 1] v5

_ "5“ rrexpl-1t-sl/z]

so we see that pj?/(2M), where M is the mass of the Brownian particle is on one hand given by
2

< P >=I1 / (4M) note: no Einstein summation convention

On the other hand, we know that in classical physics this quantity is kT/2. Thus we obtain t
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Calculate momentum from dp/de=....+ n(t)-pi
In physics. an equation with a random term is called a Langevin equation

t —t'

T

v.3

t
Solution: P(t) :/ dt’ n(t") exp(—

Because P(t) is a sum of many random variables according to the central
limit theorem, it must be a Gaussian random variable.  Therefore it
has a Gaussian probability distribution. In equilibrium, P(t) should have
the variance, M kT, with M now being the mass of the Brownian particle.
In equilibrium it will have the Maxwell-Boltzmann probability distribution

3
27 M

p(p) = ( ):“‘2 exp[—8p*/(2M)]

Notice that if this works out for us, it will be our first “proof” that the ideas of
Gibbs, Boltzmann, and Maxwell about the canonical distribution was correct.

So we would have a proof that this “law” works, at least in this situation. In
physics, we often use laws long before there is any substantial proof that they are
correct. We use little bits of evidence, intuition, and guesswork and gradually
convince ourselves that idea X "must be"” right. If X is attractive, we hold on to
that view until there is overwhelming evidence to the contrary.
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Brownian motion:
Robert Brown (1773-1858) saw particles of pollen “dance around” in fluid under microscope. Thi

motion was caused by many tiny particles hitting the grains of pollen.

The many moving tiny particles are of course molecules of the
liquid. They were too small to see under a microscope when
Brownian motion was discovered, but it was obvious they were
there. You can see the molecules of liquid hitting the bigger particle
in the animation on the left. (The size of the molecules has been
dramatically increased in order to make them visible).

hep://www.worsleyschool.net/science/files/brownian/motion.htmi

Albert Einstein (1905) explained this dancing by many, many collisions with molecules in fluid
dp/dt=.....+ n(t)-p/T

p=(pe Py P2) N= (N Ny N v

Nn(t) is a Gaussian random variable resulting from random kicks produced by collisions. Since
the kicks have random directions <n(t)>=0. Different collisions are assumed to be
statistically independent

<Ni(t) Ni(s)> =Md(t-5)d v.2

The relaxation time, T, describes friction slowing down as the particles moves through the

medium. In contrast I describes the extra momentum picked up via the collisions. Both

represent the same physical effect, little particles hitting our big one. However, they operate in

a somewhat different fashion. The individual kicks point in every which direction and only in
risgh@odeng run produce any concerted change in momentum. On the other hand the term irpage 4127

is a friction tending to continually push our particle toward smaller speeds relative to the



Calculate momentum from dp/dt=....+ n(t)-pr
In physics, an equation with a random term is called a Langevin equation

t —t'

T

t
Solution: Pit) = / dt’ 'r;(f’)t‘){[)(— ) v.3

Because P(t) is a sum of many random variables according to the central
limit theorem, it must be a Gaussian random variable.  Therefore it
has a Gaussian probability distribution. In equilibrium, P(t) should have
the variance, M kT, with M now being the mass of the Brownian particle.
In equilibrium it will have the Maxwell-Boltzmann probability distribution

3
27 M

plp) = ( ):”2 P:\cp[—.ﬁ)"!/(?ﬂf)]

Notice that if this works out for us, it will be our first “proof” that the ideas of
Gibbs, Boltzmann, and Maxwell about the canonical distribution was correct.

So we would have a proof that this “law” works, at least in this situation. In
physics, we often use laws long before there is any substantial proof that they are
correct. We use little bits of evidence, intuition, and guesswork and gradually
convince ourselves that idea X “must be” right. If X is attractive, we hold on to
that view until there is overwhelming evidence to the contrary.
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Calculate Average

< pilt)pr(s) >= ]ix du ls\ dv < n;(u)n(v) > exp[-(t-u+s-v)/T]
v.4
<p,()p,(s)>= [ duf” avrs, d(u-v)exp[-(t-u)/t-(s-v)/ ]

....... if t > s the integral over v always gets a contribution from the delta-function integral in u s
that this expression then becomes

<p,(p(s)>= [ dvTs,, exp[-(t+s-2v)/ ] v5

s
- 5" rrexp[-1t-s|/z]

so we see that p;?/(2M), where M is the mass of the Brownian particle is on one hand given by
2

< P >=TI1 / (4M) note: no Einstein summation convention

On the other hand, we know that in classical physics this quantity is kT/2. Thus we obtain t
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Probability distribution

't = 2MkT

Whenever this relation is satisfied, p has the right variance, MkT, and the right Maxwell-
Boltzmann probability distribution for the Brownian particle!

8 .3/ §
Y, )'”" exp|—03p°/(2M)]
More generally, if we have a Hamiltonian, H(p,r), for the one-particle system, the
Maxwell-Boltzmann distribution takes the form

p(psr)=exp[-BH(p,r)]/Z, v.7
where, the the simplest case the Hamiltonian is
H(p,r) = p2/(2M) +U(r)

Maxwell and Boltzmann expected that, in appropriate circumstances, if they waited
long enough, a Hamiltonian system would get to equilibrium and they would end up
with a Maxwell-Boltzmann probability distribution. But we have not yet derived this
for the molecules in the fluid! We want to do this derivation.

p(p) = (

Question: Should we not be able to derive this distribution from classical mechanics
alone? Maybe we should have to assume also that we must long enough to reach
equilibrium? What to do?

risa 15e9ething of the form v.7 is called by mathematicians a Gibbs measure and by physiciszs a
Boltzmann distribution or often a2 Maxwell-Boltzmann distribution.



Statistical and Hamiltonian Dynamics

We have that the equilibrium p=exp(-pH)/Z. How can this arise from time dependence
system?! One very important possible time-dependence is given by Hamiltonian mechanics

dg, OH
dt IPa
dp,  OH
JT - _(')q”

The simplest case is a particle moving in a potential field with a Hamiltonian

H=p"/(2M) + U(r) and consequently equations of motion

l
= N
dt

dr

— =p/M
dt P,

The statistical mechanics of such situations is given by a probability density function
p(p,r.t) such that the probability of finding the particle in a volume element dp dr
about p,r at time tis p(p,r.t) dp dr. The next question is, what is the time-
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ependence of this probability density? Or maybe how do we get equilibrium
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Time Dependence of Dynamical systems:

A much more general problem

Instead of carrying around the variables p and r, let me do something with much
simpler formulas. I'm going to imagine solving the dynamical systems problem in which
there is a differential equation dX/dt=V(X(t),t) to get a solution X(t). | will have a
probability function p(x,t) dx which is the probability that the solution will be in the
interval dx about x. This is a probability because, when we start out the initial data is
not just one value of x but a probability distribution, given by p(x,0). So the situation at
a later time must be described by a probability distribution then as well. So what is the
time dependence of the probability distribution? One way to approach this problem is
to ask what does the distribution mean. Specifically, if we have some function g(X) of
the particle coordinates at time t, that function has an average at time t given by

f dx g(x) p(x,t). Naturally the average at time t + dt is Idx g(x) p(x,t+dt). That same
average is obtained by taking the solution at time t+dt, which is

X(t+dt) =X(t)+V(X(t),t))dt v.7

and calculate its average using the probability distribution which is appropriate at the
earlier time, i.e. the average is fdx g(x+dtV(xt)) p(xt). Equate those two expressions for

the average
Idx g(x) p(x,t+dt) = _[dx g(x+dtV(x,t)) p(xt) v.8
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Calculation Continued .....

jdx g(x) p(xt+dt) = jdx g(x+dtV(xt) p(x.t)
expand to first order in dt

[ dxgx) pxt) +dt | dxgapet) = J dx g0 pxt) + | dx deVixg[dg(9] pixy
throw away the things that cancel against each other to get

| dxganpit) - | dxvixg[agt] p(xt) =0
integrate by parts on the right hand side, using the fact that p(x,t) vanishes at x=% infinity

J dx gfapxt) + ax [Vixt) px9]}=0

Notice that g(x) is arbitrary. If this left hand side is going to always to vanish, the { } must
vanish. We then conclude that dp(x,t) + dx [V(x,t) p(x,t)] =0. That's for one coordinate,
If there are lots of coordinates this equation reads

op(x,t)+ p(x,t) Z:((')_,.j Vi) + Z Vide p(x,t) =0 v.9

J J
We call the second term on the left the divergence term. It describes the dilation of the
volume element by the changes in the x's caused by the time development. The last term
is the direct result of the time-change in each coordinate X(t) Now we have thepégeneral
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result for the time development of the probability density. Ve go look at the Hamiltonian



Time Dependence of Dynamical systems:

A much more general problem

Instead of carrying around the variables p and r, let me do something with much
simpler formulas. I'm going to imagine solving the dynamical systems problem in which
there is a differential equation dX/dt=V(X(t),t) to get a solution X(t). | will have a
probability function p(x,t) dx which is the probability that the solution will be in the
interval dx about x. This is a probability because, when we start out the initial data is
not just one value of x but a probability distribution, given by p(x,0). So the situation at
a later time must be described by a probability distribution then as well. So what is the
time dependence of the probability distribution? One way to approach this problem is
to ask what does the distribution mean. Specifically, if we have some function g(X) of
the particle coordinates at time t, that function has an average at time t given by

J- dx g(x) p(x,t). Naturally the average at time t + dt is Idx g(x) p(x,t+dt). That same
average is obtained by taking the solution at time t+dt, which is

X(t+dt) =X(t)+V(X(t),t))dt v.7

and calculate its average using the probability distribution which is appropriate at the
earlier time, i.e. the average is fdx g(x+dtV(xt)) p(xt). Equate those two expressions for

the average
Idx g(x) p(xt+dt) = _[dx g(x+dtV(x,t) p(xt) v.8
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Time Dependence of Dynamical systems:

A much more general problem

Instead of carrying around the variables p and r, let me do something with much
simpler formulas. I'm going to imagine solving the dynamical systems problem in which
there is a differential equation dX/dt=V(X(t),t) to get a solution X(t). | will have a
probability function p(x,t) dx which is the probability that the solution will be in the
interval dx about x. This is a probability because, when we start out the initial data is
not just one value of x but a probability distribution, given by p(x,0). So the situation at
a later time must be described by a probability distribution then as well. So what is the
time dependence of the probability distribution? One way to approach this problem is
to ask what does the distribution mean. Specifically, if we have some function g(X) of
the particle coordinates at time t, that function has an average at time t given by

J- dx g(x) p(x,t). Naturally the average at time t + dt is Idx g(x) p(x,t+dt). That same

average is obtained by taking the solution at time t+dt, which is
X(t+dt) =X(r)+V(X(t),t))dt v.7

and calculate its average using the probability distribution which is appropriate at the
earlier time, i.e. the average is J.dx g(x+dtV(x,t)) p(xt). Equate those two expressions for

the average
Idx g(x) p(x,t+dt) = _[dx g(x+dtV(xt)) p(xt) v.8
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Calculation Continued .....

Jdx g(x) pxt+dt) = [dx g(x+dtV(x) p(xt)

expand to first order in dt

[ dxgn) pixt) +dt | dxgapet) = J dx g0 pxt) + | dx deVixg[de(9] pixy)

throw away the things that cancel against each other to get

J dxgmapicy - | dxVixlog(] pixy) =0
integrate by parts on the right hand side, using the fact that p(x,t) vanishes at x=% infinity

I dx gtapet) + ax [Vixt) pxt]}=0

Notice that g(x) is arbitrary. If this left hand side is going to always to vanish, the { } must
vanish. We then conclude that dp(x,t) + dx [V(x,t) p(x,t)] =0. That's for one coordinate,
If there are lots of coordinates this equation reads

ap(x.t) + p(x.t) Y (3, Vi) + Y _ Ve, plz,t) =0 v.9

J J

We call the second term on the left the divergence term. It describes the dilation of the

volume element by the changes in the x's caused by the time development. The last term
is the direct result of the time-change in each coordinate X(t) Now we have the dgeneral
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result for the time development of the probability density. Ve go look at the Hamiltonian



