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Part |: Once over lightly

Concepts which specifically belong to statistical physics
Interesting Physical Science Advances have a Major Statistical Component
Probabilities: One die

Quantum St Mech

Classical Stat Mech

Averages from Derivatives

Thermodynamics

From Quantum to Classical: The Ising model
Degenerate Distributions

Thermodynamic Phases

Phase Transitions

Random Walk

Brownian Dynamics

Big Words
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Concepts which specifically belong to statistical physics:
Not in few particle quantum mechanics or in Classical Mechanics

* Temperature
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— Concepts which specifically belong to statistical physics:

v Not in few particle quantum mechanics or in Classical Mechanics
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temperature pressure, entropy, (B,D,H,E), phase, phase transition, liquid, solid, gas,
plasma, probability density matrix, correlation, entanglement, chaos. order, butterfly effect,
. reaction rate, chemical potential,
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Concepts which specifically belong to statistical physics:
Not in few particle quantum mechanics or in Classical Mechanics

* Temperature




Interesting Physical Science Advances have a Major
Statistical Component

wwking: entropy of black holes

Fluctuation spectrum of 3 degree kelvin background radiation

Bell's theorem: statistics of quantum measurements

source of complexity in the universe

probabilities of hearing from civilizations elsewhere in universe
Why do markets crash?

Time Reversal Invariance: Nature of Irreversability
Probabilities of major earth-asteroid collision

Probabilistic interpretation of quantum mechanics and of wave functions.

Is our universe likely?




Part 2. Start with Probabilities: Dice

number of times & turns up = N¢:  total number of events N
1.1
1.2

probability of choosing a side with number & =pa

total probability =1 -->

raa = relative probability of Zu rot P =ralz

fair dice --> all probabilities - Il values of a

average number on a throw

general rule: To calculate t
function f(ct) that gives the p
will come out will be «, you
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Part 2. Start with Probabilities: Dice

number of times & turns up = N¢; total number of events N

probability of choosing a side with number & =pa Per=Na/N 1.1

total probability =1 --> z p, =1 1.2
ra. = relative probability of event . e.g. for fair dice rg = const Z= Zu ro P=ralz

fair dice --> all probabilities are equal --> pPae=1/6 for all values of a

average number on a throw = i S‘ y a=3.5
L I >= [ = -
—_—

general rule: To calculate the average of any

function f(ct) that gives the probability that what o P TR, F(a)p 9

will come out will be «, you use the formula




Part 2. Start with Probabilities: Dice

number of times X turns up = N¢;  total number of events N

probability of choosing a side with number X =paq Pa=Na/N 1

total probability =1 --> .2

ra. = relative probability of Z” ro P =ralz

fair dice --> all probabilities - Il values of a

average number on a throw

general rule: To calculate t
function f(ct) that gives the p
will come out will be «, you .3
)o we understand what ti 3 loaded die? An
erage from a loaded die the other values,
and these others were all hat would we have

for the average throw on




Part 2. Start with Probabilities: Dice

number of times & turns up = N¢;  total number of events N

probability of choosing a side with number & =pa Pa=Na/N 11

total probability =1 --> E p, =1 1.2

ra. = relative probability of event . e.g. for fair dice r¢ = const z=2 ¢ rot P =ralz

fair dice --> all probabilities are equal --> Pa=1/6 for all values of a

average number on a throw = < (1 > S‘ ) a=23.5
o | = l] — -
—

general rule: To calculate the average of any

function f(ct) that gives the probability that what < fla) >= E F(a)p.

will come out will be «, you use the formula .3




Part 3: Lattices

Renormalization for d-2 Ising

Iterations

terations

stable fixed point

v unstable fixed point




Part 4: Random Walks & Diffusion




Part 5 : Statistics of Motion

Albert Einstein (1905) explained this dancing by many, many collisions with molecules in fluid
dp/dt=.....+ n(t)-p/T

P=(Px Py Pz) N=(Ns Ny N

n(t) is a Gaussian random variable resulting from random kicks produced by collisions. Since

the kicks have random directions <n(t)>=0 Different collisions are assumed to be
statistically independent

<nyt) N«(s)> =Md(t-s)d

d: fipsr.t) + (Pp/m) - Ve fip,r,t) = Ve U(rst) - Vi fip,r.t) = effects of collisions




Part 6: Bose & Fermi:

particle statistics, i.e. the symmetry properties of the particles’ wave functions, have
a major role in determining the behavior of many interesting physical systems. This
is especially true when the system is degenerate, i.e. there is a sufficiently high
density of identical particles so that there could be a substantial overlap of the wave
functions involved. Important degenerate systems include:

for fermions:
* the electrons in atoms

for non-conserved bosons

for conserved bosons:

-




Part 7: Phase Transitions and Mean Fields

phases of matter:




Part 8: After Mean Fields: Big Words

Universality:
In appropriate limits, very different systems can have essentially identical properties

Scale Invariance
Systems look the same at different spatal scales

Renormalization

Take advantage of scale invariance and universality to produce a theory of phase
transitions.

A scale invariant walk:




Conformal Symmetry in Statistical Physics

Correlations, Maps, and symmetries
on the Riemann sphere

z-->7z4+a

z-->Az

z->1/2




A start:
Ising system has as its basic variable a spin, O: which takes on the values %1.
We shall use the abbreviation, o for this spin.

The behavior of a physical system is described by its Hamiltonian. If we put this
spin in a magnetic field in the z-direction it has a Hamiltonian H=-u B, O

Statistical Mechanics is defined by a probability. Here the probability is
p(0) =(1/z) exp[-H/(ksT)]= (1/z) exp[u B: O/(ksT)]
We describe this by using the abbreviation, h, for the parameters in the probability

p(0) = (1/z) exp(h O) h= u B; /(ksT)

normalization: total probability =1= p(1) + p(-1)= (1/z) exp(h)+ (1/z) exp(-h)
therefore z= exp(h)+ exp(-h)=2 cosh h

average X =<X> = Z p(o) Xa

therefore < 0 > = p(1)1 + p(-1)(-1)= 1/(2 cosh h) {exp (h)—exp(-h)}
= (2 sinh h) /(2 cosh h)= tanh h
















Averages from Derivatives
z = ¥ exp(ho) = 2coshh

d(Inz) / dh = erexp(hlr)/ Z =< o >=tanhh

d<(inz)/ (dh) = Z{tr* <O >) exp(htr)/z =< (0= <0 >) >

=T < o >%= 1- (tanh h)?

All derivatives of the log of the partition function are thermodynamic functions of
some kinds. As | shall say below, we expect simple behavior from the log of Z but
not Z itself. The derivatives described above are respectively called the
magnetization, M=<0> and the magnetic susceptibility, X, = dM/dH. The analogous
first derivative with respect to P is minus the energy. The next derivative with
respect to P is proportional to the specific heat, or heat capacity, another traditional
thermodynamic quantity. The derivative of partition function with respect to
volume is the pressure.



















Averages from Derivatives
Z = z exp(ho) = 2coshh

d(Inz) / dh = E.rexp(h(r)/ Z =< 0 >=tanhh

d?(Inz) / (dh)? = E{u_ <o > explho)/ z =<(o-<o>)F >

= < g >*=1-(tanh h)*

All derivatives of the log of the partition function are thermodynamic functions of
some kinds. As | shall say below, we expect simple behavior from the log of Z but
not Z itself. The derivatives described above are respectively called the
magnetization, M=<g> and the magnetic susceptibility, X, = dM/dH. The analogous
first derivative with respect to B is minus the energy. The next derivative with
respect to B is proportional to the specific heat, or heat capacity, another traditional
thermodynamic quantity. The derivative of partition function with respect to
volume is the pressure.




End Survey: Start More Intensive/Extensive Discussions

NnNow what intensive and extensive mean
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W ige s

The length of a random walk of N steps is of the form of a sum of N iid variables O
each of which takes on the values 0 and 1 with equal probability.




B Keynote File Edit Insert Slide Format Arrange View Play Window Share Help D W § <) = =5 E00 Mon 11:17AM Q

AanM Part 2 Basics of Statistical Physics, key =

Mac RS = A A A A [ . W - , =) A U 7 B TT

New  Play View Copy Stle  Paste Style Sebscrige Superript Smailer Bigger TewtBom Shapes mspector  Colows Group Usgroup Fromt  Back Fonts Format Bar Table Charts Themes Masters
' ] | = = = . |E [ e | St - Opscity

ragees el

Part 2: Basics of Statistical Physics
Titie & Subtitie P

Minnnos :

el

T |

Titke & Bullers

Master 214

Sep 7, 2010, 318 P

. ¥ ik
Y gIX

Vg

5

- 2% o SDf.

R

FR—




B Keynote File Edit Insert Slide Format Arrange \View Play Window Share Help = 50 Mon 11:17AM Q

* Parr 2 Basics of Stansuical Physics. ey

& o A A A <A ' B, U @ 3 A G Lo oJdl. 'O, k=i,
Sptmermpt Scperscrpt Smallers  Sigges TentBox: Shapes imspector Colers Croun Usgroup § fonts Format Bar Table Charts Themes Masters

Copy Shvie  Paste Siyle
S*agow _ Baflecten

FENER ——— DR [E......o.} oco

Master Shdes

-

. Simple probabilities (reprise)

Tithe & Subftitie
mutually exclusive events described by 0t=1.2.3

Minnos

' N=SN

—

: number of times O twrns up=N¢: total number of events N
Title & Bullets

dice: probability of getting a side with number O is ﬂ. Pi=Ng /N

Master #14 total probability =1 —>

relative probability: relative chance that a will turn up =r.. e.g fair dice have r, =constlant

fromrwop z=9Sr vormalize (=fix up size)

)
—

cubic dice 6 sides: fair dice --> all probabilities are equal --

re=1-s>1r=6-> Da=1/6 for all values of a
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Composite Probabilities

a and P are two different kinds of events
« might describe the temperature on January 1, p. computed as N. /N
[} might describe the precipitation on December 31, with probabilities #

?}I ;1

Both kinds of events are complete Z P. = 1 P2

The prime indicates that the two probabilities are quite different from one another.

Let Pugp be the probability that both will happen. The technical term for
this is a joint probability. The joint probability satisfies 2p

p(aif3) is the probability that event a occurs if that we know that event 5 has or will
occur. This quantity is called a conditional probability. It obeys p(a|f) = Pagp/ P

N plal ) =1

Something must happen, implies that 2,




Independent Events

Physically two events are independent if the outcome of one
does not affect the outcome of the other. It is a mutual relation,
if a is independent of [ then f is independent of a.

This can then be stated in terms of conditional probabilities. If p(alf) is
independent” of 3 then we say « and [} are statistically independent. After a
little algebraic manipulation, it follows that the joint probability p..;obeys

._J - -|. IJ

equivalently, two events are statistically independent, if the number of times both
show up is expressed in terms of the number of times each one individually shows up

das

This can be generalized to the statement that a series of m different events are
statistically independent if the joint probabilities of the outcomes of all these events is
simply the product of all the m individual probabilities.

The word uncorrelated is also used to describe statistically independent quantities.
















Independent Events

Physically two events are independent if the outcome of one
does not affect the outcome of the other, It is a mutual relation,
if &t is independent of [ then f is independent of «.

This can then be stated in terms of conditional probabilities. If p(a|p) is
independent” of [} then we say « and [} are statistically independent. After a
little algebraic manipulation, it follows that the joint probability p..;obeys

i} i i

equivalently, two events are statistically independent, if the number of times both
show up is expressed in terms of the number of times each one individually shows up
as

This can be generalized to the statement that a series of m different events are
statistically independent if the joint probabilities of the outcomes of all these events is
simply the product of all the m individual probabilities.

The word uncorrelated is also used to describe statistically independent quantities.




Simple and Complex

definition: simple outcome: can happen qnly one way: like 2 coming up when a die in thrown

definition: complex outcome: can happen several ways: like 7 coming up when two dice are
thrown.

One should calculate probability of complex outcome as a sum of probabilities of simple
outcomes.

If the simple outcomes are equally likely, probability of complex outcome is the number of
different simple outcomes times the probability of a single simple outcome. There is lots of
counting in statistical mechanics. The number of ways that something can happen is often
denoted by the symbol VW. Entropy is given by

Entropy S=kin W _where k=kg is Bolzmann’s constant.




Probability Distributions

So far we have talked about discrete outcomes. A die may take on one of six possible
values. But measured things are often continuous. For example, in one dimension, the
probability that a quantum particle will be found between x and x+dx is given in terms of

the wave function, |v(r)|"dr . In this context, the squared wave function appears as

a probability density. In general, we shall use the notation ;(.r)for a probability density, saying
that ;(r) dr is the probability for finding a particle between x and x+dx. The general
properties of such probability densities are simple. They are positive. Since the total
probability of some x must be equal to one they satisfy the normalization condition

L4

L

For example, in classical statistical mechanics, the probability density for finding a
particle with x-component of momentum equal to p is

This is called a Gaussian probability distribution, i.e. one that is based on exp(-x%). Such
distributions are very important in theoretical physics.




One and Many

Imagine a material with many atoms, each with its own spin. The system
has a Hamiltonian which is a sum of the Hamiltonia of the different atoms

H=Y ho

and a probability distribution
.
H=eﬂﬁﬁ*”fZ=H/ZWIm®mu)

which is a product of pieces which belong to the different atoms. The
different pieces are then statistically independent of one another. Note
that the partition function is

- =H Elem{ﬁn ) = (2coshh)¥ = Z2¥ ii.4

so that the entire probability is a product of N pieces connected with the N atoms

plo} = I—[[exp(hu )/ Z]

The appearance of a product structure depends only upon having a Hamiltonian
which is a sum of terms referring to individual parts of the system

~NamiilranmEam - - o . rar moacrh nralRalnilie -
1 i - T | - i = |- -t Ll LYy




Structural invariance

Note how the very same structure which applies to one atom exp(-pH)/Z
carries over equally to many atoms.

This structural invariance is characteristic of the mathematical basis
of physical theories. Newton’s gravitational theory seemed natural
because the same law which applied to one apple equally applies to
an entire planet composed of apples.

This same thing works for electromagnetism. The same law which
gives the force for a single electron also gives the force pattern
produced outside a spherically symmetric object containing many
charged particles.

A wave function is the same sort of thing for one electron or many.

The structure of space and time has a similar invariance property.
Remember that a journey of a thousand miles starts with but a single
step. The similarity between a single step and a longer distance is a
kind of structural invariance. This invariance of space is called a scale
invariance. It is quite important in all theories of space and time.




Gaussian Statistical Variables

A Gaussian random variable, X, is one which
has a probability distribution which is the
exponential of a quadratic in X.

p(x)= [B/(211)]"? exp[—B(x—<X>)%/2]
1/B is the variance of this distribution.

The sum of two statistically independent Gaussian
variables is also Gaussian. How does the var

A Gaussian variable is an extreme example of a
structurally stable quantity.

Central Limit Theorem: A sum of a large number of
individually quite small random variables need not be
small, but that sum is, to a good approximation, a
Gaussian variable, given only that the variance of each
of the individual variables is bounded.

A Gaussian distribution has a lot of structurally invariant properties.







Gaussian integrals and Gaussian probability distributions

Gaussian integrals are of the form .

I = [ dx exp(-ax® / 2+bx +c)

with a, b, and ¢ being real numbers, complex numbers, or matrices.
They are very, very useful in all branches of theoretical physics.

We define the probability that the random variable X will take on the value
between x and x+dx as p(X=x)dx or more simply as p(x)dx

There is a canonical form for Gaussian probability distributions, namely

p(X=x)= (B/217)" exp[-B(x - <X>)? /2]

produced by “completing the square™. Here 1/ is the variance and <X> is the average of the random
variable, X.

p(x)~ exp[—ax?2+bx +c]= exp[—a(x-b/a)¥/2+b%/(2a) +]
so pick c=-b%(2a)+[In (B/211)}/2 we now have the canonical form

For Gaussian probability distributions, there is a very important result:
< exp(igX) >= exp(ig < X >)exp[-g° / (28)] i.5

Notice how the 7 that appears in the numerator of the probability distribution reappears in the
denominator of the average.
100020
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Gaussian Distributions

According to Ludwig Boltzmann (1844 — 1906) and James Clerk Maxwell (1831-1879) the
probability distribution for a particle in a weakly interacting gas is given by

p(p,r) =1/ z)exp(-pH)
H=[p, +p, +p.]1/2m+U(r)
Here, the potential holds the particles in a box of volume €2, so that U is zero inside a box

of this volume and infinite outside of it. As usual, we go after thermodynamic properties by
calculating the partition function, z= [ dpdr exp[-B H]

z = Q[ [ dp exp(-pp® / (2m))]’ = Q(2am / B) ii.6

In the usual way, we find that the average energy is 3/(2f3) = (3/2)kT. The classical result is the

average energy contains a term KT/2 for each quadratic degree of freedom. Thus a harmonic
oscillator has <H>=kT.




Gaussian Averages

The usual way

Let one particle be confined to a box of volume . Let U(r) be zero inside the box
and + infinity outside. Then, in three dimensions

Z= fd3p d’r exp(-f[p¥(2m)+U(r)])=Q(2xm/p)*?

Let £= [p¥(2m)+U(r)]

d In ZJ ap=—(1 Zijld’p &r £ exp(-pe)= —<e>

<e>=3/(2B)=(3/2)kT
(The usual way)?

0% In Z /0p*= -0<e>/0fp=




Many variables are as easy as one

Let M be an N by N symmertric real matrix with N positive real eigenvalues,
m1, M2, ..., My, ..My are the eigenvalues of this matrix. We can then easily
calculate an integral involving many Gaussian variables by taking linear
combinations of variables to diagonalize the matrix, M, giving

l = " -

) i

The last equality follows from the fact that the determinant of M is the
product of its eigenvalues. More specifically, if M,;is a diagonal matrix,




Rapidly Varying Gaussian random variable

Later on we shall make use of a time-dependent gaussian random variable, n(t). In
its usual use, n(t) is a very rapidly varying quantity, with a time-integral which
behaves like a Gaussian random variable. Specifically, it is defined to have two
properties:

< r]([}>:0

.
X(t) = Idu N(u) is a Gaussian random variable with variance [ |s-t].

Here [ defines the strength of the oscillating random variable.




Approximate Gaussian Integrals

It is often necessary to calculate integrals like

¥a jdxe"" '

in the limit as M goes to infinity. Then the exponential varies over a wide range and the
integral appears very difficult. But, in the end it's easy. The main contribution will come at
the maximum value of f in the interval [a,b]. Assume there is a unique maximum and the
second derivative exists there. For definiteness say that the maximum occurs at x=0, with
a<0<b. Then we can expand the exponent and evaluate the integral as

| = ™" J'dxe"" NEVE— o @HC fdxe""' Dxfes... o Mt I'-_Mi-'ﬁ'r{[)]i

Notice that because we have assumed that zero is a maximum, the second derivative
is negative. Because M is large and positive, we do not have to include any further
higher order terms in x. For the same reason we can extend the limits of integration
to infinity. With that, it's done!

We shall have an integral just like this later on.

EXPlIKX)




Gaussian Averages

The usual way

Let one particle be confined to a box of volume Q. Let U(r) be zero inside the box
and + infinity outside. Then, in three dimensions

Z= J.djp d’r exp(-B[p¥(2m)+U(r)])=L(2xm/f)*?

Let €= [p#/(2m)+U(r)]

d In Z/ df=—(1 erd’p d’r £ exp(-pe)= —<£>

<e>=3/(2B8)=(3/2)kT

(The usual way)?

0% In Z /0p%*= -0<e>/dp=




Gaussian Distributions

According to Ludwig Boltzmann (1844 — 1906) and James Clerk Maxwell (1831-1879) the
probability distribution for a particle in a weakly interacting gas is given by

plp,r) =1/ z)exp(-pH)
H=[p, +p, +p.]1/2m+U(r)
Here, the potential holds the particles in a box of volume €2, so that U is zero inside a box

of this volume and infinite outside of it. As usual, we go after thermodynamic properties by
calculating the partition function, z= [ dpdr exp[- H]

z = O [ dp exp(-pp* / (2m))}’ = Q(2am / p)** ii.6

In the usual way, we find that the average energy is 3/(2f3) = (3/2)kT. The classical result is the
average energy contains a term kT/2 for each quadratic degree of freedom. Thus a harmonic
oscillator has <H>=kT.




