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Renormalization for d-2 Ising model

Ben Widom, myself, Kenneth Wilson.

Z=Trace(q} exp(Wk{0})

ragine that each box in the picture has in it a new
ing variable called Mg, where the R’s are a set of
»w lattice sites with nearest neighbor separation
1. Each new variable is tied to an old ones via a
:normalization matrix G{{, 0}= [1 g(Ur.{0})

here g couples the Ugr to the

"s in the corresponding box. We take each g to
e +1 and define g so that,

“u g(u{s}) =1. For example, p might be fewer degrees of freedom

efined to be an Ising variable with the “ s s gy
: - produces “block renormalization
ame sign as the sum of O’s in its box.

low we are ready. Define

xp(W{H})= Trace(o) G{H, O} exp(Wk{T})

‘=Trace) exp(W'{H})

"we could ask our fairy god-mother what we wished for now it would be that we

Pirsa:BOlOO

amé back to the same problem as we had at the beginning:W {u}=Wx{u}
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Renormalization: a -——> 3a =a”~ Wi{o}>Wk{u} Z°=Z K =R(K)

Scale Invariance at the critical point: ——> K. =R(K,)

Temperature Deviation: K=K~t K=K, = t’

if t=0 then t™=0

ordered region (t<0) goes into ordered region (t"<0)

disordered region goes into disordered region

if tis small,t"=bt. = b=(a"/a)’ defines y. b can be found through a numerical calculation.

coherence length: £=&pat-V 2d Ising has v=1; 3d has v=0.64....
&=¢’ Soaty = &a (1)
so V=1

number of lattice sites: N =Q/a¢ N"=Q/a™
N°/N=a¢/a™@ =(a”/a)™

Free energy: F = non-singular terms +Nf(t)= F'= non-singular terms +Nf(t")

f(® =f0t¥
Specific heat:  C=d*F/dt’~ t%2 form of singularity determined by y

One can do many more roughly analogous calculations and compare with experiment and
numerical simulation. Everything works!

e % fdwever notice that this is not a complete theory. It is a phenomenological theor §*VWe hav

 aTa BT . T o1 ﬁl"\!‘l v/ fr'nm f"lﬂﬂm



Renormalization: a -—=> 3a =a”~ Wi{o} >Wk{u} Z°=Z K =R(K)

Scale Invariance at the critical point: ——> K. =R(K)

Temperature Deviation: K=K~t K=K. = t’

if t=0 then t"=0

ordered region (t<0) goes into ordered region (t"<0)

disordered region goes into disordered region

if tis small,t"=bt. = b=(a"/a)’ defines y. b can be found through a numerical calculation.

coherence length: €=&pat-V 2d Ising has v=1; 3d has v=0.64....
£ Soat = Foa (1)
so V=1/

number of lattice sites: N =Q/a¢ N’ =Q/a™
N /N=a9/a™@ =(a"/a)™

Free energy: F = non-singular terms +Nfc(t)= F'= non-singular terms +Nf(t")

f(® =f0t¥
Specific heat:  C=d*F/dt’*~ t%2 form of singularity determined by y

One can do many more roughly analogous calculations and compare with experiment and
numerical simulation. Everything works!

e MO wever notice that this is not a complete theory. It is a phenomenological theor§*WWe hav

 aTa TP \THEE 7" ’ﬁnrl v/ ;I"'ﬂm f"lﬂﬂm












Renormalization: @ ——> 3a =a” Wi{o}>Wk{u} Z°=Z K =R(K)

Scale Invariance at the critical point: ——> K. =R(K,)

Temperature Deviation: K=K~t K=K. = t’

if t=0 then t"™=0

ordered region (t<0) goes into ordered region (t"<0)

disordered region goes into disordered region

if tis small,t"™=bt.  b=(a"/a)’ defines y. b can be found through a numerical calculation.

coherence length: €=&pat-V 2d Ising has v=1; 3d has v=0.64....

&=t SatV = Ea (t)Y
so V=1/

number of lattice sites: N =Q/a¢ N’ =Q/a™
N /N=a¢/a™@ =(a"/a)™

Free energy: F = non-singular terms +Nf(t)= F"= non-singular terms +Nf(t")

fe() =f°t¥
Specific heat:  C=d*F/dt’~ t%? form of singularity determined by y

One can do many more roughly analogous calculations and compare with experiment and
numerical simulation. Everything works!

P % fdwever notice that this is not a complete theory. It is a phenomenological theory**We hav

 aTa TP TR " F‘tl"\fl v/ ;I"ﬂm f"lﬂﬂl"‘\l‘






Renormalization: @ ——> 3a =a”~ Wi{o} >Wk{u} Z°=Z K =R(K)

Scale Invariance at the critical point: ——> K. =R(K)

Temperature Deviation: K=K~t K=K, = t’

if t=0 then t™=0

ordered region (t<0) goes into ordered region (t"<0)

disordered region goes into disordered region

if tis small,t"=bt. = b=(a"/a)’ defines y. b can be found through a numerical calculation.

coherence length: £=&pat-V 2d Ising has v=1; 3d has v=0.64....
e Soat = Foa (1)
so V=1/

number of lattice sites: N =Q/a¢ N"=Q/a™
N /N=a9/a™@ = (a"/a)™

Free energy: F = non-singular terms +Nf(t)= F"= non-singular terms +Nf(t")

f(® =f0t¥
Specific heat:  C=d*F/dt’~ t%2 form of singularity determined by y

One can do many more roughly analogous calculations and compare with experiment and
numerical simulation. Everything works!

e P Mdwever notice that this is not a complete theory. It is a phenomenological theory*We hav

 aTaBTTL TR " ﬁl"\fl \/ fr'ﬂrn f"lﬂﬂl"\l‘
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Homework:

Add a term in Zj (h 0; ) to the weighting function, WV, for the one dimensional Ising
Hamiltonian. Find the value of the average spin in the presence of a small magnetic field h.
Define the magnetic susceptibility as the derivative of the magnetization with respect to h at
fixed K. Show that this susceptibility diverges as K goes to infinity. Shows that it is
proportional to a sum of fluctuations in the magnetization.

The three-state Potts model is just like the Ising model except that its “spin” variable oj
can take on three values =-1,0,1. It has w(o; oi+1) =K if the two variables are the

same and zero otherwise. Find the partition function and coherence length of the one
dimensional model. How does the renormalization work for this case.

What is the critical temperature of the three-state Potts model on the square lattice in
two dimensions’
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Other Variables

Ising variable takes on 2 values coupling between variables depends on
whether they are the same or different. Z; Ferromaggnetic,
antiferromagnetic coupling, even mixed. Phase transition in dimensions
greater than one.

g-state Potts model, variable takes on g-values, simplectic coupling.

interaction s.s’ § is a g-component vector. g=2 XY equivalent to U1
q=3 called (classical) heisenberg model, higher q’s as well

SU;z and any symmetry group you can think of
phase transitions explored in all dimensions
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Hopping: From Discrete to Continuous

We are going to be spending some time talking about the physics of a particle moving
in a solid. Often this motion occurs as a set of discrete hops. The particle gets stuck
someplace, sits for a while, acquires some energy from around it, hops free, gets
caught in some trap, and then sits for a while. I'm going to describe two
mathematical idealizations of this motion: discrete hopping on a lattice and
continuous random motion.

One point is to see the difference between the two different topologies represented
by a continuous and a discrete system. One often approximates one by the other and
lots of modern physics and math is devoted to figuring out what is gained and lost by
going up and back.

There is a fine tradition to this. Boltzmann, one of the inventors of statistical
mechanics, liked to do discrete calculations. So he often represented things which are
quite continuous, like the energy of a classical particle by discrete approximations,

A little later, Planck and Einstein had to figure out the quantum theory of radiation,
which had been thought to be continuous, in terms of discrete photons. So we shall
compare continuous and discrete theories of hopping.
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Hopping On a Lattice

A lattice is a group of sites arranged in a @ & o & " " o0
regular pattern. One way of doing this can be e o o o o o o o
labeled by giving the position r=(n1,n2,....)a
where the n’s are integers. [If we include all
possible values of these integers, the
particular lattice generated is called is called & & & 0 & &5 %8
the simple hypercubic lattice.We show a B B B
picture of this lattice in two dimensions.

This section is devoted to developing the concept of a random walk.We could do
this in any number of dimensions. However, we shall approach it is the simplest
possible way by first working it all out in one dimension and then stating results
for higher dimensions A random walk is a stepping through space in which the
successive steps occur at times t=M 1. At any given time, the position is X(t),
which lies on one of the a lattice sites, x=an, where n is an integer. In one step of
motion one progress from X(t) to X(t+ 1) = X(t)+ aoj. where 0j is picked at
random from among the two possible nearest neighbor hops along the lattice, 0o
=1 or 0;= -1. Thus, < gj >=0, but of course the average its square is non-zero and
is given by < ;2> =1. We assume that we start at zero, so that our times t =j T.
It is not accidental that we express the random walk in the same language as the

Pirsz: 10140g model. We do this to emphasize that geometric problems can often be Page 35/41
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Notation: Even and Odd

We represent the walk by two integers, M, the number of steps taken and n, the
displacement from the origin after M steps. We start from n=0 at M=0. The general

formula is
M
n= E Tk

k=1

Notice that n is even if M is even and odd if M is odd. We shall have to keep track of this
property in our later, detailed, calculation.

We shall also use the dimensional variables for time t=M 1 and for space X(t)=na. We
use a capital X to remind ourselves that it is a random variable. When we need a non-
random spacial variable, we shall use a lower case letter, usually x.
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