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Abstract: A brief review of some recent work on the causal set approach to quantum gravity. Causal sets are a discretisation of spacetime that allow
the symmetries of GR to be preserved in the continuum approximation. One proposed application of causal setsis to use them as the historiesin a
guantum sum-over-histories, i.e. to construct a quantum theory of spacetime. It is expected by many that quantum gravity will introduce some kind
of fuzziness uncertainty and perhaps discreteness into spacetime, and generic effects of this fuzziness are currently being sought. Applied as a model
of discrete spacetime, causal sets can be used to construct simple phenomenological models which allow us to understand some of the consequences
of this general expectation.
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Back to the rough ground

Example: Lord Rayleigh in Darjeeling

3277 (e — 1)°
3:8
where there are n molecules per ma.
A Is the wavelength of the light, yis
the refractive index of air and 1/G is

the distance over which the light is
attenuated by 1/e .

By noting that Everest was visible at a distance of 160 km, Rayleigh
estimated 1/ to be 160km and thus obtained a value for Avagadro's
constant as around 4 x 10423, from casual observation.

n =
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Back to the rough ground

Example: Lord Rayleigh in Darjeeling

2 (e — 1)*
3448
where there are n maolecules per ms,
A Is the wavelength of the light, yis

the refractive index of air and 1/ is
the distance over which the light is

attenuated by 1/e .
By noting that Everest was visible at a distance of 160 km, Rayleigh
estimated 1/ to be 160km and thus obtained a value for Avagadro's
constant as around 4 x 10423, from casual cbservation.

100 years later, it is not the atomicity of matter which is in question, but

the atomicity of spacetime. Again. we are equipped with a discrete
Kinematical picture, but lack a definitive dynamics. Can we make
progress by proceeding in the spirit of Rayleigh's calculation? e 570
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Questions for this talk
« What

« Why
c How

« \Where
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Questions for this talk
What

_..Is a causal set?

Why

...this discrete structure and not another?

How

...do we build a QG theory on this basis?

Where

... can we look for signals of spacetime discreteness?
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Beyond the continuum

~+.Common idea: Lorentzian manifolds may
not be a good description of spacetime
near the Planck scale.

» Several “clues” from current theory
(infinities iIn GR, QFT, BH entropy)
suggest that the replacement should be
discrete. But what?
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An Intriguing result

Given the causal structure and the conformal factor
of a manifold with Lorentzian metric. one can recover
the dimension. differential structure, topology anc
netric of that manifold.
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An intriguing result

Given the causal structure and the conformal factor
of a manifold with Lorentzian metric. one can recover
the dimension. differential structure, topology and
netric of that manifold.

Causal structure + volumes = geometry
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An intriguing result

- Given the causal structure and the conformal factor
of a manifold with Lorentzian metric. one can recover
the dimension. differential structure. topology and
netric of that manifold.

Causal structure + volumes = geometry

Taking this causal structure as fundamental, we
arrive at a simple way of discretising spacetime.
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What?

S
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Causal sets

The causal order of a spacetime is a partial order < on the
set of points C, meaning:

(1) transitivity: (Vz.y.z €e Cllz <y < z=>1 < 2
(22) wrreflexivity: (Vre C)lzr A =
To get a discrete version of this, we add:

(222) local fimiteness: (Vr.z € C)(card{y € C | r <y < z} < x)
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Causal sets

The causal order of a spacetime Iis a partial order < on the
- set of points C, meaning:

(2) transitivity: (Vr.y.z e Cllr <y <z=>1x < 2
(22) wreflexivity: (Vre Cllzr A =
To get a discrete version of this, we add:

(222) local finiteness: (Vr.z € C)(card{y € C lr <y < z} < )

Order & Causal structure
Number & Volume
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Continua as approximations
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Continua as approximations

.;-H___,—;_/_'_'___.___‘_‘_;_‘_\
-

.
.

Lorentzian manifolds

C
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Continua as approximations
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Continua as approximations

-HE-’#_'_/_,_,_.—-——-_._;_‘_‘_\_\\\
-

o
~

Discrete
Structures Lorentzian manifolds

D I -
Discrete/continuum
correspondence

“\\\_\‘_‘_-_-_'—)/f!.”.

Binary relation v~ »°
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Continua as approximations

- ﬁ/_/_x
Discrete B
Structures | orentzian manifolds
D 7 —

p— , - .
Discrete/continuum C
correspondence |

Binary relation »~ »

~ must be surjective;
If v~ 7, and y~ 7, then 7, and 7, must be
physically indistinguishable.
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Spacetime as approximation

We must recover the spacetimes of GR as approximations to
some of these causal sets. When does a spacetime (M,g)
approximate to (C, =)7
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Spacetime as approximation

We must recover the spacetimes of GR as approximations to
some of these causal sets. When does a spacetime (M.g)
approximate to (C, =)7

If (C. <) Is the partial order on some set of points in M
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Spacetime as approximation

We must recover the spacetimes of GR as approximations to
some of these causal sets. When does a spacetime (M.g)
approximate to (C, <)?

If (C. <) Is the partial order on some set of points in M
which is the order induced by the ‘
causal order of (M,g), we say that

(C, <) is “embeddable’ in (M.qg).
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Spacetime as approximation

We must recover the spacetimes of GR as approximations to
some of these causal sets. When does a spacetime (M. g)
approximate to (C, <)?

If (C. <) is the partial order on some set of points in M
which is the order induced by the
causal order of (M,g), we say that

(C, <) is “embeddable’” in (M.qg). 2
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Spacetime as approximation

We must recover the spacetimes of GR as approximations to
some of these causal sets. When does a spacetime (M,g)
approximate to (C, =)?

If (C. <) is the partial order on some set of points in M

which is the order induced by the )
causal order of (M,g), we say that

(C, <) is “embeddable” in (M.qg). :

tis “faithfully embeddable” if that
set of points could have arisen. with
relatively high probability, from
“sprinkling”:
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We must recover the spacetimes of GR as approximations to
some of these causal sets. When does a spacetime (M,g)
approximate to (C, =)?

If (C. <) is the partial order on some set of points in M

which is the order induced by the i
causal order of (M,g), we say that

(C, <) is “embeddable” in (M.qg). :

tis “faithfully embeddable” if that
set of points could have arisen. with
relatively high probability, from
“sprinkling”:

Pirsa: 10090092 Page 30/78

Joe Henson: Causal sets



Spacetime as approximation

We must recover the spacetimes of GR as approximations to
some of these causal sets. When does a spacetime (M. g)
approximate to (C, =)?

If (C, <) is the partial order on some set of points in M
which is the order induced by the i
causal order of (M,g), we say that

(C, <) is “embeddable” in (M.qg). ;

tis “faithfully embeddable” if that

set of points could have arisen. with

relatively high probability, from

“sprinkling’: _ -, . _
(pV ) e " IS ensures that, 10r large

P(n) =~

This defines the discrete/continuum approximation. page 31178
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The causal set program

+ Kinematics

— Find methods to recover geometry from causal sets
— Prove the fundamental conjecture
« Dynamics
— Find a Sum-Over-Histories QM theory with causal sets as the
histories, as a candidate QG theory
— Use “principle approach’, or generalize the gravitational path
Integral
» Phenomenology

— Use in the spirit of Rayleigh's calculation as a model of discrete
spacetime
— Consistent with observation? New predictions?

Pirsa: 10090092 Page 32/78

Joe Henson: Causal sets



Recovering Geometry

We know how to recover continuum geometry in principle; but
given a causal set, how do we work out the properties of its
continuum approximation (if it has one)?

An example: recovering dimension as a function of the causal
set. If (M.g) ~ (C, <) . what dimension does M have?

The fraction of pairs of points in M that are causally related is a
function of the dimension. This relationship can be reversed and
applied to the causal setto make D (C, <) . the "Myrheim-Meyer’
dimension.

“Manifoldlike” causal sets have integer valued, matching dimension
estimators.

Similar results for lengths, topology...
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WhY?

S

Pirsa: 10090092 Page 34/78

Joe Henson: Causal sets



L orentz invariance?

A fertile ground for phenomenology, and a problem for most
discrete structures. Does discreteness imply Lorentz violation™?

We can only talk about continuum symmetries when there is a
continuum! They have no meaning at the fundamental level
put only when there Is a continuum approximation. Consider
the case of Minkowski space.

A good question: does the discrete structure, in and of itself,
serve to pick out a preferred direction in the approximating
continuum?
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L orentz invariance?

A fertile ground for phenomenology, and a problem for most
discrete structures. Does discreteness imply Lorentz violation

We can only talk about continuum symmetries when there is a
continuum! They have no meaning at the fundamental level
put only when there Is a continuum approximation. Consider
the case of Minkowski space.

A good question: does the discrete structure, in and of itself,
serve to pick out a preferred direction in the approximating
continuum?

To ensure Lorentz invariance our
discrete/continuum correspondeﬂce and our
criterion of * sical indistinguishablility”, must be
invanant
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The trouble with Lattices

What if D was some set of lattices? How do we
compare continuum geometry with a lattice?

=] =] = = —
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The trouble with Lattices

What if D was some set of lattices? How do we
compare continuum geometry with a lattice?

i Loy, oy = - gl - —
— = E =
—_

Consider Minkowski space and a regular
lattice. There are many such embeddings
related by symmetries; each one picks out a
direction. - - - - - - -

.......
........
.......
++++++++
|||||||
........
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The trouble with Lattices

What if D was some set of lattices? How do we
compare continuum geometry with a lattice?

—— 4

A
(D

—
e

—
-

Consider Minkowski space and a regular
lattice. There are many such embeddings
related by symmetries; each one picks out a
direction. - - - - - - -

-------
------
rrrrrrrr
-------
........

Large regions contain no embedded points: no
symmetric discrete/continuum correspondence
Known.
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Causal sets

So, does the discrete structure, in and of itself, serve to pick
out a preferred direction in the approximating continuum?
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Causal sets

So, does the discrete structure, in and of itself, serve to pick
out a preferred direction in the approximating continuum?

1) j‘_ .-'JE_-"J-"-i'

This distribution 1s Invariant under all volume preserving
transformations. |In Minkowski this includes Lorentz
transformations.
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Causal sets

So, does the discrete structure, in and of itself, serve to pick
out a preferred direction in the approximating continuum?
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Causal sets

So, does the discrete structure, in and of itself, serve to pick
out a preferred direction in the approximating continuum?

1) Pla) — ,:JE_-'F"E-

o |
i

This distribution i1s invariant under all volume preserving
transformations. In Minkowski this includes Lorentz
transformations.

2) Causal information is Lorentz invariant.
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Causal sets

So, does the discrete structure, in and of itself, serve to pick
out a preferred direction in the approximating continuum?

N |
[l

This distribution i1s invariant under all volume preserving
transformations. In Minkowski this includes Lorentz
transformations.

2) Causal information is Lorentz invariant.

3) Qutcomes of the sprinkling process do not pick a direction.

Theorem: There is no “equivariant’ map between outcomes of
sprinklings and directions in Minkowski.
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| orentz invariance!

Random discreteness saves symmetry
E.g. gas, liquid, glass.

The causal set gives an equally good approximation of
all causal intervals;

Fay

not so a regular lattice.

-------
-------
.......

++++++++
+++++++

........
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HOW?

S
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Recovering spacetime

Almost all causal sets do not resemble manifolds, but instead are
“Kleitman-Rothschild” posets. They are short in time, and have
infinite scaling dimension.

The number of them grows as
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Recovering spacetime

Almost all causal sets do not resemble manifolds, but instead are
“Kleitman-Rothschild” posets. They are short in time, and have
infinite scaling dimension. R

—N2/4

The number of them grows as €

If we consider a statistical sum over causal sets. who could
manifoldlike ones dominate, if the number of them only grows
exponentially? With a local action. this seems impossible.

But causal sets are not locall E.g. exp(#links) grows faster than

risa: 1000002 @Xponentially in AV for manifoldlike causal sets. Page 48/78
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Classical Sequential Growth

A quantum SOH can be seen as a generalization of a stochastic
theory; we can test the principle approach in a stochastic setting.

Sequential growth: the causal set, starting from one element, is
‘grown’” by randomly adding elements to the future (or spacelike)
to existing elements:
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to existing elements:
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Classical Sequential Growth

A quantum SOH can be seen as a generalization of a stochastic
theory; we can test the principle approach in a stochastic setting.

Sequential growth: the causal set, starting from one element, is
‘grown’” by randomly adding elements to the future (or spacelike)
to existing elements:
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Classical Sequential Growth

A quantum SOH can be seen as a generalization of a stochastic
theory; we can test the principle approach in a stochastic setting.

Sequential growth: the causal set, starting from one element, is
‘grown’” by randomly adding elements to the future (or spacelike)

to existing elements:

Defining all the “transition
probabilities” gives a probability
measure on infinite causal sets.

Caonstrain these probabilities by
physical principles:

Causality e

General covariance

rrsa: 10000002 (ONE parameter remains per element. Page 53178
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Classical Sequential Growth

Pirsa: 10090092

- Solution to an analog of the “problem
of time": the set of covariant "questions’
can be defined and interpreted.

- Interesting “bouncing cosmologies’
that select parameters.

- some manifoldlike properties, but
unlikely that CSG reproduces
manifoldlike causal sets.

- Some math tools developed will be
relevant to Quantum case.
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S
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Fields on causal sets

Is this discreteness consistent with observation?

It has been suggested that any fuzziness in distance
measurements will cause loss of coherence of light from
distant sources.
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Pirsa: 10090092

Fields on causal sets

Is this discreteness consistent with observation?

It has been suggested that any fuzziness in distance
measurements will cause loss of coherence of light from
distant sources. AT

Putting fields on causal sets will test this, and
perhaps suggest new tests of discreteness.
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Fields on causal sets

Is this discreteness consistent with observation?

It has been suggested that any fuzziness in distance
measurements will cause loss of coherence of light from
distant sources. '

Putting fields on causal sets will test this, and
perhaps suggest new tests of discreteness.

The problem is also relevant to dynamics. How do
we recover effective locality from causal sets?

Joe Henson: Causal sets
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Scalar fields on Minkowski

We need to make some approximation to the local, Lorentz
invariant D’Alembertian operator. A latlice provides an easy
way to recaver locality, but breaks Lorentz invariance. On the
other hand. the Lorentz invariant causal set discretisation
makes it maore difficult to recaver locality.

On a light-cone lattice:

o o e, 17 ) My r)—u—a. v — M . T — i) == it — 1.1 — il

(o u. v) =

. . - S
Ao (1=

A weighted sum of field values at a finite set of “near
neighbours”.

But in a truly Lorentzian discretisation, there can be no such
finite set.

E.g.: how many “links” to a given element are there in a
sprinkling of Minkowski?
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Lorentz invariance or locality: a
choice

‘e Consider a sprinkling of Minkowski.

py If there is a non-zero probability of
¢ \ a near neighbour of x being
. Y sprinkled into region D...
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Lorentz invariance or locality: a
choice

X o Consider a sprinkling of Minkowski.

oy If there is a non-zero probability of
G \ a near neighbour of x being
. Y sprinkled into region D...

D There is an equal
probability in D'.

N I
® '
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Lorentz invariance or locality: a

choice
e Consider a sprinkling of Minkowski.
i If there is a non-zero probability of
@ a near neighbour of x being
. Y sprinkled into region D...

I There is an equal
probability in D'.

Thus there must Ee an D
INnfinite amount of near «

neighbours, however they
are defined.
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Approximating Green’s functions

Equivalently to the d'Alembertian, the field theory
can be defined by the Green's function of the
d'Alembertian: gg(z.y) = é(z — y)

In 4-dimensional Minkowski space. the Retarded
Greens' function is given by

= ") T . £ = =
”TL:”' r— Y1) if #1s 1n the causal future of r
{_rll_r_."fl'= . » -
' 1' ' otherwise
1 a
— MY — I — |
dnr

A delta function on the future light-cone of x.

This function is defined using purely causal information.
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Approximating Green’s functions

We have seen that the links from one element “hug the light-
cone’. Consider following function on pairs of causal set
Ll {1 if €, - nd [I{r.y)| =0

btz . Es ] —

otherwise

In the limit of dense sprinkling (with suitable normalisation)
this function goes to the delta-function on the future light-
cone, G(X.y).
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Approximating Green’s functions

We have seen that the links from one element “hug the light-
cone’. Consider following function on pairs of causal set

elements: {1 if e, < e, and |I{x.y)| =0

otherwise

In the limit of dense sprinkling (with suitable normalisation)
this function goes to the delta-function on the future light-
cone, G(X.y).
This can be used to define the propagation of a scalar field
on the causal set:
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Approximating Green’s functions

We have seen that the links from one element “hug the light-
cone’. Consider following function on pairs of causal set

elements: {1 if e, < e, and |I{x.y)| =0

otherwise

In the limit of dense sprinkling (with suitable normalisation)
this function goes to the delta-function on the future light-
cone, G(X.y).
This can be used to define the propagation of a scalar field
on the causal set:
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- Approximating Green’s functions

We have seen that the links from one element “hug the light-
cone’. Consider following function on pairs of causal set

elements: ; {1 if e; < €; and |I(x.y)| =0
f — :

otherwise

In the limit of dense sprinkling (with suitable normalisation)
this function goes to the delta-function on the future light-
cone, G(X.y).
This can be used to define the propagation of a scalar field
on the causal set:

LG(x.y) =o({x — y) > 0. L.z = 08;;

This method has some problems, but can be used to give a model of a
scalar field propagating from source to detector. This helps us to see
whether causal set discreteness is consistent with the coherence of light
travelling over long distances, and gives an example of Lorentz invanant
discrete dynamics.
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A Model of Propagation

We can model propagation from a small source to a distant
detector and compare the standard model with the causal
set model. We define the signal ~ as follows:

F = / d yoly
JD 3
JP

.- - A
source

A g .
Fe. - T AL
it K “

N

a) space b) spacetime

In the continuum we are finding the measure of the set of pairs of points
(ane in source, one in detector) that are null related.
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A Model of Propagation

.

= / yoly e Detector

irsa: 10090092 Page 69/78
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A Model of Propagation

- e e— - - o . i e
5 - o = - - -
P { Source.- - " Faapd
F= / oy oly ; 2 . . Detectdr
by ud L = iy - g =
_— - L . g = 4 - 2 = L -
=T '_.- in = & = - . . o = - -
i - - 2 . = i g -
N = = -
1y ::,/ ds Glxls). 3 - - A .
- - =
e d - - = - - -
. | “' “: "" ! L -~ X e X
. {] » a - _ . . - . :
_F :-: 1_Pf-1ff. 4 F - - - & ‘_ »
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# ..r‘ - 7 ‘.. * "'
* b = "
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A Model of Propggation

5 = LLTR ST : - -
| - e R 2 By IR,
F= / dyoly PP b | Belemar .
i) — ¢ / If.hC;'_.f'l't'.'. '"'.:* = g +:-+ ‘-
- T - - - ‘-._ &

Discrete version: pea]. T ool ol T e

- o = _—
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A Model of Propagation

In the causal set case, to find the detector signal we counted the number
of links between the source and detector region for a typical causal set
approximating to Minkowski space. The result is the same, with negligible
corrections.

The signal varies with the strength of the source just as in the continuum.
No significant random or systematic effects come in, e.g. to change the
phase of a propagating wave.

|.e. no Lorentz violation, no loss of coherence.
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A Model of Propagation

In the causal set case, to find the detector signal we counted the number
of links between the source and detector region for a typical causal set
approximating to Minkowski space. The result is the same, with negligible
carrections.

The signal varies with the strength of the source just as in the continuum.
No significant random or systematic effects come in, e.g. to change the
phase of a propagating wave.

|.e. no Lorentz violation, no loss of coherence.

Spacetime “fluctuations™ — loss of coherence
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‘A non-local, causal “‘d’'Alembertian”

The Green's function method is limited to flat space, and seems to
give rise to unacceptable random fluctuations in the value of the
d Alembertian.

Ancther idea: In the lattice we had a weighted sum of the field
values at the nearest neighbours.
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A potential problem

Let us assume that the field is of compact support, and
slowly varying in some frame (for now), and work in that

frame. We are in 2D, so in light-cone co-ords:
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Work in units where k>> 1. [
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Using the previous equations, which get rid of terms of order k* -1 and k-2, we

see that the contribution to J(k) is small — of order k*-3. This shows how the

above relations help to regain approximate locality. Thus the only significant
. ocontribution is from region 3: g 7578
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‘A non-local, causal “d’ Alembertian”

This approximation of the d' Alembertian can easily be discretised
on a causal set, and is interesting in its own right.

'

Properties: it is Lorentz-invariant, causal. but non-local (in time)

These Ideas can be extended to 4D.

Because on the non-locality in time it is challenging to do QF T
using this approximation.

The next step is to look for phenomenology of
this non-local d'Alembertian.
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This approximation of the d Alembertian can easily be discretised
on a causal set, and is interesting in its own right.

Properties: it iIs Lorentz-invariant, causal. but non-local (in time).
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Conclusions

* The causal set offers a discretisation of
- spacetime consistent with the symmetries
we observe

* Fields can be described Iin causal sets, Iif
one allows causal non-locality.

"« Lorentz violation and loss of coherence of
iIght from distant sources can be avoided
IN discrete spacetime models.
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