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Interesting features

N

» Small lumps expand faster than larger lumps since -~ -~ —

» Small lumps also move faster than larger lumps since = ~ A= 1/~
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Interesting features

Lumps come from scalar excitation, its energy density always positive
in terms of “particle physics”, but the induced gravity can be either
attractive or repulsive!

& >U attractive
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Lumps come from scalar excitation, its energy density always positive
in terms of “particle physics”, but the induced gravity can be either
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Jeans instability

For a fluid with pressure p and energy density p,

. ) . S - ),
@ = O—pk‘ —®,-, Where @ - = .
dp ) _ :"1"{;_-‘.-:_

When @ <0, Jeans collapse happens.

Mp, . ME
Ve BVE

Ly~

[n linear regime, fluctuation with wavelength \ - [,

_ \
growson a time scale - ~ I3+

So we need a very small M to fsrotect the IR gravity.
e.g. 1/ —~ 10—\ Ghostcondensation plays the role of DE.

irsa: 10090090 Page 235/901



Jeans instability

For a fluid with pressure p and energy density p,

SR ) ? ; )
a = _pk* g . where @, = £ —
op ) M,

When @ <0, Jeans collapse happens.

_\11{['1 - jl.!(l::.:
2 BRVE

Ly~

[n linear regime, fluctuation with wavelength \ - 7,

_ \
growson a time scale - ~ I3+

So we need a very small M to ﬁrotect the IR gravity.
e.g. 1/ —~ 10—\ Ghostcondensation plays the role of DE.

irsa: 10090090 Page 236/901



Jeans instability

For a fluid with pressure p and energy density p,

s 5 . i . )
P s ) - @,-. Where @ = M
op ] 2M -~

When @ <0, Jeans collapse happens.

_1"11{” - _11._1'(':.,
1 r[.-' fl . —rh
A= AVE.

Ly~

[n linear regime, fluctuation with wavelength \ - 7,

. A
growson a time scale - ~ I3+

So we need a very small M to ﬁrotect the IR gravity.
e.g. 1/ ~ 10—\ Ghostcondensation plays the role of DE.

irsa: 10090090 Page 237/901



Jeans instability

For a fluid with pressure p and energy density p,

L S w:. where @ =_F _
So - T 2M}
When & <0, Jeans collapse happens.
Mp _ ME
Ly~ = [ s

M2z VE
[n linear regime, fluctuation with wavelength \ - [,
. \
grows on a time scale - ~ 7 =
i)
So we need a very small M to protect the IR gravity.

e.g. 1/ ~ 10—\ Ghostcondensation plays the role of DE.

irsa: 10090090 Page 238/901



Jeans instability

For a fluid with pressure p and energy density p,

: 5 : : . ),
F=Pr_»? where @’=—F
(5,0 ) _ :-L{;:'.-‘h

When @ <0, Jeans collapse happens.

Mpy

[y~ | ~
: AYE: 1/3

In linear regime, fluctuation with wavelength \ - [,

: \

growson a time scale - ~ | ——
iJ

So we need a very small M to protect the IR gravity.

e.g. 1/ ~ 10—\ Ghostcondensation plays the role of DE.

irsa: 10090090 Page 239/901



Jeans instability

For a fluid with pressure p and energy density p,

APy _ w3}, where @ =_F
op ul d My
When & <0, Jeans collapse happens.
M p _ M5,
[y~ o [ i

M2 T A
[n linear regime, fluctuation with wavelength \ - [,
. \
grows on a time scale - ~ 7 7
.J
So we need a very small M to protect the IR gravity.

e.g. 1/ ~ 10—\ Ghostcondensation plays the role of DE.

irsa: 10090090 Page 240/901



Jeans instability

For a fluid with pressure p and energy density p,

= :-." . ] =
a2 P> @, where @°= —
op ) M,

When @ <0, Jeans collapse happens.

_\11{[-1 : .q'u'(l-“‘-:

- VE

[n linear regime, fluctuation with wavelength \ - [,

. \

growson a time scale - ~ | =
]

So we need a very small M to protect the IR gravity.

e.g. \/ ~ 10—\ Ghostcondensation plays the role of DE.

irsa: 10090090 Page 241/901



Jeans instability

For a fluid with pressure p and energy density p,

- JT - . .
o =22 ®,-. Where @ = —.
op : 2M

When @ <0, Jeans collapse happens.

\Mpy - A,
A2 /3

Ly~

[n linear regime, fluctuation with wavelength \ - [,

. A
growson a time scale - -~ I3+

So we need a very small M to fxrotect the IR gravity.
e.g. 1/ ~ 10—\ Ghostcondensation plays the role of DE.

irsa: 10090090 Page 242/901



Jeans instability

For a fluid with pressure p and energy density p,

" 5 ? - . ),
& =Pr_@? where @’=—F
50 “ AT

When @ <0, Jeans collapse happens.

Mp, V3
Ly~ = I3 ~ '
S 7 SERVE
[n linear regime, fluctuation with wavelength \ - [,
: \
grows on a time scale - ~ !‘f_

So we need a very small M to ﬁrotect the IR gravity.
e.g. 1/ —~ 10—\ Ghostcondensation plays the role of DE.

irsa: 10090090 Page 243/901



Jeans instability

For a fluid with pressure p and energy density p,

: 5 " . y
a8y = a2 k-— o, . where @.” =

Sp T 2M,

When ¢ <0, Jeans collapse happens.
My A

Ly~

In linear regime, fluctuation with wavelength \ - 7,
\

grows on a time scale - ~ !';[—
]
So we need a very small M to protect the IR gravity.

e.g. 1/ ~ 10~V Ghostcondensation plays the role of DE.
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Jeans instability

For a fluid with pressure p and energy density p,

- ;" . - =
y = ﬂk‘ = . E"-"hEI’E‘ ng- = —
(5)0 ) :"1!?:"_

When @ <0, Jeans collapse happens.

Mp; _ M5,

Ly~ Mz - \/3

[n linear regime, fluctuation with wavelength \ - 7,

. \
growson a time scale - -~ I3+

So we need a very small M to ﬁrotect the IR gravity.
e.g. 1/ —~ 10—\ Ghostcondensation plays the role of DE.
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Jeans instability

For a fluid with pressure p and energy density p,

: 5 4 3 : )
=" -gr whee g*-=_C
(5,0 ) ) :-1[;';

When @ <0, Jeans collapse happens.

-1 [['I [| - ‘1 _,'([:

[y~ _ g ——
: /2 1/3

In linear regime, fluctuation with wavelength \ - ;

_ \
growson a time scale - ~ I3+

So we need a very small M to ﬁrotect the IR gravity.
e.g. 1/ —~ 10—\ Ghostcondensation plays the role of DE.
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Jeans instability

For a fluid with pressure p and energy density p,

P ) \ ; )
o =22 ®>, where @°=—F_
dp i :"1[;_-‘.-"_

When @ <0, Jeans collapse happens.

Mpy . Mg
Mz ‘

Ly~

In linear regime, fluctuation with wavelength \ - ;

. \
grows on a time scale - ~ 11[—

So we need a very small M to fxrotect the IR gravity.
e.g. 1/ ~ 10—\ Ghostcondensation plays the role of DE.
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Jeans instability

For a fluid with pressure p and energy density p,

= f_ﬁl - 2 - 7
=" g whee g>-_C
(5!(") i ) :'1{;_-'.;_

When @ <0, Jeans collapse happens.

My,
AVES

V3
o

Ly~ ==

T

In linear regime, fluctuation with wavelength \ - 7,

: \
grows on a time scale - ~ 11[—

So we need a very small M to ﬁrotect the IR gravity.
e.g. 1/ —~ 10—\ Ghostcondensation plays the role of DE.
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Jeans instability

For a fluid with pressure p and energy density p,

1 ) " 3 ' ..
o = ﬂ,{—* ~®,°, Wwhere @°= e
5p i :JI;'.-‘L

When @ <0, Jeans collapse happens.

\py -G,
A2 BRVE

Ly~

[n linear regime, fluctuation with wavelength \ - I,

_ \
growson a time scale - ~ I3+

So we need a very small M to ﬁrotect the IR gravity.
e.g. 1/ —~ 10—\ Ghostcondensation plays the role of DE.
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Jeans instability

For a fluid with pressure p and energy density p,

. 5 : . -
o = ﬂ;‘;- —®,~, Wwhere & = s -
dp " :"1‘{5‘:"_

When @ <0, Jeans collapse happens.

| " -
. N PR
Ve Ve

[n linear regime, fluctuation with wavelength \ - 7,

_ \
growson a time scale - ~ I3+

So we need a very small M to fxrotect the IR gravity.
e.g. 1/ ~ 10—\ Ghostcondensation plays the role of DE.
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Jeans instability

For a fluid with pressure p and energy density p,

b 11 ) > ; )
=22 ®>, where @°=—F_
dp i :"1{;_-‘.7‘_

When @ <0, Jeans collapse happens.

AMp : A ;'rf

Ly~ VE

[n linear regime, fluctuation with wavelength \ - [,

. \

grows on a time scale ~ ~ 7 =
"

So we need a very small M to protect the IR gravity.

e.g. 1/ —~ 10—\ Ghostcondensation plays the role of DE.
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Jeans instability

For a fluid with pressure p and energy density p,

s ; g ’ )
=22 ®>, where @ '=—F_
dp i :"1'{;_-‘.7‘_

When @ <0, Jeans collapse happens.

 Mpy . Mg
[‘le. {I U

[n linear regime, fluctuation with wavelength \ - 7,

_ \
growson a time scale - -~ I3+

So we need a very small M to ﬁrotect the IR gravity.
e.g. 1/ —~ 10—\ Ghostcondensation plays the role of DE.
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Jeans instability

For a fluid with pressure p and energy density p,

5 ) . ; )
=22 ®>, where @ '=—F_
dp i :‘1‘{5—‘3‘_

When @ <0, Jeans collapse happens.

Mp, -7
\VER K

Ly~

[n linear regime, fluctuation with wavelength \ - [,

_ \
growson a time scale - ~ I3+

So we need a very small M to ﬁrotect the IR gravity.
e.g. 1/ —~ 10—\ Ghostcondensation plays the role of DE.

irsa: 10090090 Page 253/901



Jeans instability

For a fluid with pressure p and energy density p,

% ) . . ’ 7
F="Eg_ ®>, wWhere @°=—F_
dp ) :-1'[;';

When @ <0, Jeans collapse happens.

Apy

Li~ 3 MRVE

[n linear regime, fluctuation with wavelength \ - [,

. \

grows on a time scale ~ ~ 7 =
2]

So we need a very small M to protect the IR gravity.

e.g. 1/ ~ 10—\ Ghostcondensation plays the role of DE.

irsa: 10090090 Page 254/901



Jeans instability

For a fluid with pressure p and energy density p,

= -; = = = 7
=P _o> where @>=_F
op i _ M,

When & <0, Jeans collapse happens.

My MR

Sl MVE

[n linear regime, fluctuation with wavelength \ - 7,

. \
grows on a time scale - ~ 11[—

So we need a very small M to ﬁrotect the IR gravity.
e.g. 1/ —~ 10—\ Ghostcondensation plays the role of DE.
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Jeans instability

For a fluid with pressure p and energy density p,

- 5 . . ’ 7
@ = ﬁ,ﬂ:‘ —®,~, Where @° = <
(5p ) :-1[;';

When @ <0, Jeans collapse happens.

_1'1[[-1 - _111.1'([‘-:.!

Ly~ WE MVE

In linear regime, fluctuation with wavelength \ - 7,

: \

growson a time scale - ~ | =
sJ

So we need a very small M to protect the IR gravity.

e.g. 1/ —~ 10—\ Ghostcondensation plays the role of DE.
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Jeans instability

For a fluid with pressure p and energy density p,

" 5 " . 2 7
=P _»? where @>=—F
Sp J T

When @ <0, Jeans collapse happens.

AMp R V£
M2 BRVE

Ly~

[n linear regime, fluctuation with wavelength \ - I,

_ \
growson a time scale - ~ I3

So we need a very small M to ﬁrotect the IR gravity.
e.g. 1/ —~ 10—\ Ghostcondensation plays the role of DE.
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Jeans instability

For a fluid with pressure p and energy density p,

4 5 g - - 7
e T -g’ whee =T
op i ) M,

When @ <0, Jeans collapse happens.

\lpy M

. N Ve

[n linear regime, fluctuation with wavelength \ - I,

_ \
growson a time scale - ~ I3

So we need a very small M to ﬁrotect the IR gravity.
e.g. 1/ ~ 10—\ Ghostcondensation plays the role of DE.
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Jeans instability

For a fluid with pressure p and energy density p,

. 5 2 i : ),
o— TP g’ whes -
op - ) M,

When @ <0, Jeans collapse happens.

Mpy AR

Lo ~ 55

[n linear regime, fluctuation with wavelength \ - [,

_ \
growson a time scale - ~ I3+

So we need a very small M to i:;rotect the IR gravity.
e.g. 1/ ~ 10—\ Ghostcondensation plays the role of DE.
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Jeans instability

For a fluid with pressure p and energy density p,

5 > : . )
Pr:_w? where @ =_F

dp § d :"1[?.-': -

ay =

When @ <0, Jeans collapse happens.

Mo, _ M3,
M2 AR

Lj-

[n linear regime, fluctuation with wavelength \ - [,

_ \
growson a time scale - ~ I3+

So we need a very small M to f)rotect the IR gravity.
e.g. 1/ —~ 10—\ Ghostcondensation plays the role of DE.
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Jeans instability

So we need a very small M to protect the IR gravity.

e.g. \/ ~ 107"«V Ghost condensation plays the role of DE.
The gravity is modified at length scale r, ~H;’

But we need to wait r>> H;" to see this modification!
- Anupper bound of M has been given in hep-ph /0507120,

(N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

+ Supernova time
delay

M <100Gev

Lightlensing
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Jeans instability

So we need a very small M to protect the IR gravity.

e.g. \/ ~ 107\ Ghost condensation plays the role of DE.
The gravity is modified at length scale . ~H;’

But we need to wait r>> ;" to see this modification!

- Anupper bound of M has been given in hep-ph /0507120,
(N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

h , Supernova time
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Jeans instability

- Sowe need a very small M to protect the IR gravity.

e.g. \/ ~ 107"«V Ghost condensation plays the role of DE.
The gravity is modified at length scale r, ~H;’

But we need to wait r>> H;" to see this modification!
- Anupper bound of M has been given in hep-ph /0507120,

(N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

+ Supernova time
delay

M <100Gev

Lightlensing
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Jeans instability

So we need a very small M to protect the IR gravity.

e.g. \/ ~ 107"V Ghost condensation plays the role of DE.
The gravity is modified at length scale r, ~H;’

But we need to wait r>> #;" to see this modification!
- Anupper bound of M has been given in hep-ph /0507120,

(N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

+ Supernova time
delay

M <100Gev

Lightlensing
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Jeans instability

So we need a very small M to protect the IR gravity.

e.g. \/ ~ 107"V Ghost condensation plays the role of DE.
The gravity is modified at length scale r, ~H;’

But we need to wait r>> #;* to see this modification!
- Anupper bound of M has been given in hep-ph /0507120,

(N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

+ Supernova time
delay

M <100Gev

Lightlensing
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Jeans instability

So we need a very small M to protect the IR gravity.

e.g. \/ ~ 107"V Ghost condensation plays the role of DE.
The gravity is modified at length scale , ~H;’

But we need to wait r>> #;* to see this modification!
- Anupper bound of M has been given in hep-ph /0507120,

(N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

+ Supernova time
delay

M <100Gev

Lightlensing
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Jeans instability

So we need a very small M to protect the IR gravity.

e.g. \/ ~ 107"V Ghost condensation plays the role of DE.
The gravity is modified at length scale r, ~H;’

But we need to wait r>> #;" to see this modification!
- Anupper bound of M has been given in hep-ph /0507120,

(N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

+ Supernova time
delay

M <100Gev

Lightlensing
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Jeans instability

- Sowe need a very small M to protect the IR gravity.

e.g. \/ ~ 107"«V Ghost condensation plays the role of DE.
The gravity is modified at length scale r, ~H;’

But we need to wait r>> H;" to see this modification!
- Anupper bound of M has been given in hep-ph /0507120,

(N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

+ Supernova time
delay

M <100Gev

Lightlensing

Nurochnct bhnitmee mndeal ic Hireaca HFFnm thiciimmnmeaer hnitmAl
e AEZCF. 3% BEINFEA AN N., RSN FRLEN,S 2.0 23 No0%, 18 WVAES E233.0 R3ARFRFN.E LEINTFUAZXNE

irsa: 10090090 = Page 2687901



Jeans instability

So we need a very small M to protect the IR gravity.

e.g. \/ ~ 107"V Ghost condensation plays the role of DE.
The gravity is modified at length scale r, ~H;’

But we need to wait r>> H;" to see this modification!
- Anupper bound of M has been given in hep-ph /0507120,

(N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

+ Supernova time
delay

M <100Gev

Lightlensing
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Jeans instability

- Sowe need a very small M to protect the IR gravity.

e.g. \/ ~ 107"V Ghost condensation plays the role of DE.
The gravity is modified at length scale r, ~H;’

But we need to wait r>> #;* to see this modification!
- Anupper bound of M has been given in hep-ph /0507120,

(N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)
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Jeans instability

- Sowe need a very small M to protect the IR gravity.

e.g. \/ ~ 107"«V Ghost condensation plays the role of DE.
The gravity is modified at length scale r, ~H;’

But we need to wait r>> #;" to see this modification!
- Anupper bound of M has been given in hep-ph /0507120,

(N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

+ Supernova time
delay

M <100Gev

Lightlensing
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Jeans instability

So we need a very small M to protect the IR gravity.

e.g. \/ ~ 107"V Ghost condensation plays the role of DE.
The gravity is modified at length scale r, ~H;’

But we need to wait r>> #;" to see this modification!
- Anupper bound of M has been given in hep-ph /0507120,

(N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

+ Supernova time
delay

M <100Gev

Lightlensing
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Jeans instability

- Sowe need a very small M to protect the IR gravity.

e.g. \/ ~ 107"«V Ghost condensation plays the role of DE.
The gravity is modified at length scale r, ~H;’

But we need to wait r>> #;" to see this modification!
- Anupper bound of M has been given in hep-ph /0507120,

(N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

+ Supernova time
delay

M <100Gev

Lightlensing
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Jeans instability

- Sowe need a very small M to protect the IR gravity.

e.g. \/ ~ 107"V Ghost condensation plays the role of DE.
The gravity is modified at length scale r, ~H;’

But we need to wait r>> #;" to see this modification!
- Anupper bound of M has been given in hep-ph /0507120,

(N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

+ Supernova time
delay

M <100Gev

Lightlensing
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Jeans instability

- Sowe need a very small M to protect the IR gravity.

e.g. \/ ~ 107"\ Ghost condensation plays the role of DE.
The gravity is modified at length scale r ~H;’

But we need to wait r>> #;" to see this modification!
- Anupper bound of M has been given in hep-ph /0507120,

(N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

A ! Supernova time
Lightlensing + P S

M <100Gev

g""l?" C}""igcfbsnhrnm r‘a] 1C -F-r-g_g Fvﬁm +"'1‘H': gﬁerb-ﬂ‘

i = L iam 2kl 2 2 T e - N BB 2 = e e

Pirsa: 10090090



Jeans instability

- Sowe need a very small M to protect the IR gravity.

e.g. \/ ~ 107"V Ghost condensation plays the role of DE.
The gravity is modified at length scale », ~H;’
But we need to wait r>> #;* to see this modification!

- Anupper bound of M has been given in hep-ph /0507120,

(N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

+ Supernova time
delay

Lightlensing

M <100Gev
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Jeans instability

- Sowe need a very small M to protect the IR gravity.

e.g. \/ ~ 107"V Ghost condensation plays the role of DE.
The gravity is modified at length scale r, ~H;’

But we need to wait r>> H;" to see this modification!
- Anupper bound of M has been given in hep-ph /0507120,

(N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

+ Supernova time
delay

M <100Gev

Lightlensing
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Jeans instability

So we need a very small M to protect the IR gravity.

e.g. \/ ~ 107"V Ghost condensation plays the role of DE.
The gravity is modified at length scale r, ~H;’

But we need to wait r>> #;" to see this modification!
- Anupper bound of M has been given in hep-ph /0507120,

(N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

+ Supernova time
delay

M <100Gev

Lightlensing
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Jeans instability

- Sowe need a very small M to protect the IR gravity.

e.g. \/ ~ 107"V Ghost condensation plays the role of DE.
The gravity is modified at length scale r, ~H;’

But we need to wait r>> #;* to see this modification!
- Anupper bound of M has been given in hep-ph /0507120,

(N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

+ Supernova time
delay

M <100Gev

Lightlensing
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Jeans instability

- Sowe need a very small M to protect the IR gravity.

e.g. \/ ~ 107"V Ghost condensation plays the role of DE.
The gravity is modified at length scale r, ~H;’

But we need to wait r>> H;" to see this modification!
- Anupper bound of M has been given in hep-ph /0507120,

(N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)
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Jeans instability

So we need a very small M to protect the IR gravity.

e.g. \/ ~ 107"V Ghost condensation plays the role of DE.
The gravity is modified at length scale r, ~H;’

But we need to wait r>> H;* to see this modification!
- Anupper bound of M has been given in hep-ph /0507120,

(N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

+ Supernova time
delay

M <100Gev

Lightlensing
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Jeans instability

So we need a very small M to protect the IR gravity.

e.g. \/ ~ 107"«V Ghost condensation plays the role of DE.
The gravity is modified at length scale r, ~H;’

But we need to wait r>> #;" to see this modification!
- Anupper bound of M has been given in hep-ph /0507120,

(N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

+ Supernova time
delay

M <100Gev

Lightlensing
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Jeans instability

So we need a very small M to protect the IR gravity.

e.g. \/ ~ 107"«V Ghost condensation plays the role of DE.
The gravity is modified at length scale r, ~H;’

But we need to wait r>> H#;" to see this modification!
- Anupper bound of M has been given in hep-ph /0507120,

(N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

+ Supernova time
delay

M <100Gev

Lightlensing
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Jeans instability

So we need a very small M to protect the IR gravity.

e.g. \/ ~ 107V Ghost condensation plays the role of DE.
The gravity is modified at length scale », ~H;’
But we need to wait r>> #;* to see this modification!

- Anupper bound of M has been given in hep-ph /0507120,

(N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

+ Supernova time
delay

Lightlensing

M <100Gev
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Jeans instability

So we need a very small M to protect the IR gravity.

e.g. \/ ~ 107\ Ghost condensation plays the role of DE.
The gravity is modified at length scale r, ~H;'

But we need to wait r>> ;" to see this modification!

- Anupper bound of M has been given in hep-ph /0507120,
(N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

I Supernova time
delay

M <100Gev

Lightlensing

Our ghost bounce model is free from this upper hound!
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Jeans instability

So we need a very small M to protect the IR gravity.

e.g. \/ ~ 107"V Ghost condensation plays the role of DE.
The gravity is modified at length scale r, ~H;’

But we need to wait r>> 7, to see this modification!
- Anupper bound of M has been given in hep-ph /0507120,

(N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

+ Supernova time
delay

M <100Gev

Lightlensing
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Jeans instability

- Sowe need a very small M to protect the IR gravity.

e.g. \/ ~ 107"V Ghost condensation plays the role of DE.
The gravity is modified at length scale r, ~H;’

But we need to wait r>> #;" to see this modification!
- Anupper bound of M has been given in hep-ph /0507120,

(N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

+ Supernova time
delay

M <100Gev

Lightlensing
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Jeans instability

So we need a very small M to protect the IR gravity.

e.g. \/ ~ 107"V Ghost condensation plays the role of DE.
The gravity is modified at length scale r, ~H;’

But we need to wait r>> H;" to see this modification!
- Anupper bound of M has been given in hep-ph /0507120,

(N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

+ Supernova time
delay

M <100Gev

Lightlensing
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Jeans instability

So we need a very small M to protect the IR gravity.

e.g. \/ ~ 107"V Ghost condensation plays the role of DE.
The gravity is modified at length scale r, ~H;’
But we need to wait r>> #;" to see this modification!

- Anupper bound of M has been given in hep-ph /0507120,

(N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

; . Supernova time
Lightlensing + p Sellay

M <100Gev
gnr g-l-\ Dcf bgﬂhca mgr‘n] ic free 4:1"5““ ‘H’"l‘";' Iimmner bﬂ‘ nr‘!
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Jeans instability

- Sowe need a very small M to protect the IR gravity.

e.g. \/ ~ 107"V Ghost condensation plays the role of DE.
The gravity is modified at length scale r, ~H;’

But we need to wait r>> H;" to see this modification!
- Anupper bound of M has been given in hep-ph /0507120,

(N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

+ Supernova time
delay

M <100Gev

Lightlensing
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Gradient stability

Up to 2™ order;
L =M [(P+2P'P)i* — P(Vr)?] + M3(S) + S$2)(Vom)

the relevant dispersion relation

— — . —y

P+ 2P Jur = —P'K" + —— where M- = \[-(S;+5,)
Ghost condensation locates at the minima of Lagrangian
P =0

P opro -~ 0 1S ghost free condition, so we get

L
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Gradient stability

Up to 2™ order,
L= '1;:' ’:.-"-'-"”; )& — P(Vx h: + AI- J T V.m)

the relevant dispersion relation

— ) ! —

P+ 20 )™ = —FP k" + —— where M- = M-(S5;+5,)
Ghost condensation locates at the minima of Lagrangian
P =0

" +2p72* -~ 0 is ghost free condition, so we get

L
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Gradient stability

Up to 2™ order;
C=M [(P+2P')i" — P(Va)| + M3 (S + So) (V)

the relevant dispersion relation

— — ' p—

P+2P c)e=—FPk + —— where M- = M-(S;+5;
Ghost condensation locates at the minima of Lagrangian
P =0

P +oprot -~ 0 1S ghost free condition, so we get

L

irsa: 10090090 Page 293/901



Gradient stability

Up to 2™ order;
j_‘:_‘-frli ;.'u'_-__:;:‘r"' r _'....'__r.'a 'l{"_l,_ ‘:_.__1[__-"-—. _"'!—-—"'_.. ',Z""_I.:

the relevant dispersion relation

— ) . —

Tl € ja =—"% T —,—' where M- = )[-(S,+ 5S4
Ghost condensation locates at the minima of Lagrangian
P =0

> +op ot~ 0 is ghost free condition, so we get

L
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Gradient stability

Up to 2™ order,
i-‘ = -ql'rl' [ !;_.-"_ .l."i_r” Vit — _fl-l ‘{-—_." _: - _1'._-'r_. ."‘! -+ H_,' T'_-‘-

the relevant dispersion relation

Y F=
D y i 2 o E

Tal Ol =—F N T+ —— " where M-°= M-(S;+5>)
Ghost condensation locates at the minima of Lagrangian
P =0

" +2p7o2 -~ 0 is ghost free condition, so we get

L
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Gradient stability

Up to 2™ order,

£ = M [(P' +2P" @) — P/(Va)] + MA(S) + 52)(V7)’
the relevant dispersion relation
P'+2P"A)u? = —P'k* + —k'  where M?=1*(S,+S5;

Ghost condensation locates at the minima of Lagrangian
P =0

o+ opro2 -0 is ghost free condition, so we get

Ll
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Gradient stability

Up to 2™ order,
L = _'Ju'rl' : 5:'"___ _1_',:"" 4 P !.'a' Wl _: ™ _1[;;_' S5 T'f.‘.

the relevant dispersion relation

' e ) T r

AP T =—R ——' where M- = M7(S;+5,)
Ghost condensation locates at the minima of Lagrangian
P =0

"+2pP"5* -~ 0 is ghost free condition, so we get

L
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Interesting features

Lumps come from scalar excitation, its energy density always positive
in terms of “particle physics”, but the induced gravity can be either

attractive or repulsive!

> (0 attractive

irsa: 10090090 5 Page 298/901

T < 0 repulsive



Gradient stability

Up to 2™ order,
C =\ | P +2PA\a* — P(Vr h: + M(S) + So)(Vom)

the relevant dispersion relation

\ T2

28 E P = —— where /- = )[-(5+5,)
Ghost condensation locates at the minima of Lagrangian
P =0

proprot -~ 0 1S ghost free condition, so we get

L
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Gradient stability

Up to 2™ order;
£ =M [(P +2P"3)7* — P'(Va)*] + M3(S + $2)(V2x)

the relevant dispersion relation

\ F.

R — 1 —

P + 2P~ = —P'F + _‘” where M- = M=(S;+5,
Ghost condensation locates at the minima of Lagrangian
P =0

"+2pP">* 0 is ghost free condition, so we get

Ll

irsa: 10090090 Page 300/901



Gradient stability

Up to 2™ order,

the relevant dispersion relation

\ 2

-— —dF B —

Ghost condensation locates at the minima of Lagrangian
P =0

P oprot -~ 0 1S ghost free condition, so we get

L
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Gradient stability

Up to 2™ order;
=M [(P+2P'P)i* — P(Vr)?| + M3(S) + S$a)(Vom)

the relevant dispersion relation

s —_— | _— p

F'4+2Pc - = —Fk* + —— where M- = M-(S;+5;
Ghost condensation locates at the minima of Lagrangian
P'=0

"+2pP"5* -0 1s ghost free condition, so we get

L
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Gradient stability

Up to 2™ order;
S P 4+2P"cA " — P (V= ‘: +M4(S; + S )(V-7)"

the relevant dispersion relation

|
[ y [ = ] rd

T O =—F K T —,—' where M- = M-(S;+5;
Ghost condensation locates at the minima of Lagrangian
P =0

"+2pP"5* -~ 0 is ghost free condition, so we get

L
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Gradient stability

Up to 2™ order;
c=A\r P4+ 2P\~ — P'(V= “: + M(S) + Sa)(Vom)

the relevant dispersion relation

\ I

+28 )™ = —F R+ —,— where M- = )M-(S;+5S,)
Ghost condensation locates at the minima of Lagrangian
P =0

P+ 2P - 0 1S ghost free condition, so we get

Ll
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Gradient stability

Up to 2™ order;
C=M [(P+2P')i* — P (Va)| + M3 (S + S$) (V)

the relevant dispersion relation

A F=

P+ 2P"c )™ = —P'F + —— where M- = M-(S5;+S5,
Ghost condensation locates at the minima of Lagrangian
P =0

P op7o -~ 0 1S ghost free condition, so we get

L
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Gradient stability

Up to 2™ order;
:'_‘ — _1.,'rl' [ ;'_'-—-— '_'_-':_F; 5 ""' — _frl. ‘::-'.' h: —— _1'._r_ .""! —— "‘_: T‘_';

the relevant dispersion relation

N
» ) p 2 P F2

£ el € Jur=—FR "} ——' where M- = M-(5;45,)
Ghost condensation locates at the minima of Lagrangian
P =0

"+2pP"* -0 1is ghost free condition, so we get

L
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Gradient stability

Up to 2™ order;
£ =" P +aaP’'~\a~ — P(Vr “: 4+ M=(Sy + So ) (V== F

the relevant dispersion relation

P +2P ¢ ) = =Pk + k" where M°=M(S5+5;

Ghost condensation locates at the minima of Lagrangian
P =0

P op7ot -~ 0 1S ghost free condition, so we get

L
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Gradient stability

Up to 2™ order;
£ =Ar [ P+ 2P'c")a~— P'(V=x “: + M- 21 + o9 Vm)°

the relevant dispersion relation

Y =

-— —sdr B 4

2P c ) =—Fk + _“ where 7 = )M(S;+5,)
Ghost condensation locates at the minima of Lagrangian
P =0

"+2pP"5* ~ 0 is ghost free condition, so we get

L
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Gradient stability

Up to 2™ order,
C=M[(P+2P'A)i — P(Va)| + M3 (S + So) (V)

the relevant dispersion relation

— — A ' —

P'+2Pc")u~ = —P'k* + —— where M- = \[-(S;+5,)
Ghost condensation locates at the minima of Lagrangian
P =0

"+2pP":* -~ 0 1S ghost free condition, so we get

L
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Gradient stability

Up to 2™ order,
£=M | P 4+2PA e~ — P(Vx ‘: + M3(Sy + So) (V- L

the relevant dispersion relation

\ T2

— — ' =uiF

F A2 e T =—FR8 + —— " where M- =)\["(5+5,)
Ghost condensation locates at the minima of Lagrangian
P'=0

"+2pP"5* ~ 0 is ghost free condition, so we get

L
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Gradient stability

Up to 2™ order,
L =M [(P +2P"S)i® — P'(Va)] + MA(S) + S2)(V=)

the relevant dispersion relation

Y F=
- ) . p—

TAETCju == T —— where M- = M-(S;+5,
Ghost condensation locates at the minima of Lagrangian
P =0

P+ op7o -~ 0 1S ghost free condition, so we get

L
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Gradient stability

Up to 2™ order;
£ =AI ' P +2P"'c)i* — P(V= ‘: + M(Sy + S2)(Vom)

the relevant dispersion relation

—— — 0 . —

+2F )™ =—FK + —— where /7 = M2(S;+5S;
Ghost condensation locates at the minima of Lagrangian
P =0

"+2pP"5* -0 1s ghost free condition, so we get

L
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Gradient stability

Up to 2™ order;
C =M : Pr+aP’'~\a~ — P(Vr ': + M*(Sy + 9 Vw)

the relevant dispersion relation

Y !
[ )y [ . |

Fr'+ 2P cc)w=—FPKk° + —— where M- = M-(S;+ S5
Ghost condensation locates at the minima of Lagrangian
P =0

"+2pP"5* -~ 0 is ghost free condition, so we get

Ll
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Gradient stability

Up to 2™ order;
il.::.‘fr!l[e;.-"_._"f_ﬁ; . _.Fd:_frl ‘:\-.__.F‘:—'—_1|._-r_. o _'_‘_.' T_._'_;

the relevant dispersion relation

-— —dF ¥ —

+ 2P = —P'F* + —k' where M? = M*(S5;+S;)
Ghost condensation locates at the minima of Lagrangian
P =0

P+ 2P - 0 1S ghost free condition, so we get

L
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Gradient stability

Up to 2™ order,

.'..‘ — _‘ frl [ e;_.-"_ ...."I_r.; =\~ — e'l-l Y.-_.P ‘: — _1'._'r_. -H! L H_.' T__'_;
the relevant dispersion relation
P’ + 2P = —P'k* + —k'  where M?=M*(S$,+5;

Ghost condensation locates at the minima of Lagrangian
P =0

*+2p72* -0 is ghost free condition, so we get

Ll
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Gradient stability

Up to 2™ order,
£ = M (P + 2P )7 — PV 2] + ME(Sy + Sa)(Vi)?

the relevant dispersion relation

\ =

-— iy B 4

+-4F € it =—ER + —— " where M- = )M-(S;+5,
Ghost condensation locates at the minima of Lagrangian
P =0

" +2p72* -~ 0 is ghost free condition, so we get

Ll
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Gradient stability

Up to 2™ order,
[ = _qfrl' [ P+ _'_-':_J” - P\ = -: 4+ A= Sy + So T-_I;

the relevant dispersion relation

\ .
- ir"' ] i

L . i B ——' where M- = M-(S;+5,
Ghost condensation locates at the minima of Lagrangian
P =0

P oprot -~ 0 1S ghost free condition, so we get

L
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Gradient stability

Up to 2™ order;
L =M [(P+2P")i" — P/(Va)’] + M2 (Sy + $2)(V=)

the relevant dispersion relation

\ =
P+ 2P c)w”=—-FPk"+—k" where M-=M-(S+5)

Ghost condensation locates at the minima of Lagrangian
P =0

"+2pP"5* -0 is ghost free condition, so we get

L
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Gradient stability

Up to 2™ order;
L‘ _ .-..jlr'. [ ;.-.'___ -.;.-;” 2 _,._ - _r.'- '(\"'_:_ _: ™ _1[:_,-_- WY ‘*_. T_-_".

the relevant dispersion relation

Y =

-— — dF ] TR

P'+2P"*)w? = —P'k* + —k'  where M? = M3*($,+5,)
Ghost condensation locates at the minima of Lagrangian
P =0

7 op7ot -~ 0 1S ghost free condition, so we get

Ll
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Gradient stability

Up to 2™ order,

L =AM | P +2P"'*)i~ — P(V= _: + M(S; + 52)(Vom)
the relevant dispersion relation
P'+2P")? = —P'k* + —k'  where M?=M>(S;+5,)

Ghost condensation locates at the minima of Lagrangian
=0

" +2p72* -~ 0 is ghost free condition, so we get

L

irsa: 10090090 Page 320/901



Gradient stability

Up to 2™ order,
£ = _";'rl' [ P _‘_.-:_""' 2 -2 P (T~ _: B o S, T-—."

the relevant dispersion relation

-— iy B 4

+ 2P )T =—F R+ —*' where M- = \[?(S;+5,)
Ghost condensation locates at the minima of Lagrangian
P =0

"+2pP"* -~ 0 1s ghost free condition, so we get

L
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Gradient stability

Up to 2™ order;
=M (P +2P'A)i* — P(Vr)?] + M3(S) + S$2)(Vom)

the relevant dispersion relation

P + 2P )~ = —P'k* + —— " where M- =1["(S+5,)
Ghost condensation locates at the minima of Lagrangian
P =0

"+2pP"5* ~ 0 is ghost free condition, so we get

L
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Gradient stability

Up to 2™ order,

£ = M [(P +2P" )7 — P (V)] + MA(S) + S2) (V27
the relevant dispersion relation
P+ 2P = —P'k* + T2kt where M? = M?(S;+5,)

Ghost condensation locates at the minima of Lagrangian
P =0

"+2pP"5* ~ 0 is ghost free condition, so we get

Ll
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Gradient stability

Up to 2™ order;
C=A\r E P+ 2P~ — P'(Vx ': + \I- I 22 V=)*

the relevant dispersion relation

| I
P+ OP” 2 P

TaECju =—88 T —— where M- = M-(S;+5;
Ghost condensation locates at the minima of Lagrangian
P =0

" +2p72* -~ 0 is ghost free condition, so we get

L
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Gradient stability

Up to 2™ order;
=\ : P 4+2P"cA\a* — P (V= ‘: + M=(S| + S5 Vxm)°

the relevant dispersion relation

W
. ) [ ’ T

P +2P c)w =—F Kk + —— where M- = M-(S;+5,)
Ghost condensation locates at the minima of Lagrangian
P =0

"+2pP"5* -~ 0 1is ghost free condition, so we get

L
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Gradient stability

Up to 2™ order;
L = _'frl' [ e;_.-"_._l."l_}” Vit — P'(V= “: + M4(Sy + 29 T'f-‘-

the relevant dispersion relation

— ) [ ] —f 7

T Ol =—E R T ——' " where M- = )-(S+5,
Ghost condensation locates at the minima of Lagrangian
P =0

"+2pP"5* -~ 0 1is ghost free condition, so we get

L
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Gradient stability

Up to 2™ order,
L=M[(P+2P'F)i* — P(Vr)]| + M3(S) + S$a)(Vom)

the relevant dispersion relation

-— — JF rm T |

P'+2P"*)w? = —P'k* + —k'  where M? = M3*(S$,+5>)
Ghost condensation locates at the minima of Lagrangian
P =0

P+ oprot -~ 0 1S ghost free condition, so we get

Ll
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Gradient stability

Up to 2™ order;
I_‘ — _‘ ,'rl [ ;'_.-—-— :_1_-':_‘” 3 _'-‘- — _-':-I ‘:.“-_.F _: e _1'._-'r_. .h‘| -1 \"__- T__ E

the relevant dispersion relation

-— iy B i

P+ 2P ) = — Pk + __. where 32 = M2(S,+5,
Ghost condensation locates at the minima of Lagrangian
P =0

"+2pP"5* -0 is ghost free condition, so we get

L
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Gradient stability

Up to 2™ order;
i'..‘ = .qfrl : e'.-.-"— ._1."5_’;: Vit — .-'I-I ‘{__.F ‘_: -1 _1'._-'“_. 'Hi -T- H"_I T_._-_;

the relevant dispersion relation

— ) [ ] =i

F 2P e =—Fr | —— where - = \[*(S;+5,)
Ghost condensation locates at the minima of Lagrangian
P =0

"+2pP"5* -~ 0 is ghost free condition, so we get

L
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Gradient stability

Up to 2™ order,
= A PPt 2\E2 _ P _: + MA(Sy + S2) (T2

the relevant dispersion relation

- i - 7 r. A\ T L,

AP =—E8 + __' where \[° = \[7(S;+5,)
Ghost condensation locates at the minima of Lagrangian
P =0

P eoprot -~ 0 1S ghost free condition, so we get

L
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Gradient stability

Up to 2™ order,
L =M [(P+2P"¢)i* — P(Va)’] + M*(S) + S2)(V=)

the relevant dispersion relation

f

P'+2P"*)u? = —P'k* + —k' where M?=1*(S;+5,)
Ghost condensation locates at the minima of Lagrangian
P =0

"+2pP"5* 0 1is ghost free condition, so we get

L
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Gradient stability

Up to 2" order,
L =M [(P+2P'¢)a” — P(Va)y ]| + M (S1 + S2)(Va)

the relevant dispersion relation

— — . p— -

+-2P e =—Fk + —— " where M- =)M-(S;+5;
Ghost condensation locates at the minima of Lagrangian
P =0

" +2p72* ~ 0 is ghost free condition, so we get

L
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Gradient stability

Up to 2™ order;
C=M [(P+2P'A)i* — P(Va)| + M3 (Sy + S2) (V)

the relevant dispersion relation

-— — Al ] i 7

P'+2P"*)w? = —P'k* + —k'  where M? = M*(S$,+5,)
Ghost condensation locates at the minima of Lagrangian
P =0

"+2pP"5* -0 is ghost free condition, so we get

L
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Gradient stability

Up to 2™ order,
= A | P apr\E2 _ P _: + MA(S, + 5) (V)]

the relevant dispersion relation

\ T
—_ ir"' 7

P A e =—FR8 + —— where M- = M-(S;+5,
Ghost condensation locates at the minima of Lagrangian
P =0

P eoprot -~ 0 1s ghost free condition, so we get

L
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Gradient stability

Up to 2" order,
=\ [ P +2Pc*\i* — P(V= ': 4 M= S + S (V= -

the relevant dispersion relation

Y F.E

+ 28w =—F R + ——' where M- = M-(S;+5,)
Ghost condensation locates at the minima of Lagrangian
P =0

"+2pP"5* -~ 0 is ghost free condition, so we get

L
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Gradient stability

Up to 2™ order;
L =M [(P +2P"3)i2 — P/(Va)?] + M(S) + $)(V27)’

the relevant dispersion relation

-— — gy B —

F+20 )™ =—Fk + _T‘ where \[° = M?(S;+ S,
Ghost condensation locates at the minima of Lagrangian
P =0

" +2pP7>* ~ 0 is ghost free condition, so we get

L
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Ghost bounce

Matter sector + ghost condensation

— 5l | ==

minimal requirement p>3
againstradiation p>4
against anisotropicstress p=>6
Lagrangian of GC takes the following general form

L = M*P(X) - V|

P(X) takes the prototypical form

|

_."‘_’ -\'_ - !‘\ _.: F.-
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Ghost bounce

Matter sector + ghost condensation

.-I_"'..-'_ - |.'i.'- ~ il I |

minimal requirement p>3
againstradiation p>4
against anisotropicstress p=>6
Lagrangian of GC takes the following general form

L = MP(X) - V(o)
P(X) takes the prototypical form

l e
P(X) = X =)
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Ghost bounce

Matter sector + ghost condensation
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minimal requirement p>3
againstradiation p>4
against anisotropicstress p=>6
Lagrangian of GC takes the following general form

£ = M*P(X) - V(o)
P(X) takes the prototypical form

1 ..
P(X) = (X = %)
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Ghost bounce

Matter sector + ghost condensation
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minimal requirement p>3
againstradiation p>4
against anisotropicstress p>6
Lagrangian of GC takes the following general form

£ = M*P(X) - V(o)
P(X) takes the prototypical form

1
P(X) = (X = %)
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Ghost bounce

Matter sector + ghost condensation

=31+ s

minimal requirement p>3
against radiation p>4
against anisotropicstress p=>6
Lagrangian of GC takes the following general form

L = M*P(X)—-V(o)

P(X) takes the prototypical form

|

P(X) = =(X = #)?
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Ghost bounce

Matter sector + ghost condensation

—..+ | -

minimal requirement p>3
againstradiation p>4
against anisotropicstress p>6
Lagrangian of GC takes the following general form

MAP(X) — V(o)
P(X) takes the prototypical form

1
P(X) = ~(X —*)
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Ghost bounce

Matter sector + ghost condensation
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minimal requirement p>3
againstradiation p>4
against anisotropicstress p=>6
Lagrangian of GC takes the following general form

£ = M*P(X) - V(o)
P(X) takes the prototypical form

l
P(X) = ~(X —*)
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Ghost bounce

Matter sector + ghost condensation

—_ Gl | ==

minimal requirement p>3
againstradiation p>4
against anisotropicstress p=>6
Lagrangian of GC takes the following general form

£ = M*P(X) - V(o)
P(X) takes the prototypical form

1
P(X) = (X = *)
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Ghost bounce

Matter sector + ghost condensation

F)—3(L+wem) s sl
minimal requirement p>3
against radiation p>4
against anisotropicstress p=>6
Lagrangian of GC takes the following general form

£ = M*P(X) - V(o)
P(X) takes the prototypical form

[
P(X) = ~(X —*)
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Ghost bounce

Matter sector + ghost condensation

__._ = 3

minimal requirement p>3
againstradiation p>4
against anisotropicstress p=>6
Lagrangian of GC takes the following general form

£ = M*P(X) - V(o)
P(X) takes the prototypical form

I >
P(X) = - X — )
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Ghost bounce

Matter sector + ghost condensation
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minimal requirement p>3
againstradiation p>4
against anisotropicstress p>6
Lagrangian of GC takes the following general form

£ = M*P(X) - V(o)
P(X) takes the prototypical form

1
P(X) = (X =)
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Matter sector + ghost condensation
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minimal requirement p>3
againstradiation p>4
against anisotropicstress p=>6
Lagrangian of GC takes the following general form

£ = M*P(X) - V(o)
P(X) takes the prototypical form

1
P(X) = (X —*)
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Matter sector + ghost condensation
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minimal requirement p>3
againstradiation p>4
against anisotropicstress p>6
Lagrangian of GC takes the following general form

£ = M*P(X) - V(o)
P(X) takes the prototypical form

1
P(X) = =(X —*)
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Ghost bounce

Matter sector + ghost condensation

A -

minimal requirement p>3
against radiation p>4
against anisotropicstress p=>6
Lagrangian of GC takes the following general form

£ = M*P(X) - V(o)
P(X) takes the prototypical form

1
P(X) = (X =)
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Ghost bounce

Matter sector + ghost condensation
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minimal requirement p>3
against radiation p>4
against anisotropicstress p=>6
Lagrangian of GC takes the following general form

£ = M*P(X) - V(o)
P(X) takes the prototypical form

1 :
P(X) = (X =)
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Ghost bounce

Matter sector + ghost condensation
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i I ] TR ' X = J

minimal requirement p>3
againstradiation p>4
against anisotropicstress p>6
Lagrangian of GC takes the following general form

L'- - _1'-;;1'[."\: _Tl'l \
P(X) takes the prototypical form

1
P(X) = ~(X = *)
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Ghost bounce

Matter sector + ghost condensation

— Gl | ==

minimal requirement p>3
against radiation p>4
against anisotropicstress p=>6
Lagrangian of GC takes the following general form

L = M*P(X) - V|

P(X) takes the prototypical form

|
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Ghost bounce

Matter sector + ghost condensation
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minimal requirement p>3
againstradiation p>4
against anisotropicstress p=>6
Lagrangian of GC takes the following general form

£ = M*P(X) - V(o)
P(X) takes the prototypical form

[ :
P(X) = (X =)
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Ghost bounce

Matter sector + ghost condensation
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minimal requirement p>3
against radiation p>4
against anisotropicstress p>6
Lagrangian of GC takes the following general form

L'- . _1|.-r;j'-i\' _E'I \
P(X) takes the prototypical form

|
P(X) = Z(X —*)
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Ghost bounce

Matter sector + ghost condensation
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minimal requirement p>3
againstradiation p>4
against anisotropicstress p=>6
Lagrangian of GC takes the following general form

L'- - _\'l_:;f"\: _Tl'l
P(X) takes the prototypical form

l
P(X) = Z(X —*)
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Ghost bounce

Matter sector + ghost condensation

..I_"'..+ |.'i.'_ . i I )

minimal requirement p>3
againstradiation p>4
against anisotropicstress p=>6
Lagrangian of GC takes the following general form

£ = M*P(X) - V(o)
P(X) takes the prototypical form

l
P(X) = Z(X —*)
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Matter sector + ghost condensation
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minimal requirement p>3
againstradiation p>4
against anisotropicstress p=>6
Lagrangian of GC takes the following general form

£ = M*P(X) - V(o)
P(\) takes the prototypical form

1
P(X) = (X =)
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Ghost bounce

Matter sector + ghost condensation
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minimal requirement p>3
againstradiation p>4
against anisotropicstress p=>6
Lagrangian of GC takes the following general form

£ = M*P(X)-V(o)
P(X) takes the prototypical form

L ..
P(X) = (X =)
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Ghost bounce

Matter sector + ghost condensation

.-I_*'.-"'" l.'i.'_ r i

minimal requirement p>3
againstradiation p>4
against anisotropicstress p=>6
Lagrangian of GC takes the following general form

£ = M*P(X) - V(o)
P(X) takes the prototypical form

i
P(X) = ~(X =3
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Ghost bounce

Matter sector + ghost condensation
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minimal requirement p>3
against radiation p>4
against anisotropicstress p=>6
Lagrangian of GC takes the following general form

£ = M*P(X) - V(o)
P(X) takes the prototypical form

I :
PUX) = X =P
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Matter sector + ghost condensation
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minimal requirement p>3
againstradiation p>4
against anisotropicstress p=>6
Lagrangian of GC takes the following general form

£ = M*P(X) - V(o)
P(X) takes the prototypical form

[
P(X) = Z(X = *)

irsa: 10090090 Page 365/901



Ghost bounce

Matter sector + ghost condensation
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minimal requirement p>3
againstradiation p>4
against anisotropicstress p=>6
Lagrangian of GC takes the following general form

L = M*P(X) - V(o)

P(X) takes the prototypical form

|
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Ghost bounce

Matter sector + ghost condensation
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minimal requirement p>3
againstradiation p>4
against anisotropicstress p=>6
Lagrangian of GC takes the following general form

L'- - _1[‘.!;1','-‘\' _i'l \
P(X) takes the prototypical form

l "
P(X) = (X = %)
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Matter sector + ghost condensation
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minimal requirement p>3
against radiation p>4
against anisotropicstress p>6
Lagrangian of GC takes the following general form

£ = M*P(X)-V(o)
P(X) takes the prototypical form

l
P(X) = Z(X
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Ghost bounce

Matter sector + ghost condensation
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minimal requirement p>3
againstradiation p>4
against anisotropicstress p=>6
Lagrangian of GC takes the following general form

£ = M*P(X) -V
P(X) takes the prototypical form

I
P(X) = (X =&
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Ghost bounce

Matter sector + ghost condensation
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minimal requirement p>3
against radiation p>4
against anisotropicstress p>6
Lagrangian of GC takes the following general form

£ = M*P(X) - V(o)
P(X) takes the prototypical form

[
P(X) = Z(X = F)
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Ghost bounce

Matter sector + ghost condensation
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minimal requirement p>3
againstradiation p>4
against anisotropicstress p=>6
Lagrangian of GC takes the following general form

£ = M*P(X) - V(o)
P(X) takes the prototypical form

I
P(X) = Z(X —*)
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Ghost bounce

Matter sector + ghost condensation
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minimal requirement p>3

against radiation p>4

against anisotropicstress p=>6

Lagrangian of GC takes the following general form
MAP(X) — V(o)

P(X) takes the prototypical form

l
P(X) = Z(X —*)
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Ghost bounce

Matter sector + ghost condensation
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minimal requirement p>3
against radiation p>4
against anisotropicstress p>6
Lagrangian of GC takes the following general form

£ = M*P(X) - V(o)
P(X) takes the prototypical form

1 ,
P(X) = (X =)
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Ghost bounce

Matter sector + ghost condensation
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minimal requirement p>3
againstradiation p>4
against anisotropicstress p=>6
Lagrangian of GC takes the following general form

£ = M*P(X)—V(o)
P(X) takes the prototypical form

i
P(X) = Z(X
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Ghost bounce

Matter sector + ghost condensation
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minimal requirement p>3
againstradiation p>4
against anisotropicstress p=>6
Lagrangian of GC takes the following general form

£ = M*P(X)-V
P(X) takes the prototypical form

l
P(X) = =(X = %)
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Ghost bounce

Matter sector + ghost condensation
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minimal requirement p>3
againstradiation p>4
against anisotropicstress p=>6
Lagrangian of GC takes the following general form

L'- . _*.I.‘_:;j'-‘\' _TL'I \
P(\) takes the prototypical form

1
P(X) = —(X = %)
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Ghost bounce

Matter sector + ghost condensation
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minimal requirement p>3
against radiation p>4
against anisotropicstress p>6
Lagrangian of GC takes the following general form

L = M*P(X) - V(o)
P(X) takes the prototypical form

I ..
P(X) = (X =)
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Ghost bounce

Matter sector + ghost condensation
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minimal requirement p>3
againstradiation p>4
against anisotropicstress p>6
Lagrangian of GC takes the following general form

£ = M*P(X) - V(o)
P(X) takes the prototypical form

i
P(X) = (X =)
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Ghost bounce

Matter sector + ghost condensation
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minimal requirement p>3
againstradiation p>4
against anisotropicstress p=>6
Lagrangian of GC takes the following general form

£ = MP(X)-V
P(X) takes the prototypical form

i
P(X) = Z(X = *)
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Ghost bounce

Matter sector + ghost condensation

..I_"'.."_ |.'i.'_ P il I )

minimal requirement p>3
againstradiation p>4
against anisotropicstress p=>6
Lagrangian of GC takes the following general form

£ = M*P(X) - V(o)
P(X) takes the prototypical form

I
P(X) = ~(X =3
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Ghost bounce

Matter sector + ghost condensation
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minimal requirement p>3
against radiation p>4
against anisotropicstress p>6
Lagrangian of GC takes the following general form

C = M*P(X) - V(o)
P(X) takes the prototypical form

i -
P(X) = (X =)
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Ghost bounce

Ansatz for potential

L = VoM

Divergence is cutoff at M~
Ghostfield changes as

-—
= CT + T\T)

7(t)is the small deviation from minima, its EoM
T +3Hx = 2 *VoM Y afct) {=t1)
[tyields p, ~ 7~ 17

a =4 Marginally stable against anisotropic stress
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Ghost bounce

Ansatz for potential

Viie) = Vo

Divergence is cutoffat M~
Ghostfield changes as

-_—
— T — TIi{T ]

7(t)is the small deviation from minima, its EoM
T+ 3Hx = 20 *VoM "+ a(ct) {=t1)
[tyields p, ~ 7~ 17

a =4 Marginally stable against anisotropic stress
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Ghost bounce

Ansatz for potential
V(o) = VoM o™

Divergence is cutoff at M~
Ghostfield changes as

I
— f I — - i1 % F |

7(t)is the small deviation from minima, its EoM
i+ 3H% = 2¢ VoM *2a(ct) =t
[tyields p, ~ 7~ 17

a =4 Marginally stable against anisotropic stress
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Ghost bounce

Ansatz for potential
V(o) = VoM o™

Divergence is cutoffat M~
Ghostfield changes as

—
— {"T =— i T]

7(#)is the small deviation from minima, its EoM
i+ 3H#% = 2c VoM 2 a(ct) "o+l
[tyields p, ~ 7~ 17

a =4 Marginally stable against anisotropic stress
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Ghost bounce

Ansatz for potential
V(o) = VoM o™

Divergence is cutoffat M~
Ghostfield changes as

—

= - TN T )

7(#)is the small deviation from minima, its EoM
T +3H#x = 2 *Vo M "+ a(ct) {=t1)
[tyields p, ~ 7~ 17

a =4 Marginally stable against anisotropic stress
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Ghost bounce

Ansatz for potential

o= v = 5 — —
| O m— 1...1!|r

Divergence is cutoffat M~
Ghostfield changes as

=
— (T — 7T

7(t)is the small deviation from minima, its EoM
t+3H#+ = 2 2o M a(ct) (@)
[tyields p, ~ 7~ 17

a =4 Marginally stable against anisotropic stress
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Ghost bounce

Ansatz for potential

% = VoM

Divergence is cutoff at M~
Ghostfield changes as

" —
= (T -+ T\T)

7(#)is the small deviation from minima, its EoM
F+3Hx = 2¢ VoM 2 afct) =Y
[tyields p, ~ 7~ 17

a =4 Marginally stable against anisotropic stress
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Ghost bounce

Ansatz for potential
V(o) = VoM o™

Divergence is cutoffat M~
Ghostfield changes as

= CT +— "\lT)

7(#)is the small deviation from minima, its EoM
i+ 3H% = 2 VoM a(ct) 7ot
[tyields p, ~ 7~ 17

a =4 Marginally stable against anisotropic stress
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Ghost bounce

Ansatz for potential
V(o) = VoM o™

Divergence is cutoffat M~
Ghostfield changes as

— (T =— TT\T)

7(#)is the small deviation from minima, its EoM
T 4+3Hx = 2 VoM * *alct) =t
[tyields p, ~ 7~ 17

a =4 Marginally stable against anisotropic stress
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Ghost bounce

Ansatz for potential

V(o) = VoM o™

Divergence is cutoff at M~
Ghostfield changes as

. — 4
— T — TT\{T ]

7(t)is the small deviation from minima, its EoM
T+ 3Hx = 2 VoMt a(ct)totl)
[tyields p, ~ 7~ 17

a =4 Marginally stable against anisotropic stress
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a=6 stable



Ghost bounce

Ansatz for potential
V(o) = VoM o™

Divergence is cutoffat M~
Ghostfield changes as

] -
= T + W\T)

7(#)is the small deviation from minima, its EoM
t+3Hx = 20 2VpM—4*a(ct) (o))
[tyields p, ~ 7~ 17

a =4 Marginally stable against anisotropic stress
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Ghost bounce

Ansatz for potential
| = VoM "o °

Divergence is cutoffat M~
Ghostfield changes as

— g -
= (T -+ T\T)

7(#)is the small deviation from minima, its EoM
i+ 3H#x = 262V M 4 2a(ct)—(atD)
[tyields p, ~ 7~ 17

a =4 Marginally stable against anisotropic stress
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Ghost bounce

Ansatz for potential

Tl- :1.‘11'

Divergence is cutoffat M~
Ghostfield changes as

— T — 7T

7(#)is the small deviation from minima, its EoM
T+ 3H% = 2 VoM *2a(ct) =t
[tyields p, ~ 7~ 17

a =4 Marginally stable againstanisotropic stress
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Ghost bounce

Ansatz for potential
V(o) = VoM o™

Divergence is cutoffat M~
Ghostfield changes as

—
— ' — { T}

7(#)is the small deviation from minima, its EoM
i+ 3H%x = 2 VoM~ a(ct) ot
[tyields p, ~ 7~ 17

a =4 Marginally stable against anisotropic stress
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a=6 stable



Ghost bounce

Ansatz for potential

¥ - L |
— 1...1}l

Divergence is cut off at M~
Ghostfield changes as

= (T -+ T\T)

7(#)is the small deviation from minima, its EoM
T+ 3Hx = 2 VoMt afct)t=tY)
[tyields p, ~ 7~ 17

a =4 Marginally stable against anisotropic stress
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Ghost bounce

Ansatz for potential

— 1.\

Divergence is cutoff at M~
Ghostfield changes as

— T — 7T

7(#)is the small deviation from minima, its EoM
i+ 3H#% = 2c VoM a(ct) ™o+
[tyields p, ~ 7~ 17

a =4 Marginally stable against anisotropic stress
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Ghost bounce

Ansatz for potential
— 1:.1.11{_” s

Divergence is cutoff at M~
Ghostfield changes as

-
—— f f -— Y |

7(#)is the small deviation from minima, its EoM
P+ 3Hx = 27 WM %a(ct) (@)
[tyields p, ~ 7~ 17

a =4 Marginally stable against anisotropic stress
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Ghost bounce

Ansatz for potential
V(o) = VoM o™

Divergence is cutoffat M~
Ghostfield changes as

=
— T — TT{T |

7(#)is the small deviation from minima, its EoM
T+ 3HT = 2 VoM a(ct) 'Y
[tyields p, ~ 7~ 17

a =4 Marginally stable against anisotropic stress
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Ghost bounce

Ansatz for potential

V(é) = VoM
Divergence is cut off at M~
Ghostfield changes as

— -
— ('l — T\ T]

7(t)is the small deviation from minima, its EoM
4+ 3Hx = 2 *VoM 4 =a(ct) =tV
[tyields p, ~ 7~ 17

a =4 Marginally stable against anisotropic stress
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Ghost bounce

Ansatz for potential
= VoM "o "

Divergence is cutoffat M~
Ghostfield changes as

—
= (T + T\T)

7(#)is the small deviation from minima, its EoM
i+ 3Hix = 2 2VoM—*2qa(ct)—(a+D)
[tyields p, ~ 7~ 17

a =4 Marginally stable against anisotropic stress
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Ghost bounce

Ansatz for potential

,1- - E:I.':“J'I—.I — i

Divergence is cutoffat M~
Ghostfield changes as

— T — TTt{T ]

7(t)is the small deviation from minima, its EoM
4+ 3H% = 22 VoM a(ct) oY
[tyields p, ~ 7~ 17

a =4 Marginally stable against anisotropic stress
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&—6 stable
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Ghost perturbation

We need to prove

In matter contracting phase, Ghost perturbation does NOT grow
faster than matter perturbation;

The spectrum of ghost perturbation can NOT be red;

There is NO large amplification of ghost perturbation around
bounce phase;

Focus on matter dominant contracting background
_-“r_'lr-, aay == T _'_r..'
Linear decompose Newtonian potential

P = P -+ P :
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Ghost perturbation

The Eom of @ is [hep-th/0607181, S.Mukohyama]
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Define a new variable ® = «(#)®
g 4 Slak hog - e ld, = ?x k=4
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bP(r) ~ k2~r (=73 = =1-2)
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b b,y = D + —
The solution of the above EoM
) S

bP(r) ~ k2-r (=73 — =7~

irsa: 10090090 Page 605/901



Ghost perturbation

The Eom of @ is [hep-th/0607181, S.Mukohyama]

J-P, +3HO®, + (2H- + H)D, + ‘_'_._. | =] Pg— _——I = t—rk—_i
Define a new variable ® = «(#)®
g 4 Slak fo, - kd, = jx kd
bn = a(t)B, = Dr? + —
The solution of the above EoM
N S

P(r) = BPar(—r> — =2
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Ghost perturbation

The Eom of @ is [hep-th/0607181, S.Mukohyama]

0D, +3HOP, + QH  + H) g+ —5 | 5 ) Ve _;il = j—ri‘—_l
Define a new variable ® = «(#)®
g 4 Slak fog = K3 :?l k4
b )by = Dr? + —
The solution of the above EoM
) S

BP(7) ~= kP —7> — —72)

irsa: 10090090 Page 607/901



Ghost perturbation

The Eom of @ is [hep-th/0607181, S.Mukohyama]

20, +3HI®, + 2H> + H)®y+ — [ = | O — =5 =Py = ——5—1
Define a new variable & = «(#)®
: ) I8 l'{;' [ i .1'_"
*E'r; T H_—'I — - I\ I = =— 7 i\ [
b )b Dr? 4+ —
The solution of the above EoM
.'_J. ey
PP(7) = k(=1 — =7~
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Ghost perturbation

The Eom of @ is [hep-th/0607181, S.Mukohyama]

DR®, +3H®, + (2H> + H)®, + — | = ) By — —5—2,
Define a new variable & = «(#)®
,  8la kit f
*I'; T I_—;‘I'_ — = L. [ — —'Ti\-‘['
lll f f;_:- ."_ e ;
The solution of the above EoM
.'_]. .
| ~ | m( — = — T

irsa: 10090090
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Ghost perturbation

The Eom of @ is [hep-th/0607181, S.Mukohyama]

)P, +3HO®, + (2H- + H)D, + V& '. — | b, — -;—I — E—rk—_l
Define a new variable ® = «(#)®
P + “[421 . _ K2h, — ?—;\[
b b,y = Dr? + —
The solution of the above EoM
) S

pP (- Y e el SR

irsa: 10090090 Page 610/901



Ghost perturbation

The Eom of @ is [hep-th/0607181, S.Mukohyama]

J-P, +3HOH®, + (2H-+ H)®, + 4 b, — _——_I = t—h—_l
Define a new variable ® = «a(#)®
" “[l‘—l - ki, = ?—Ll
b b,y = D + —
The solution of the above EoM
N S

bP(r) ~ k27 (=13 = =r—2)

irsa: 10090090 Page 611/901



Ghost perturbation

The Eom of @ is [hep-th/0607181, S.Mukohyama]

_ " e =% M -
DR, +3HN®, + CH> + H)®y + — | = | ¥y — —=—P,
Define a new variable ® = «(#)®

,  8la kit f o M2
*E'; T .#‘I' — = L. [ — TTk-{['.
ll ’ (j_; — A ;
The solution of the above EoM
.'_! W
I i ) =7 | — - _.___ |

irsa: 10090090
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Ghost perturbation

The Eom of @ is [hep-th/0607181, S.Mukohyama]

5Py +3HO®, +2H-+ H)®g+ — | = ) ®s— — = 3 = =gl
Define a new variable ® = «a(#)®
. R1a k*1 [ o i\
1!"; T 5 _—; I — L. I = = v, i\ [
p $,, = Dr> + =
The solution of the above EoM
.'_J. by
e(rh = Eant—r ——r )
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Ghost perturbation

The Eom of @ is [hep-th/0607181, S.Mukohyama]

.wr,amﬂub,—;Hé—ﬁfm_-7i¢:%} ¢_—;f —P, = f;ij%l
Define a new variable ® = «(t)d
g 4 Slakfog - Sk :iji k4
b b, = Dr?+ 2

The solution of the above EoM

bP(r) ~ k2~ (=73 = =772)
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Ghost perturbation

The Eom of @ is [hep-th/0607181, S.Mukohyama]

! o 5 - =y A -
020, +3HOD, + P + )+ —— | = | 86— 5=
Define a new variable ® = «(#)®
. 8la k* o M3
et = ——a kW, = —— kW
D, b = Dr2 + =
The solution of the above EoM
) "
| ~ B2 (2t = 2

irsa: 10090090
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Ghost perturbation

We need to prove
[n matter contracting phase, Ghost perturbation does NOT grow
faster than matter perturbation;
The spectrum of ghost perturbation can NOT be red;

There is NO large amplification of ghost perturbation around
bounce phase;

- Focus on matter dominant contracting background
Linear decompose Newtonian potential

P = P .+ P :

Pirsa: 10090090 Page 616/901



Ghost perturbation

We need to prove

In matter contracting phase, Ghost perturbation does NOT grow
faster than matter perturbation;

The spectrum of ghost perturbation can NOT be red;

There is NO large amplification of ghost perturbation around
bounce phase;

- Focus on matter dominant contracting background
M2C,, = T'® +T,,
Linear decompose Newtonian potential

P = P . 4+ P '
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Ghost perturbation

We need to prove
[n matter contracting phase, Ghost perturbation does NOT grow
faster than matter perturbation;
The spectrum of ghost perturbation can NOT be red;
There is NO large amplification of ghost perturbation around
bounce phase;

Focus on matter dominant contracting background
MG, =T+ T,
Linear decompose Newtonian potential
b = b, +P,

Pirsa: 10090090 Page 618/901



Ghost perturbation

Since the duration of bounce phase is short
H=26-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is
"[] J. b ‘:r:f 8 1 L :r'l‘ & — Iy
Since the bounce phase is very short

{[r (7 ~ |I. :
This result is still true near bounce point since /- < #
Pirsa: 1009009fS Still t[.u e. Page 619/901



Ghost perturbation

Since the duration of bounce phase is short
H=868.-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is
P, = die™ P W Sriahe
Since the bounce phase is very short

{[r ki ~ .I. -
This result is still true near bounce point since /- < #
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Ghost perturbation

Since the duration of bounce phase is short
H=26-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is
B, = die'V? + doe
Since the bounce phase is very short

{lr w4 ~ |l} :
This result is still true near bounce point since /- < #
Pirsa: 1009009}_)S Still t[..u e. Page 621/901




Ghost perturbation

Since the duration of bounce phase is short
H=26-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is
']—1"_ L ‘:r:*'\ &L __-a:.- ’--v.,.
Since the bounce phase is very short

{[r " ~ .l. ‘
This result is still true near bounce point since /- < #
Pirsa: 1009009}_)S Still t[.u e. Page 622/901



Ghost perturbation

Since the duration of bounce phase is short

Where # > H? we interested in large scale perturbation

the solution is
P B g3V 4 Lo
Since the bounce phase is very short

B,(t) = ¥
This result is still true near bounce point since /- < #
Pirsa: 1009009fS Still t[.u e. Page 623/901




Ghost perturbation

The Eom of @ is [hep-th/0607181, S.Mukohyama]

7, + 3HO®, + (2H? + H)B, + — | L‘— }_m_ . _——I - jJ L‘—1
Define a new variable ® = «a(#)®
g 4 Slaklog - kb, = ?x k-4
b )b = Dr2 + —
The solution of the above EoM
) S

bP(r) ~ k2-r (=73 = =1~

irsa: 10090090 Page 624/901



Ghost perturbation

Since the duration of bounce phase is short
H —@8.({-— tg)

Where # > H? we interested in large scale perturbation

the solution is
B, = die'V? | dpe—"
Since the bounce phase is very short

{{r ) ~ 1[. :
This result is still true near bounce point since /- < #
Pirsa: 1009009fS Still t[..u e. Page 625/901



Ghost perturbation

Since the duration of bounce phase is short
H=26-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is
&, = d1e'V? + dre™™
Since the bounce phase is very short

{[r 7 ~ .I. :
This result is still true near bounce point since /- < #
Pirsa: 1009009fS Still t[.u e. Page 626/901



Ghost perturbation

Since the duration of bounce phase is short
H=26-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is
1_[1 ] — .:'f, i . b # =
Since the bounce phase is very short

{[r L ~ |I. :
This result is still true near bounce point since /- < #
Pirsa: 1009009f5 Still t[.u e. Page 627/901



Ghost perturbation

Since the duration of bounce phase is short

Where # > H? we interested in large scale perturbation

the solution is
S, = d1e'V +doe™™
Since the bounce phase is very short

{[r W E) ~ |I| :
This result is still true near bounce point since /- < #
Pirsa: 1009009}_)S Still t[.u e. Page 628/901



Ghost perturbation

Since the duration of bounce phase is short

Where # > H? we interested in large scale perturbation

the solution is
B, = die'™v? + dore
Since the bounce phase is very short

{[r ki ~ |l. :
This result is still true near bounce point since /- < #
Pirsa: 1009009fS Still t[.u e. Page 629/901




Ghost perturbation

Since the duration of bounce phase is short
H=26-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is
P, = die'V? + dre
Since the bounce phase is very short
P,(t) ~ b
This result is still true near bounce point since /- < #
=g still true.



Ghost perturbation

Since the duration of bounce phase is short
H —@8.({— tg)

Where # > H? we interested in large scale perturbation

the solution is
f[r = .:'-_, 2 LS ,;".;
Since the bounce phase is very short

B, (t) = ¥
This result is still true near bounce point since /- < #
Pirsa: 1009009}_)S Still t[..u e. Page 631/901



Ghost perturbation

Since the duration of bounce phase is short

Where # > H? we interested in large scale perturbation
l—[ - Jllll - |}
the solution is
11‘1 ; = u":a o ot - .,"‘ ) _-""r_:

Since the bounce phase is very short

-:[r W ~ |I. ‘
This result is still true near bounce point since /- < #
Pirsa: 1009009fS Still t[.u e. Page 632/901



Ghost perturbation

Since the duration of bounce phase is short

H = -

Where # > H? we interested in large scale perturbation

the solution is
b . — “"‘.“ INEE & e
Since the bounce phase is very short

-:{r . (1 ~ .[1 ‘
This result is still true near bounce point since /- < #
Pirsa: 1009009}_)S Still t[.u e. Page 633/901




Ghost perturbation

Since the duration of bounce phase is short
H=26-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is
']—) y = w'r*_a bl o8t S -.-'I‘ a
Since the bounce phase is very short

{[r W ~ ||. ;
This result is still true near bounce point since /- < #
Pirsa: 1009009fS St[ll t[.u e. Page 634/901



Ghost perturbation

Since the duration of bounce phase is short
H=86-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is
b, = die'V? + doe
Since the bounce phase is very short

{[r & ~ 1[. i
This resultis still true near bounce point since /- < #
Pirsa: 1009009}_)S Still t[..u e. Page 635/901



Ghost perturbation

Since the duration of bounce phase is short

1 = 6-(t—

Where # > H”? we interested in large scale perturbation

the solution is

Since the bounce phase is very short

{[r ok ~ |l| ‘
This result is still true near bounce point since /- < #
Pirsa: 10090091'(_)S Still t[.u e. Page 636/901



Ghost perturbation

Since the duration of bounce phase is short

Where # > H? we interested in large scale perturbation

the solution is
b e .:'-_, & s W
Since the bounce phase is very short

1[r ol ~ .[. ;
This result is still true near bounce point since /- < #
Pirsa: 1009009}_)S Still t[.u e. Page 637/901



Stability during bounce

the dispersionrelation

the typical instability rate

I 1 J'II .'I' ."r . .
= ————+ H
‘l .I' _'- .“'

1 1 7
."I_

M

[ts growing rate during bounce phase

Vo 1/ 1 M M .
o i B
'II ‘.' | L _I' \ .n
: - \[77 : \ 74
Since H ~ — it Vo < M* We get
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Stability during bounce

the dispersionrelation

712 rd '\ rd I\ L2 Y12 A 2.4
—{ A e -3 NMESH Y =208 S0 =)

the typical instability rate

I _1; .'L'.'r-. -
= — — <+ H

4 _"l _-r = _1'1 _-'r - _1| l-'r

[ts growing rate during bounce phase

Vi 1a « 1 M A e ey
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Stability during bounce

the dispersion relation

'--’,_‘l'.. 'i':;'....." y 9 y 1 12 _._-...
=11 _.Ni “‘J!_'.' II |r T My _1|'i f

the typical instability rate

I 1|II|' 1._'_'

VL V4 i

— - —r— L Jr-f : —
4 iy “_ -.1J|'_ .';'I

[ts growing rate during bounce phase
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it e T el
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Since # ~ —— iflp < M* Weget
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Stability during bounce

the dispersion relation

A\ r2ard r,':_;.' y r W -.-_'_',
LY Y | “"1'_1'.' i1 F T et A Py 4

the typical instability rate

I _1[ J'II .1' ."r B -
= — - H

\ r.2 1 i
1 Y Sy I1-r—'||l'
= v = ¥

[ts growing rate during bounce phase

h i _1 J." ‘." oo A=

=l

...l'a. I = . 1
'II ‘I." 1 __I' 1|I :. . -!: '- ;_*. ‘II-' 1

Since # ~ —— ity < ¢ We get
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Stability during bounce

the dispersionrelation

the typical instability rate

! -1“.' -1! ‘Ir.' o
= ——— + H—2
4 .I'_' -_ _-.J-'r__'llllll

[ts growing rate during bounce phase

=

- I \ /4 I Ly /= : AL3N
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Stability during bounce

the dispersionrelation

'\ r2 13 14 rd Ir\1.2 A F2 A2 L4
-1 .1%1 vl “‘1‘_1'.' if | T }_.E _1|‘i I

the typical instability rate

I \[AS2 .
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[ts growing rate during bounce phase
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Stability during bounce

the dispersionrelation

Y r2ari A\ rd rryvpL2 AT A=)+
—{( A -\ L 3N H ) L 28 = M=

the typical instability rate

rair2
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[ts growing rate during bounce phase
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Stability during bounce

the dispersionrelation

y 1 f,':..'" W --",
—(M=A* AN H V= 2050

the typical instability rate
= ————+H
i '1"'.-- AYEAY |

[ts growing rate during bounce phase
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Stability during bounce

the dispersion relation

Y 12 14 rd rryr.2 A 2 37214
—( M=\ + 4\ el 200 M=)

the typical instability rate
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Stability during bounce

the dispersion relation
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the typical instability rate
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Stability during bounce

the dispersionrelation

(AN AN HVE2 2202224

the typical instability rate
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Stability during bounce

the dispersion relation

‘.-f,_‘r.'. 'i':,:'..,." y 3 y 172 -.'_'_',
=1 .%¥1L .Ml "‘J:_'.' 4L |F 'S A _1|'1' f

the typical instability rate
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Stability during bounce

the dispersion relation
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the typical instability rate
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Stability during bounce

the dispersionrelation
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the typical instability rate
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Cut-off issue

For a fluid with pressure p and energy density p,

5 . ; - >
L’ﬂp k—o,, where @ =_F

dp ol d :'*1‘{5‘3: :

) =

When @ <0, Jeans collapse happens.

A [[»1 ; A !([“
Eiommy  Toap
So we need a very small M to protect the IR gravity.

A constraint condition has been given in hep-ph/0507120,
where

M <100Gev

irsa: 10090090 Page 652/901



Cut-off issue

For a fluid with pressure p and energy density p,

o

- - - . p,
o = p k-—w,~-, where @ - = i
‘5)"") i ) :"1{5‘3‘_

When @ <0, Jeans collapse happens.

Apy
7

Ly~ [; —

So we need a very small M to protect the IR gravity.

A constraint condition has been given in hep-ph/0507120,
where

M <100Gev
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Cut-off issue

For a fluid with pressure p and energy density p,

o

- - - . 2
o = P k-—w,~-, where @-= M
dp ) _ :"1‘{5‘.-:_

When & <0, Jeans collapse happens.
_IH‘F[“_ : _Tl.;([‘-:.:

M2 RRVE

Ly~

So we need a very small M to protect the IR gravity.

A constraint condition has been given in hep-ph/0507120,
where

M <100Gev
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Cut-off issue

For a fluid with pressure p and energy density p,

z 5 A 4 . ’,
P =Pr_»? where @’=—F
(5!{:} i _ :_1fp;h

When @ <0, Jeans collapse happens.

_11[ 4 . TILI'IF‘_
1,[.'- I3~ —
T R 1l!'

Ly~

So we need a very small M to protect the IR gravity.

A constraint condition has been given in hep-ph/0507120,
where

M <100Gev
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Cut-off issue

For a fluid with pressure p and energy density p,

£ 5 4 : - .,
=P _u»? where @>=_F
op - _ M,

When @ <0, Jeans collapse happens.

Mpy _ |
AVES ERVE

Ly~

So we need a very small M to protect the IR gravity.

A constraint condition has been given in hep-ph/0507120,
where

M <100Gev
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Cut-off issue

Jur chost bounce model is free from cut-off
a=4 7 el
Meszaros
effect
Radiationepoch 5, wssssmdp  Logarithmic growing
Matter epoch ©:
Pirsa: 10090090
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Cut-off issue

For a fluid with pressure p and energy density p,

. 5] ) ” - )
e W - ®,-. Where @ = =
(5)1.7 i :"1[5‘:"_

When @ <0, Jeans collapse happens.

Mp; . Mg
e L~
So we need a very small M to protect the IR gravity.

A constraint condition has been given in hep-ph/0507120,
where

M <100Gev
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Cut-off issue

For a fluid with pressure p and energy density p,

. 5 . . ’ ?
@ = ﬂ,{—* —®,-, Where @°= =
dp 3 :-L{;':h

When @ <0, Jeans collapse happens.

Mp; . Mg
sy
So we need a very small M to protect the IR gravity.

A constraint condition has been given in hep-ph/0507120,
where

M <100Gev
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Cut-off issue

For a fluid with pressure p and energy density p,

o

= = = 7
}?k~_13;‘ where @ =_F

@ = _ ; —.
5o “ oM}

When @ <0, Jeans collapse happens.

, ) - _ AV £
[ oas—
AVE 1/3

Ly~

So we need a very small M to protect the IR gravity.

A constraint condition has been given in hep-ph/0507120,
where

M <100Gev
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Cut-off issue

For a fluid with pressure p and energy density p,

- " . . 7
=" _-p? where @ ’=_F _
op i _ My

When @ <0, Jeans collapse happens.

AMp, _ ,
AVES AR

Ly~

So we need a very small M to protect the IR gravity.

A constraint condition has been given in hep-ph/0507120,
where

M <100Gev
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Cut-off issue

For a fluid with pressure p and energy density p,

. 5 ? ; : ),
T -g’ whee gr=_C
dp i _ :"1[?;"

When @ <0, Jeans collapse happens.

-U[‘;
AVES

\VF3

" ARSI 5.
[ ] VE

Ly~

So we need a very small M to protect the IR gravity.

A constraint condition has been given in hep-ph/0507120,
where

M <100Gev
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Cut-off issue

For a fluid with pressure p and energy density p,

’ 5 , : . )
=" g’ whee g*-=_F
(j'p' i _ :.1.{‘:,‘_7

When @ <0, Jeans collapse happens.
Mpy

s 2
NV o

P My
‘ 1/3

Ly~

So we need a very small M to protect the IR gravity.

A constraint condition has been given in hep-ph/0507120,
where

M <100Gev
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Cut-off issue

For a fluid with pressure p and energy density p,

5 ] i : )
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Conclusion & Discussion

Ghost condensation theory
Stablize vacuum
Interesting feature
Jeans instability = low energy scale 100Gev
We realize matter bounce by means of ghost condensation
Advantages:
No ghost;
Background is stable against radiation and anisotropic stress;
We have a high energy scale bounce>>100Gev
Preservescale invariant spectrum:
Grows slower than matter perturbation;
Blue spectrum;
No large amplification during bounce phase;

orsa: 0000000 L€ gradient instability during bounce phase has no enough time (...
develop.
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Conclusion & Discussion

Ghost condensation theory
Stablize vacuum
Interesting feature
Jeans instability 2 low energy scale 100Gev

We realize matter bounce by means of ghost condensation

Advantages:
No ghost;
Background is stable against radiation and anisotropic stress;
We have a high energy scale bounce>>100Gev
Preservescale invariant spectrum:
Grows slower than matter perturbation;
Blue spectrum;
No large amplification during bounce phase;

o0 1 11€ gradient instability during bounce phase has no enough time (9.,
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Stability during bounce

the dispersionrelation

= _ [* + 4] :. f’f = 4+ 2N/ - _1'--1'" o
the typical instability rate
= ———+H
1 M2 \/21\]

[ts growing rate during bounce phase
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Ghost perturbation

Since the duration of bounce phase is short
H —@8.(-— tg)

Where # > H? we interested in large scale perturbation

the solution is

Since the bounce phase is very short

{[.-, { ~ .I. -
This result is still true near bounce point since /- < #
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Ghost perturbation

Since the duration of bounce phase is short
Where # > H> we interested in large scale perturbation
PP, +HD, = 0
the solution is
b, = die'V7" + doe
Since the bounce phase is very short
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Where # > H? we interested in large scale perturbation

the solution is

Since the bounce phase is very short

{[r okl ~ .I. :
This resultis still true near bounce point since /- < #
Pirsa: 1009009}_)S Still t[.u e. Page 793/901



Ghost perturbation

Since the duration of bounce phase is short

Where # > H? we interested in large scale perturbation

the solution is
B, = die'V? + dre
Since the bounce phase is very short
b,(t) ~ &
This resultis still true near bounce point since /- < #
=g still true.



Ghost perturbation

Since the duration of bounce phase is short
2 =0-{i

Where # > H? we interested in large scale perturbation

the solution is

Since the bounce phase is very short

{[r ki ~ .I. :
This result is still true near bounce point since /- < #
Pirsa: 1009009fS Still t[..u e. Page 795/901



Ghost perturbation

Since the duration of bounce phase is short

Where # > H? we interested in large scale perturbation

the solution is
P y = .;'._, bl WP
Since the bounce phase is very short
B, (1) = @
This result is still true near bounce point since /- < #
=g still true.



Ghost perturbation

Since the duration of bounce phase is short
H=26-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is
b , = u‘rfa P doe "™
Since the bounce phase is very short

B, (1) = @
This result is still true near bounce point since /- < #
Pirsa: 1009009}_)S Still t—[..u e. Page 797/901



Ghost perturbation

Since the duration of bounce phase is short

Where # > H? we interested in large scale perturbation

the solution is
b — .:'-_, W k. dn
Since the bounce phase is very short

-:[r ofl ~ .I. ‘
This result is still true near bounce point since /- < #
Pirsa: 1009009}_)S Still t[.u e. Page 798/901




Ghost perturbation

Since the duration of bounce phase is short
H=868.-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is

Since the bounce phase is very short

{{r of ~ 1|. ‘
This result is still true near bounce point since /- < #
Pirsa: 1009009fS Sﬁ]_l t[.u e. Page 799/901



Ghost perturbation

Since the duration of bounce phase is short

Where # > H? we interested in large scale perturbation

the solution is
d, = dye™ e o F N
Since the bounce phase is very short
B, (1) = @
This result is still true near bounce point since /- < #
=g still true.




Ghost perturbation

Since the duration of bounce phase is short
H —@6.(t-— tg)

Where # > H? we interested in large scale perturbation

the solution is
'T’ y = a-‘rfa s S doe™""
Since the bounce phase is very short

1[r ki ~ |l| :
This result is still true near bounce point since /- < #
Pirsa: 100900<%t)S Still t[..u e. Page 801/901




Ghost perturbation

Since the duration of bounce phase is short
H=26-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is
&, = d1e'V? + dre™™
Since the bounce phase is very short

c[r i ~ .lx :
This resultis still true near bounce point since /- < #
Pirsa: 1009009}_)S Still T.TU. e. Page 802/901



Ghost perturbation

Since the duration of bounce phase is short
H —80.|

Where # > H? we interested in large scale perturbation

the solution is

Since the bounce phase is very short

1[r ofi ~ .I. -
This result is still true near bounce point since /- < #
Pirsa: 1009009}_)S Still t[.u e. Page 803/901



Ghost perturbation

Since the duration of bounce phase is short

Where # > H? we interested in large scale perturbation

the solution is
B, = die'V + dpe=*
Since the bounce phase is very short

{[r ok ~ |l| :
This result is still true near bounce point since /- < #
Pirsa: 1009009}_)S Still t[.u e. Page 804/901



Ghost perturbation

Since the duration of bounce phase is short

Where # > H? we interested in large scale perturbation

the solution is
'-[} , = ;_.":, A4 L ';.- s
Since the bounce phase is very short

{{r okl ~ .l. ‘
This result is still true near bounce point since /- < #
Pirsa: 1009009}_)S Still t[.u e. Page 805/901



Ghost perturbation

Since the duration of bounce phase is short
H=86--(t—tpg)

Where # > H? we interested in large scale perturbation

the solution is
1_[_1 g ,:':, e ,,"‘”
Since the bounce phase is very short

{[r i ~ |l| i
This result is still true near bounce point since /- < #
Pirsa: 1009009fS Sti.ll t[.u e. Page 806/901



Ghost perturbation

Since the duration of bounce phase is short
H=26-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is
‘-I’ ; - “.rtf ] el _.._,;".,
Since the bounce phase is very short

B, (1) = @
This result is still true near bounce point since /- < #
Pirsa: 1009009}_)S Still t[..u e. Page 807/901




Ghost perturbation

Since the duration of bounce phase is short
H —@06.({t-— tg)

Where # > H? we interested in large scale perturbation

the solution is
&, = d1e'V? + dre ™
Since the bounce phase is very short

{[r ok ~ |I| -
This result is still true near bounce point since /- < #
Pirsa: 1009009}_)S Still t['U. e. Page 808/901




Ghost perturbation

Since the duration of bounce phase is short

Where # > H? we interested in large scale perturbation

the solution is
1-[1 b ':r‘_’ Ivot ;:.' W
Since the bounce phase is very short

-:[r ki ~ |I| -
This result is still true near bounce point since /- < #
Pirsa: 1009009fS Still T.TU. e. Page 809/901



Ghost perturbation

Since the duration of bounce phase is short

Where # > H? we interested in large scale perturbation

the solution is

Since the bounce phase is very short

c[r Wi ~ .l} ‘
This result is still true near bounce point since /- < #
Pirsa: 1009009}_)S Still t[..u e. Page 810/901



Ghost perturbation

Since the duration of bounce phase is short
H=26-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is
P — "!‘.“ PN e o
Since the bounce phase is very short

{[r ") ~ |I| -
This result is still true near bounce point since /- < #
Pirsa: 1009009}_)S Still tru e. Page 811/901



Ghost perturbation

Since the duration of bounce phase is short

H = 6-(t—

Where # > H> we interested in large scale perturbation

the solution is

Since the bounce phase is very short

-:[r (1 ~ .[|. :
This result is still true near bounce point since /- < #
Pirsa: 1009009}_)S Still t[.u e. Page 812/901



Ghost perturbation

Since the duration of bounce phase is short
H=8-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is

Since the bounce phase is very short

B, (1) = @
This result is still true near bounce point since /- < #
Pirsa: 1009009}_)S Still t[.u e. Page 813/901



Ghost perturbation

Since the duration of bounce phase is short
H —@8.(&-— tg)

Where # > H? we interested in large scale perturbation

the solution is
1T_1 py e ‘;‘.’ IV OE ¢ doe™ "V
Since the bounce phase is very short

{[h ki ~ .[. :
This result is still true near bounce point since /- < #
Pirsa: 1009009}_)S Still t[.u e. Page 814/901



Ghost perturbation

Since the duration of bounce phase is short
H=26-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is
&, = d1e'V? + dre ™
Since the bounce phase is very short

{Eh i) ~ |I| ;
This result is still true near bounce point since /- < #
Pirsa: 1009009}_)S Still t[..u e. Page 815/901




Ghost perturbation

Since the duration of bounce phase is short
H=6-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is
b y = .:'f; S L P
Since the bounce phase is very short

1[r ofd ~ |[| -
This result is still true near bounce point since /- < #
Pirsa: 1009009}_)S Still t[.u e. Page 816/901



Ghost perturbation

Since the duration of bounce phase is short

B — ..
L |

Where # > H? we interested in large scale perturbation

the solution is
&, — die™V** 1+ &
Since the bounce phase is very short
P,(t) ~ -
This result is still true near bounce point since /- < #
=g still true.



Ghost perturbation

Since the duration of bounce phase is short
H=26-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is
b y = .:'f; WS k. did
Since the bounce phase is very short

{[r ok ~ |I| -
This result is still true near bounce point since /- < #
Pirsa: 1009009fS Still t[.u e. Page 818/901



Ghost perturbation

Since the duration of bounce phase is short
H —0.(&-— tg)

Where # > H? we interested in large scale perturbation

the solution is
&, = die'™V"" L doe™™
Since the bounce phase is very short

{[r okl ~ |I| :
This result is still true near bounce point since /- < #
Pirsa: 1009009}_)S Still t[..u e. Page 819/901



Ghost perturbation

Since the duration of bounce phase is short
H=26-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is
P . = ,;'._, .
Since the bounce phase is very short
P,(t) ~ -
This resultis still true near bounce point since /- < #
=g still true.



Ghost perturbation

Since the duration of bounce phase is short
H — 8. — tg)

Where # > H? we interested in large scale perturbation

the solution is
R L
Since the bounce phase is very short

{[r ok ~ |l. ‘
This result is still true near bounce point since /- < #
Pirsa: 1009009fS Still t[.u e. Page 821/901



Ghost perturbation

Since the duration of bounce phase is short
H=868.-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is
'I) | — ia'r*_e -I ol —--—.«'I‘n-
Since the bounce phase is very short

{[r of 1 ~ |[. :
This result is still true near bounce point since /- < #
Pirsa: 1009009}_)S Still t['U. e. Page 822/901




Ghost perturbation

Since the duration of bounce phase is short
H —@8.({-— tg)

Where # > H? we interested in large scale perturbation

the solution is
l-[i i .:rn_, VYE ¢ ,,"‘.;
Since the bounce phase is very short

{[r okl ~ .l. ‘
This resultis still true near bounce point since /- < #
Pirsa: 1009009fS Still t[.u e. Page 823/901



Ghost perturbation

Since the duration of bounce phase is short
H=26-(t—tg)

Where # > H? we interested in large scale perturbation

P, +6P, = 0
the solution is
&, — die™V* 1 o
Since the bounce phase is very short
B, (1) = @
This result is still true near bounce point since /- < #
=g still true.



Ghost perturbation

Since the duration of bounce phase is short
H=26-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is
1_[1 g = ,;'.., A ____”-"_,
Since the bounce phase is very short

c[r 1 ~ .lx -
This result is still true near bounce point since /- < #
Pirsa: 100900?[)S Still t[.u e. Page 825/901




Ghost perturbation

Since the duration of bounce phase is short
H —8.(

Where # > H? we interested in large scale perturbation

the solution is

Since the bounce phase is very short

B, (1) = @
This resultis still true near bounce point since /- < #
Pirsa: 1009009}_)S Still t[.u e. Page 826/901



Ghost perturbation

Since the duration of bounce phase is short
H=26-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is

Since the bounce phase is very short

B, (t) = ¥
This resultis still true near bounce point since /- < #
Pirsa: 1009009fS Still t[..u e. Page 827/901



Ghost perturbation

Since the duration of bounce phase is short
H=26-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is
'-[" , = u‘rfa bt oS doe™"™
Since the bounce phase is very short

{lr ™ ~ .I. ;
This result is still true near bounce point since /- < #
Pirsa: 1009009fS Still t[.u e. Page 828/901



Ghost perturbation

Since the duration of bounce phase is short
H=6-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is
b, = die'V? + doe™*
Since the bounce phase is very short

{{r okl ~ |l| ‘
This resultis still true near bounce point since /- < #
Pirsa: 1009009fS Still t['U. e. Page 829/901



Ghost perturbation

Since the duration of bounce phase is short

Where # > H? we interested in large scale perturbation

the solution is
B, = die'V + dpe=*
Since the bounce phase is very short

{[r ki ~ 1I. :
This resultis still true near bounce point since /- < #
Pirsa: 10090091'(_)S Still t[.u e. Page 830/901



Ghost perturbation

Since the duration of bounce phase is short
H —08.(

Where # > H? we interested in large scale perturbation

the solution is
b, = die'V? 4+ dre™"
Since the bounce phase is very short

1[r o1 ~ |I| -
This result is still true near bounce point since /- < #
Pirsa: 1009009fS Still t[.u e. Page 831/901



Ghost perturbation

Since the duration of bounce phase is short

Where # > H? we interested in large scale perturbation

the solution is

Since the bounce phase is very short

{lr o b1 ~ .l. :
This resultis still true near bounce point since /- < #
Pirsa: lOOQOOTS Still t['U. e. Page 832/901




Ghost perturbation

Since the duration of bounce phase is short
H — 8. - tg)

Where # > H? we interested in large scale perturbation

the solution is
B, = die'V? + dre
Since the bounce phase is very short
B, (1) = @
This result is still true near bounce point since /- < #
=g still true.



Ghost perturbation

Since the duration of bounce phase is short
H=868.-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is
B, = die'V + dpe=*
Since the bounce phase is very short

{[r L ~ .[. :
This result is still true near bounce point since /- < #
Pirsa: 1009009}_)S Still t[..u e. Page 834/901




Ghost perturbation

Since the duration of bounce phase is short
H=26-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is
P T .:'-_, W
Since the bounce phase is very short

{[r o b ~ |l| ‘
This result is still true near bounce point since /- < #
Pirsa: 1009009fS Still t[.u e. Page 835/901




Ghost perturbation

Since the duration of bounce phase is short

L 8.0+ — 4,
£ExL — 1 1 & 5)

Where # > H> we interested in large scale perturbation

b L HD. = ()

the solution is

Since the bounce phase is very short

{[r . ~ .I. -
This result is still true near bounce point since /- < #
Pirsa: 10090091'(_)S Still t[.u e. Page 836/901



Ghost perturbation

Since the duration of bounce phase is short
H=26-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is
o = .:'-_, WS & e
Since the bounce phase is very short

{[h ok ~ |I| -
This result is still true near bounce point since /- < #
Pirsa: 1009009}_)S Still t[.u e. Page 837/901



Ghost perturbation

Since the duration of bounce phase is short
H=868.-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is

Since the bounce phase is very short

1[r ofi ~ |[| :
This result is still true near bounce point since /- < #
Pirsa: 1009009}_)S Still t[.u e. Page 838/901




Ghost perturbation

Since the duration of bounce phase is short
H=26-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is
&b . — "!‘.“ i P
Since the bounce phase is very short

$.() = B
This result is still true near bounce point since /- < #
Pirsa: 1009009}_)S Still t[.u e. Page 839/901



Ghost perturbation

Since the duration of bounce phase is short

Where # > H? we interested in large scale perturbation

the solution is
'-[} ; - “.ptf ! ot _-_,;".,
Since the bounce phase is very short

D,(t) =~ P
This result is still true near bounce point since /- < #
Pirsa: 1009009}_)S Still t[..u e. Page 840/901



Ghost perturbation

Since the duration of bounce phase is short
H=26-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is
b, = die'V + doe™*™
Since the bounce phase is very short

c[r it ~ .I} :
This result is still true near bounce point since /- < #
Pirsa: 100900<%t)S Still t[.u e. Page 841/901



Ghost perturbation

Since the duration of bounce phase is short
H=8.-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is
an . .:'-_, WS k. di
Since the bounce phase is very short

{[r A1 ~ |l| :
This resultis still true near bounce point since /- < #
Pirsa: 1009009}_)S Still t[..u e. Page 842/901




Ghost perturbation

Since the duration of bounce phase is short
H=26-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is
1]1 , = .:'-I, bV UL 5 ,;" y =ha
Since the bounce phase is very short

-:[r o ~ |[| :
This result is still true near bounce point since /- < #
Pirsa: 1009009}_)S Still t[.u e. Page 843/901



Ghost perturbation

Since the duration of bounce phase is short
H=8.-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is
&, = d1e'V? + doe™™
Since the bounce phase is very short

-:[r ki ~ |l. :
This result is still true near bounce point since /- < #
Pirsa: 1009009}_)S Still t[.u e. Page 844/901



Ghost perturbation

Since the duration of bounce phase is short
H=26-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is
&, — die™% + &
Since the bounce phase is very short
P,(t) ~
This resultis still true near bounce point since /- < #
=g still true.




Ghost perturbation

Since the duration of bounce phase is short

H = 6-(1 —

Where # > H? we interested in large scale perturbation

PP, + 4P, = 0
the solution is

b, = die'V7" + doe
Since the bounce phase is very short

¢ L) o= p ,
This resultis still true near bounce point since /- <« #
Pirsa: 1009009PS Sti]_l true. Page 846/901



Ghost perturbation

Since the duration of bounce phase is short

Where # > H? we interested in large scale perturbation

the solution is

Since the bounce phase is very short

B, (t) = ¥
This result is still true near bounce point since /- < #
Pirsa: 1009009fS Still t[.u e. Page 847/901



Ghost perturbation

Since the duration of bounce phase is short
H =868.(t-—

Where # > H? we interested in large scale perturbation

the solution is
b, = die'V? + doe™*
Since the bounce phase is very short

{l'-, { ~ |I| ‘
This result is still true near bounce point since /- < #
Pirsa: 1009009}_)S Still t[.u e. Page 848/901




Ghost perturbation

Since the duration of bounce phase is short
H=26-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is
{'[’ ; - ‘:rtf tn L e ,;" * — Iy
Since the bounce phase is very short

{[r ok ~ .I. -
This result is still true near bounce point since /- < #
Pirsa: 1009009}_)S Still t[..u e. Page 849/901




Ghost perturbation

Since the duration of bounce phase is short
H —8.|

Where # > H? we interested in large scale perturbation

the solution is
&, = die’™V** 1 do
Since the bounce phase is very short
d,(t) ~ &
This result is still true near bounce point since /- < #
=g still true.



Ghost perturbation

Since the duration of bounce phase is short
H=26-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is
Since the bounce phase is very short
P,(t) ~
This result is still true near bounce point since /- < #
=g still true.



Ghost perturbation

Since the duration of bounce phase is short
H —@8.({-—

Where # > H? we interested in large scale perturbation

the solution is
&, = d1e'V? + dre ™
Since the bounce phase is very short

{[r < ~ |l| i
This result is still true near bounce point since /- < #
Pirsa: 1009009}_)S Sti.ll t[..u e. Page 852/901



Ghost perturbation

Since the duration of bounce phase is short
H —0.(-— tg)

Where # > H? we interested in large scale perturbation

the solution is
b, = die'V? + dre "
Since the bounce phase is very short

{[l _,. r _'_- l[l ‘
This result is still true near bounce point since /- < #
Pirsa: 1009009fS Stlll t[.u e. Page 853/901



Ghost perturbation

Since the duration of bounce phase is short
H —@08.({-— ‘)

Where # > H? we interested in large scale perturbation

the solution is
P . = ,;'._, S o P
Since the bounce phase is very short
P,(t) ~ ¢
This result is still true near bounce point since /- < #
=g still true.




Ghost perturbation

Since the duration of bounce phase is short
H —@08.({-— tg)

Where # > H? we interested in large scale perturbation

the solution is
&, = d1e'V? + dye™™
Since the bounce phase is very short

{lb.? [ # ~ |I| -
This result is still true near bounce point since /- < #
Pirsa: 1009009fS Still t[.u e. Page 855/901



Ghost perturbation

Since the duration of bounce phase is short

Where # > H? we interested in large scale perturbation

the solution is
P, = die'V + dre
Since the bounce phase is very short
P,(t) ~ P
This result is still true near bounce point since /- < #
=g still true.



Ghost perturbation

Since the duration of bounce phase is short
H=868-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is
']‘,, = ';‘.* Vet | u"‘ P
Since the bounce phase is very short

{{r o ~ .I. ‘
This result is still true near bounce point since /- < #
Pirsa: 1009009fS Still t[.u e. Page 857/901



Ghost perturbation

Since the duration of bounce phase is short
H=26-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is
b, = die'V? + doe™*
Since the bounce phase is very short

i AL) == p :
This result is still true near bounce point since /- < #
Pirsa: 1009009}_)S Still t[.u e. Page 858/901




Ghost perturbation

Since the duration of bounce phase is short
H=868.-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is
&, = d1e'V? + dre ™
Since the bounce phase is very short

{{r 5 ~ 1I. :
This result is still true near bounce point since /- < #
Pirsa: 1009009fS Still t[.u e. Page 859/901




Ghost perturbation

Since the duration of bounce phase is short

Where # > H? we interested in large scale perturbation

the solution is
b, = die'V? + dre™*
Since the bounce phase is very short

-:[r o bl ~ |I| ;
This result is still true near bounce point since /- < #
Pirsa: lOOQOOTS Still t[.u e. Page 860/901




Ghost perturbation

Since the duration of bounce phase is short
H=26-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is

Since the bounce phase is very short

1[{? [ # ~ |I| :
This result is still true near bounce point since /- < #
Pirsa: 1009009i)S Still t[.u e. Page 861/901



Ghost perturbation

Since the duration of bounce phase is short
H = |

Where # > H? we interested in large scale perturbation

the solution is
b, = die'V" + dre™"™
Since the bounce phase is very short

{[r W ~ .I. :
This result is still true near bounce point since /- < #
Pirsa: 1009009fS Still t[.u e. Page 862/901



Ghost perturbation

Since the duration of bounce phase is short

Where # > H? we interested in large scale perturbation

the solution is

Since the bounce phase is very short

1.[! ok ~ |l. ;
This result is still true near bounce point since /- < #
Pirsa: 1009009}_)S Still t[.u e. Page 863/901



Ghost perturbation

Since the duration of bounce phase is short
H — @8.({-— tg)

Where # > H? we interested in large scale perturbation

the solution is
b, = die'V? + doe™"
Since the bounce phase is very short

{{r W ~ .[. :
This result is still true near bounce point since /- < #
Pirsa: 1009009}_)S Still t[..u e. Page 864/901




Ghost perturbation

Since the duration of bounce phase is short
H —@0.(t-— tg)

Where # > H? we interested in large scale perturbation

the solution is
1_[1 . = ,;'.., tv Ut ___.”-"_,
Since the bounce phase is very short

{[r ofi ~ |I| -
This result is still true near bounce point since /- < #
Pirsa: 1009009}_)S St[ll t[.u e. Page 865/901




Ghost perturbation

Since the duration of bounce phase is short

Where # > H? we interested in large scale perturbation

the solution is
b, = d1e'V? + doe™™
Since the bounce phase is very short

D,(t) =~ P
This result is still true near bounce point since /- < #
Pirsa: 1009009}_)S Still t['U. e. Page 866/901



Ghost perturbation

Since the duration of bounce phase is short
H=26-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is
1_[) y = ,;'.., ot _...,;",,
Since the bounce phase is very short

{[r okl ~ |I| -
This result is still true near bounce point since /- < #
Pirsa: 1009009fS Still t[.u e. Page 867/901



Ghost perturbation

Since the duration of bounce phase is short
H —@8.(-— ‘)

Where # > H? we interested in large scale perturbation

the solution is
P, = die'V + doe
Since the bounce phase is very short
P,(t) ~ P
This result is still true near bounce point since /- < #
=g still true.



Ghost perturbation

Since the duration of bounce phase is short
H — 8.{-— tg)

Where # > H? we interested in large scale perturbation

the solution is
P i .:'._; S L P
Since the bounce phase is very short

1[r o bl ~ |I| :
This result is still true near bounce point since /- < #
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Ghost perturbation

Since the duration of bounce phase is short
H=26-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is

Since the bounce phase is very short

{[r k1 ~ |I| ‘
This resultis still true near bounce point since /- < #
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Ghost perturbation

Since the duration of bounce phase is short
H —@.(t-— 3

Where # > H? we interested in large scale perturbation

the solution is
b y = ;:':; L S
Since the bounce phase is very short

{[r o E) ~ |l| :
This result is still true near bounce point since /- < #
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Ghost perturbation

Since the duration of bounce phase is short

Where # > H? we interested in large scale perturbation

the solution is
'-[’ | — i-'r*le ds g f.-'l‘ 1, Ste
Since the bounce phase is very short

{[r okl ~ |[| j
This result is still true near bounce point since /- < #
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Ghost perturbation

Since the duration of bounce phase is short
H=26-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is
B, = dye'V? | dpe—*"
Since the bounce phase is very short

1[r ok ~ .l. :
This resultis still true near bounce point since /- < #
Pirsa: 1009009}_)S Still t[.u e. Page 873/901



Ghost perturbation

Since the duration of bounce phase is short
H=26-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is
b, = dye'V? + doe™*"
Since the bounce phase is very short

{[r A ~ .[. ‘
This result is still true near bounce point since /- < #
Pirsa: 1009009}_)S Still t[.u e. Page 874/901



Ghost perturbation

Since the duration of bounce phase is short
H=26-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is
&, = die'V? + doe™
Since the bounce phase is very short
P,(t) ~
This result is still true near bounce point since /- < #
=g still true.




Ghost perturbation

Since the duration of bounce phase is short

1 = & -\T —

Where # > H? we interested in large scale perturbation

Pd, + 6D, = 0
the solution is

D, = die'™V?" + doe
Since the bounce phase is very short

¢ (t) ~ p .
This resultis still true near bounce point since /- < #
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Ghost perturbation

Since the duration of bounce phase is short
H=868.-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is
b = die™™ Ci g R g
Since the bounce phase is very short

-:[r ofl ~ |l| ‘
This result is still true near bounce point since /- < #
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Ghost perturbation

Since the duration of bounce phase is short
H —@8.(-— tg)

Where # > H> we interested in large scale perturbation

the solution is

Since the bounce phase is very short

-:[r W ~ .l. ‘
This result is still true near bounce point since /- < #
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Ghost perturbation

Since the duration of bounce phase is short

Where # > H? we interested in large scale perturbation

the solution is

Since the bounce phase is very short

{[r of 1 ~ |[} ‘
This result is still true near bounce point since /- < #
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Ghost perturbation

Since the duration of bounce phase is short
H = 8.

Where # > H? we interested in large scale perturbation

the solution is
1_[} y = ,;'.., IV Ut _.._,;",,
Since the bounce phase is very short

{[r ok ~ .l. -
This result is still true near bounce point since /- < #
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Ghost perturbation

Since the duration of bounce phase is short

Where # > H? we interested in large scale perturbation

the solution is
P . — .:'._, L
Since the bounce phase is very short

B,(t) = ¥
This result is still true near bounce point since /- < #
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Ghost perturbation

Since the duration of bounce phase is short
H=868-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is
b g = “"‘.“ G i g N B
Since the bounce phase is very short

D,(t) = P,
This result is still true near bounce point since /- < #
Pirsa: 1009009fS Still t[.u e. Page 882/901



Ghost perturbation

Since the duration of bounce phase is short
H=26-(t—tg)

Where # > H? we interested in large scale perturbation

the solution is
‘—[) - “'r‘_* 1y Bt _...,;",,
Since the bounce phase is very short

{[r of 1 ~ |[| :
This result is still true near bounce point since /- < #
Pirsa: 1009009fS St[ll T.TU. e. Page 883/901



Interesting Features

pp
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Interesting features

More generally,
L= -1‘-'!;[} X *-_-”:“‘.'.\‘ o '1—-—.1.-!""“_'- X )#eF o) O+ -

Ghostfield locate at the minima, with scalar excitation

Low energy effective action for mis

[ia. |22 : 3 12 ‘
The dispersion relation Py
Group velocity 2~ K2/AL2
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Interesting features

More generally,

L = M*P(X) + M25,(X)(00)? + M2Sy( X )P 0,0 + - -

Low energy effective action for mis

T [1 .o : > 13 ‘
T / | [i “Emgt b
Thedispersionrelation -+~ ~
Group velocity 2 o R2IAEE
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Interesting features

More generally,
L' - ‘1”,*2[, \ & ,]lf"r“‘_l_\‘ (o 2 L ‘1-.3"""'_. \ S CF; ¥

Ghostfield locate at the minima, with scalar excitation

Low energy effective action for mis
11 L

D~ / ” [ET'—F.T---+.__‘
Thedispersionrelation -~~~ 5
Group velocity E . IR
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Interesting features

More generally,
£ = MP(X) + M25,(X)(O0)? + M2So( X )P 0,0 + - - -

Ghostfield locate at the minima, with scalar excitation

The dispersion relation
Group velocity 2 B2/
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Interesting features

More generally,
L‘:.E."f}.‘“,\‘ ‘_'—.llljr-rk'_'.\‘ :"-1"_.1*."r-""_' .\"fr '.-'r""".‘g-- 7 bk

Ghostfield locate at the minima, with scalar excitation

Low energy effective action for mis

The dispersion relation ey

Group velocity 2 . B2/
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Interesting features

More generally,
£ = M*P(X) + M?S,(X)(O0)* + M2Sy( X )P 0d,dyo + - - -

Ghostfield locate at the minima, with scalar excitation

s S /1:1.[£f_-'_ : (VU 2— .’____1

) N2

Y

The dispersion relation
Group velocity 2 k202
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Interesting features

More generally,
£ = M*P(X) + M?S1(X)(O0)? + M2Sy( X)# 0, dyo + - - -

Ghostfield locate at the minima, with scalar excitation

- —
[ —

(i) —— .

Low energy effective action for mis

T L 2_\2 ‘
bk / ‘ [E' YA T
Thedispersionrelation -~~~ <7
Group velocity 2~ k202
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Interesting features

More generally,
£ = M*P(X) + M2S;(X)(06)? + M2Sy( X)#* 6d,D0 + - -

Ghostfield locate at the minima, with scalar excitation

Low energy effective action for mis

‘a4 [L.2 i 212 ‘
@ L / | [j _:_U—"T +oo]
The dispersionrelation -~~~ 5
Group velocity 2~ B2/
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Interesting features

More generally,
£ = M*P(X) + M?S,(X)(00)? + M2Sy( X)#P 6d,Dp0 + - -

Ghostfield locate at the minima, with scalar excitation

Low energy effective action for mis

.:,‘1r_-

\ ]

— —

The dispersion relation
Group velocity 2~ B2/M2
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Interesting features

More generally,
= ‘1.”,{}[; i .]Hr'r”"‘_l_\l (o 2 L ‘Hr_'\,_‘: X )i#, S, g

Ghostfield locate at the minima, with scalar excitation

Low energy effective action for mis

(o [L.o L E- A2 |
S~ fd'e |57 - Sy 4+
Thedispersionrelation -~ ~
Group velocity 2~ k2012
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Interesting features

More generally,
£ = M*P(X) + M25,(X)(000)? + M2Sy( X)#* 00,0 + - -

Ghostfield locate at the minima, with scalar excitation

Low energy effective action for mis

. . - J. 8 L - =
S~ fd'e |57 - Sy 4
Thedispersionrelation -+~ ~ <7
Group velocity ¥ o 2
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Interesting features

More generally,
£ = M*P(X) + M?5,(X)(00)? + M2Sy( X)#P 60,00 + - -

Ghostfield locate at the minima, with scalar excitation

- r l : L - r =
-y - /‘f1|\_}-l—-_ .]ﬁr._T"— il SRETAR
s LIVE® ]
The dispersion relation ey
Group velocity E . IR
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Interesting features

More generally,
£ = M*P(X) + M?S,(X)(0O0)* + M2Sx( X)) 0d,d0 + - - -

Ghostfield locate at the minima, with scalar excitation

Low energy effective action for mis

. : r l : t . : 1
':.., - /‘;’.- |\T‘_.--_.:I‘1r._T'-'_._...
4 CAL Y S ]
Thedispersionrelation -~~~ 5
Group velocity 2 ~ B2/ME
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Interesting features

More generally,
£ = M*P(X) + M2S,(X)(00)? + M2Sy( X)# 00,0 + - -

Ghostfield locate at the minima, with scalar excitation

Low energy effective action for mis

o [L.o L %19 ‘
T / [f “amEty ) b
The dispersionrelation -~ ~ 57
Group velocity 2~ K202
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Interesting features

More generally,
L= M*P(X) + M?S,(X)(O0)* + M2So( X)#P 0o + - -

Ghostfield locate at the minima, with scalar excitation

- "l : L . r -
5. M L 2 32
/ . [: _:_U—"T +oo]
Thedispersionrelation -~~~ <7
Group velocity 2 o BE2IAR
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Interesting features

More generally,
L=MP(X)+ .1;:”‘;'-\‘ [10)° + -1'-3“'“_' X )#*F od, Do+ ---

Ghostfield locate at the minima, with scalar excitation

Low energy effective action for mis

' [L2 . 2_\2 |
*/{: — (V)2 +
The dispersionrelation -~ ~ <5
Group velocity 2 o R2/A2
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Interesting features

More generally,
L‘:.H:f}:fl \ —_'—.1:":“'_'.\‘ "_'-'-1"—.1"1!-.""_' _\'”r' ‘.-'r""‘F_.‘f-- o Fae

Ghostfield locate at the minima, with scalar excitation

Low energy effective action for mis

i -l ' L ) , -
5 ~ /:"’-{77'—_],”.?'-'*.._
J e A Y S |
Thedispersionrelation -+ ~ 5
Group velocity % o B
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