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Start Here

| believe that my notes are correct in the definition of variance
=<(X - <X>)%>
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Many variables are as easy as one

Let M be an N by N symmetric real matrix with N positive real eigenvalues,
m1, Mz, ..., My, ..my are the eigenvalues of this matrix. We can then easily
calculate an integral involving many Gaussian variables by taking linear
combinations of variables to diagonalize the matrix, M, giving

] : \ 11/2
N L (27)" /det M

R A

The last equality follows from the fact that the determinant of M is the
product of its eigenvalues. More specifically, if M, is a diagonal matrix,

M., = 0., mithen it follows at once that Z= TT; (211/mi)” since the
determinant of M is the product of its eigenvalues. If M is not diagonal we
form linear combinations of the @'s that are eigenstates of the matrix, M. If
we use those linear combinations as integration variables, then our formula
for the integration immediately follows once again.




Rapidly Varying Gaussian random variable

Later on we shall make use of a time-dependent gaussian random variable, n(t). In
its usual use, n(t) is a very rapidly varying quantity, with a time-integral which
behaves like a Gaussian random variable. Specifically, it is defined to have two
properties:

< r]{t)“?:O

o
X(t) = -!.du N(u) is a Gaussian random variable with variance [ |s-t|.

Here [ defines the strength of the oscillating random variable.




Approximate Gaussian Integrals

It is often necessary to calculate integrals like

1= F v

in the limit as M goes to infinity. Then the exponential varies over a wide range and the
integral appears very difficult. But, in the end it's easy. The main contribution will come at
the maximum value of f in the interval [a,b]. Assume there is a unique maximum and the
second derivative exists there. For definiteness say that the maximum occurs at x=0, with
a<0<b. Then we can expand the exponent and evaluate the integral as

| =~ @9 [ dxeM (O /ce— &0 [ dye ) /er— _ MO
j j

Notice that because we have assumed that zero is a maximum, the second derivative
is negative. Because M is large and positive, we do not have to include any further
higher order terms in x. For the same reason we can extend the limits of integration
to infinity. With that, it's done!

We shall have an integral just like this later on.

I= } dx [cos x]™ exp(ikx)




Calculation of Averages and Fluctuations: Reprise

The usual way: in general

Let's start from a Hamiltonian on a Lattice

W{”:'—"'F’H{”E - S‘h,ﬂ,_ + E Ko o
¥ .

This Hamiltonian defines what is called the Ising model. The first sum
is a sum over all lattice sites, r. The second sum is a sum over
nearest neighbors. The field, h,, which depends upon r, multiplies a
spin variable which is different, of course, different on each site. The
notation {0} says that these things depend upon many spin variables.
You can assume that the spin variables take on the value +1 or -1 if
you want, but the argument below on this slide is very general and
the result does not depend upon what ¢ might be. Start from £
=Tr exp W{o | where Tr means a summation over all possible values
of all the spin variables. It is a repeat of the argument that we have
given before to say that

<Or>= a InZFth

The partial derivative means that we hold all other h's constant. The second derivative is
given by

<0r 05> = <0< 052= <[0r - <02 ][0s-< 0:>]> = 02 In Z/ dhs dh: = 9 <o=>/ dh
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Calculation of Averages and Fluctuations: Reprise

The usual way: in general

Let's start from a Hamiltonian on a Lattice

W{o}=-fH{o} = S‘h_(r. + ? Koo,

This Hamiltonian defines what is called the Ising model. The first sum
is a sum over all lattice sites, r. The second sum is a sum over
nearest neighbors. The field, hy, which depends upon r, multiplies a
spin variable which is different, of course, different on each site. The
notation {0} says that these things depend upon many spin variables.
You can assume that the spin variables take on the value +1 or -1 if
you want, but the argument below on this slide is very general and
the result does not depend upon what o might be. Start from Z
=Tr exp W{c | where Tr means a summation over all possible values
of all the spin variables. It is a repeat of the argument that we have
given before to say that

<g>= 0 In Z/ dh

The partial derivative means that we hold all other h's constant. The second derivative is
given by

<0: 05> - <0< 0:>= <[0r - <0>][0s-< 0:>]> = 02 In Z/ dhs dh: = 3 <os>/ dh.




Sums and Averages in Classical Mechanics

. The probability distribution for a single particle in a weakly interacting gas as is given by

p(p,r) = (1/ z)exp(-pH)

H=[p, +p, +p, 1/2m+U(r)

Here, the potential holds the particles in a box of volume £2, so that U is zero inside a box
of this volume and infinite outside of it. The partition function, is

z = Q[ [ dp exp(-pp* / (2m))]’ = Q(2am / p)**
The average of any function of p and r is given by

<g(p,r)> = f dp dr p(p,r) g(p,r)

Since there are N particles in the system N dp dr p(p,r) is the number of particles which have
position and momentum within dp dr about the phase space point p,r. The quantity

N p(p,r)=f(p,r) is called the distribution function. The total amount of the quantity represented by
g(p,r) is given in terms of the distribution function as

total amount of g = f dp dr f(psr) g(Psr)
Example: We calculated the average energy < p*/(2m) >=3 kT/2= f dp dr p(p,r) p*/(2m)
The total energy in the system is _f dp dr fip,r) p?/(2m)= 3N kT/2.
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x The probability distribution for a single particle in a weakly interacting gas as is given by
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More sums and averages

The normalization condition for the probability is _f dp dr p(p,r) =<1>=1

The normalization for the distribution function is I dp dr f(p,r) =N

The pressure, P, is defined as the total momentum transfer to a wall per unit of area and unit of
time. Call these dA and dt. Since a low density gas is the same all over, the number hitting is
the number within the distance p,/m dt of the area, for p, >0, and hence the number within the

volume p./m dt dA which is f dp f(Pp,r) px/m dt dA with the integral covering all p’s with the
condition that p, >0. If a particle hits the wall and bounces back it transfers momentum 2p..

- o~

1O we need specular reflection conditiont?

Therefore the total momentum transferred is _[ dp f(Psr) px/m dt dA 2p« once again with the
condition that px>0. An integral over all momenta would give a result twice as large. In the
end we get that the pressure is

p= | dp fipr) pim
which is then NkT as we knew it would be.
The partition function is the sum over all variables of exp(-BH). For large N, it can be
interpreted as W exp(-B<H>) , where W is the number of configuration which enter.
Bolzmann gotW in terms of the entropy as In W=5/k. We put together previous results and
find

W exp(-3N/2)=zN = QN (211 m kT)*™2so that S/k= N[In Q +3 (In (2T e m kT))/2 ]
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More sums and averages

The normalization condition for the probability is _f dp dr p(p,r) =<1>=1

The normalization for the distribution function is _f dp dr f(p,r) =N

The pressure, P, is defined as the total momentum transfer to a wall per unit of area and unit of
time. Call these dA and dt. Since a low density gas is the same all over, the number hitting is
the number within the distance p./m dt of the area, for p, >0, and hence the number within the

volume p,/m dt dA which is f dp f(p,r) p/m dt dA with the integral covering all p’s with the
condition that p, >0. If a particle hits the wall and bounces back it transfers momentum 2p..

" 13
do we need specular reflection condition?’

Therefore the total momentum transferred is I dp f(p,r) px/m dt dA 2p« once again with the

condition that px>0. An integral over all momenta would give a result twice as large. In the
end we get that the pressure is

p= [ dp fip,r) pim
which is then NkT as we knew it would be.
The partition function is the sum over all variables of exp(-BH). For large N, it can be
interpreted as W exp(-B<H>) , where W is the number of configuration which enter.
Bolzmann gotW in terms of the entropy as In W=5/k. We put together previous results and
find
W exp(-3N/2)=zN = QN (211 m kT)*™2so that S/k= N[In Q +3 (In (2T e m kT))/2 ]







From Classical Stat Mech to Quantum to RG

All of quantum mechanics on one slide

Heisenberg representation P(t)=e ™™ Pef*t., Let T(t) =e™*

Partition Function Z(B) = trace Tl—iB}r-Zl exp(—PEq)

Average <Q> =[trace T(~i) QU Z( B)

Two Times <Q(s) P(t)> =[trace T(—iB) Qfs) P{t) } Z( B)

For grand canonical ensemble use T(t)= exp[—i(H-UN)t]
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From Classical Stat Mech to Quantum to RG

All of quantum mechanics on one slide

quantum mecnanics, ons T
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Heisenberg representation P(t)=e™" Peft. Let T(t) =e™*
Partition Function Z(B) = trace T{—iB}=Z exp(—BEq)
a

Average <Q> ={traca T(~iB) QU Z(B)

Two Times <Q(s) P(t)> =[trace T(~if) Q(s) P(t) J/ Z( B)

For grand canonical ensemble use T(t)= exp[—i(H-uN)t]




The Ising Linear Chain

linear chain T T l T l l T T T T

e-K
This kind of two by two system is generally analyzed in terms of the Pauli
matrices which are the four basic matrices that we can use to span this two by
two space. [hey are

1

In going up and back between the notation of equations (4.17)
and (4.18) we have to think a little. In (4.17), we interpret O and
0’ as eigenvalues of the matrix Ti3. Any two by two matrix, M,
can be written in terms of the eigenstates corresponding to these

eigenvalues:
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In going up and back between the notation of equations (4.17)
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0’ as eigenvalues of the matrix T3. Any two by two matrix, M,
can be written in terms of the eigenstates corresponding to these

eigenvalues:




The transfer Matrix

A useful form for these Pauli matrices is

these matrices have a very direct physical meaning.

The matrix T3 is diagonal in the O-representation and represents
the spin. Conversely, T1 has only off-diagonal elements. It is an
operator whose effect is to change the O-value.

= cosh K +0 ¢ sinh K

=<g] e“1+e™*T1 lOo'>

Here the matrices in bold are the ones defined in eq.4.19b. We can
also write this same quantity one more way as an exponential in Ty
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The transfer Matrix

A useful form for these Pauli matrices is

Y ] -

these matrices have a very direct physical meaning.

The matrix T3 is diagonal in the O-representation and represents
the spin. Conversely, T1 has only off-diagonal elements. It is an
operator whose effect is to change the O-value.

= cosh K +0 ¢ sinh K
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The matrix element of the transfer matrix, T, is equal to
e" when 0 = 0" and equal to e™ otherwise. In symboaols,

eKo o '\Tlo

=

= cosh K +0 ¢ sinh K

=ef1+e™1y
Here the matrices in bold are the ones defined in eq. 4.19b. We can
also write this same quantity one more way as an exponential in Ty

eflo0 — o glefothTi|y ek ricosh(K) + sinh(K )7 |0’

The quantity K depends upon K. For a simpler writing, I* call this
function of K by another name and write it as D(K). The reason for
using the symbol D will be apparent in a moment. Using the ration
of the term in | and the term in T1, | find

tanh D(K))= e?¢ so that K= -In[ tanh(D(K)) ]/2
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Dual Coupling

This same expression can be written as

1= e-iK+ g-2D(K) 4 g-IK o-2D(K

so whatever the relation is between D(K) and K there is exactly the same relation
between K and D(K). This is why D(K) is called the dual of K.

Consequently K=D(D(K)).

Therefore two applications of the dual operation takes you back to precisely the
same function.

This function has the property that when K
is strong its dual is weak and vice versa. This
property has proven to be very important in
both statistical physics and particle physics.
Often we know both a basic model and its
dual. Often models are hard to solve in
strong coupling but easy to solve when the
coupling is weak. But the dual models have
weak coupling when the basic model has
strong coupling. So then we get an indirect
solution of the basic model.
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weak coupling when the basic model has

strong coupling. So then we get an indirect

solution of the basic model.




Solution of the one-dimensional Ising model

From equation 4.20, we find that the partition function of the one-dimensional Ising model is




More about quantum from the Long Chain

We should be able to say more about quantum problems based upon the analysis of
the long chain. For example let us imagine that we wish to calculate the average of
some quantum operator, X(q), which happens to be diagonal in the g-representation.
The text book goes through a long song and dance to prove a rather obvious result.
You have seen that the trace in equation 4.10 pushes us into a sum over energy
states, and if N is very large that sum reduces to a projection onto the ground state
of the system. Specifically,

[

becomes Z=trace exp(-NH)= exp(-N&o)

So if we insert an X, for any any operator X, in that sum the result should give what happens
to that X in the ground state, specifically

(1/Z) Trace i exp[W{q}] X= <0| X(q) |0>

In this way, we can use statistical mechanics to calculate the average of any operator in the
ground state. If we do not take N to infinity, we can do the corresponding calculation to
calculate the average of any operator at a inverse temperature (- value) equal to N 1.

By playing with the times in an appropriate fashion, we can even calculate time-dependent
correlation functions in the ground state or in a finite-temperature state.




Statistical Correlations in a Long Chain

We should be able lots about the statistical mechanics of a the long chain with Ising
style interactions. For example, let us calculate the average of the jth spin on a long
chain or the correlations among the spins in the chain. Start from

Z=1r E‘Kp[ E\:Kd 0 ]
< J, 5-=”!’Z)TI"H_\ EXD[ E.q_ Kt'—'l.-{f_]

<o,0,,>=(1/2)Tro.o,., expl Eh__Kn 20 ]

Here Tr means “sum over all the N spin-values”. We use periodic boundary conditions. In
this equation all the O’s are numbers, and they commute with each other.

We can make the calculation easier by replacing all the couplings by their expressions in
terms of Pauli spins matrices giving these three calculations as, first,

Z=tracey n exp (Eo ¥ Iz"n) = tracer exp[N ui-. : R'm]

= (2 cosh K)N+(2 sinh K)N ~ (2 cosh K)N

The = is an approximate equality which holds for large N. Note that in this limit
the term with eigenvalue of T1 =1 dominates because the dual coupling is positive.
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