Title: A Matter Bounce By Means of Ghost Condensation

Date: Sep 07, 2010 02:00 PM

URL: http://pirsa.org/10090090

Abstract: TBA

A matter bounce by means of ghost condensation R. Brandenberger, L. Levasseur and C. Lin arXiv:1007.2654

Chunshan Lin McGill USTC

A matter bounce by means of ghost condensation R. Brandenberger, L. Levasseur and C. Lin arXiv:1007.2654

Chunshan Lin McGill USTC

A matter bounce by means of ghost condensation R. Brandenberger, L. Levasseur and C. Lin arXiv:1007.2654

Chunshan Lin McGill USTC

A matter bounce by means of ghost condensation R. Brandenberger, L. Levasseur and C. Lin arXiv:1007.2654

Chunshan Lin McGill USTC

A matter bounce by means of ghost condensation R. Brandenberger, L. Levasseur and C. Lin arXiv:1007.2654

Chunshan Lin McGill USTC

A matter bounce by means of ghost condensation R. Brandenberger, L. Levasseur and C. Lin arXiv:1007.2654

Chunshan Lin McGill USTC

Page 7/901

- Alternative inflation models
 - Necessity
 - Matter bounce
- Ghost condensation
 - Basic philosophy
 - Applications
 - Interesting features
 - Instability
- Matter bounce by means of ghost condensation
 - Several advantages: ghost free, stable against radiation and anisotropic stress...
 - Perturbation
 - Cut off issue

- Alternative inflation models
 - Necessity
 - Matter bounce
- Ghost condensation
 - Basic philosophy
 - Applications
 - Interesting features
 - Instability
- Matter bounce by means of ghost condensation
 - Several advantages: ghost free, stable against radiation and anisotropic stress...
 - Perturbation
 - Cut off issue

Page 9/901

- Alternative inflation models
 - Necessity
 - Matter bounce
- Ghost condensation
 - Basic philosophy
 - Applications
 - Interesting features
 - Instability
- Matter bounce by means of ghost condensation
 - Several advantages: ghost free, stable against radiation and anisotropic stress...
 - Perturbation
 - Cut off issue

Page 10/901

- Alternative inflation models
 - Necessity
 - Matter bounce
- Ghost condensation
 - Basic philosophy
 - Applications
 - Interesting features
 - Instability
- Matter bounce by means of ghost condensation
 - Several advantages: ghost free, stable against radiation and anisotropic stress...
 - Perturbation
 - Cut off issue

Page 11/901

- Alternative inflation models
 - Necessity
 - Matter bounce
- Ghost condensation
 - Basic philosophy
 - Applications
 - Interesting features
 - Instability
- Matter bounce by means of ghost condensation
 - Several advantages: ghost free, stable against radiation and anisotropic stress...
 - Perturbation
 - Cut off issue

Page 12/901

- Alternative inflation models
 - Necessity
 - Matter bounce
- Ghost condensation
 - Basic philosophy
 - Applications
 - Interesting features
 - Instability
- Matter bounce by means of ghost condensation
 - Several advantages: ghost free, stable against radiation and anisotropic stress...
 - Perturbation
 - Cut off issue

Page 13/901

- Alternative inflation models
 - Necessity
 - Matter bounce
- Ghost condensation
 - Basic philosophy
 - Applications
 - Interesting features
 - Instability
- Matter bounce by means of ghost condensation
 - Several advantages: ghost free, stable against radiation and anisotropic stress...
 - Perturbation
 - Cut off issue

Page 14/901

- Alternative inflation models
 - Necessity
 - Matter bounce
- Ghost condensation
 - Basic philosophy
 - Applications
 - Interesting features
 - Instability
- Matter bounce by means of ghost condensation
 - Several advantages: ghost free, stable against radiation and anisotropic stress...
 - Perturbation
 - Cut off issue

Page 15/901

Part I Alternative inflation models

• Inflation suffers from some conceptual problems Flatness problem $Amplitude\ problem\ \frac{V(\varphi)}{\Delta\varphi^4} \leq 10^{-12}$ $Trans-Planckian\ problem$

.....

Some other attempts Matter bounce, Ekpyrotic, String gas, pre big bang theory.....

Singularity problem

Inflation suffers from some conceptual problems Flatness problem $Amplitude\ problem\ \frac{V(\varphi)}{\Delta\varphi^+} \le 10^{-12}$ $Trans-Planckian\ problem$ $Singularity\ problem$

.....

Some other attempts Matter bounce, Ekpyrotic, String gas, pre big bang theory.....

Inflation suffers from some conceptual problems Flatness problem $Amplitude\ problem\ \frac{V(\varphi)}{\Delta\varphi^+} \le 10^{-12}$ $Trans-Planckian\ problem$ $Singularity\ problem$

.....

Some other attempts Matter bounce, Ekpyrotic, String gas, pre big bang theory.....

Inflation suffers from some conceptual problems Flatness problem $Amplitude\ problem\ \frac{V(\varphi)}{\Delta\varphi^{+}} \le 10^{-12}$ $Trans-Planckian\ problem$ $Singularity\ problem$

.....

Some other attempts Matter bounce, Ekpyrotic, String gas, pre big bang theory.....

• Inflation suffers from some conceptual problems Flatness problem $Amplitude\ problem\ \frac{V(\varphi)}{\Delta\varphi^4} \le 10^{-12}$ $Trans-Planckian\ problem$

.....

Some other attempts Matter bounce, Ekpyrotic, String gas, pre big bang theory.....

Singularity problem

Inflation suffers from some conceptual problems Flatness problem $Amplitude\ problem\ \frac{V(\varphi)}{\Delta \varphi^+} \le 10^{-12}$ $Trans-Planckian\ problem$ $Singularity\ problem$

.....

Some other attempts Matter bounce, Ekpyrotic, String gas, pre big bang theory.....

Inflation suffers from some conceptual problems Flatness problem $Amplitude\ problem\ \frac{V(\varphi)}{\Delta\varphi^{+}} \le 10^{-12}$ $Trans-Planckian\ problem$ $Singularity\ problem$

.....

Some other attempts Matter bounce, Ekpyrotic, String gas, pre big bang theory.....

Inflation suffers from some conceptual problems Flatness problem $Amplitude\ problem\ \frac{V(\varphi)}{\Delta \varphi^{+}} \leq 10^{-12}$ $Trans-Planckian\ problem$ $Singularity\ problem$

.....

Some other attempts Matter bounce, Ekpyrotic, String gas, pre big bang theory.....

Inflation suffers from some conceptual problems Flatness problem $Amplitude\ problem\ \frac{V(\varphi)}{\Delta \varphi^{+}} \le 10^{-12}$ $Trans-Planckian\ problem$ $Singularity\ problem$

.....

Some other attempts Matter bounce, Ekpyrotic, String gas, pre big bang theory.....

Inflation suffers from some conceptual problems Flatness problem $Amplitude\ problem\ \frac{V(\varphi)}{\Delta\varphi^{+}} \le 10^{-12}$ $Trans-Planckian\ problem$ $Singularity\ problem$

.....

Some other attempts Matter bounce, Ekpyrotic, String gas, pre big bang theory.....

Inflation suffers from some conceptual problems Flatness problem $Amplitude\ problem\ \frac{V(\varphi)}{\Delta\varphi^+} \le 10^{-12}$ $Trans-Planckian\ problem$ $Singularity\ problem$

.....

Some other attempts Matter bounce, Ekpyrotic, String gas, pre big bang theory.....

Inflation suffers from some conceptual problems Flatness problem $Amplitude\ problem\ \frac{V(\varphi)}{\Delta \varphi^{4}} \leq 10^{-12}$ $Trans-Planckian\ problem$ $Singularity\ problem$

.....

Some other attempts Matter bounce, Ekpyrotic, String gas, pre big bang theory.....

Inflation suffers from some conceptual problems Flatness problem $Amplitude\ problem\ \frac{V(\varphi)}{\Delta \varphi^{+}} \le 10^{-12}$ $Trans-Planckian\ problem$ $Singularity\ problem$

.....

Some other attempts Matter bounce, Ekpyrotic, String gas, pre big bang theory.....

Inflation suffers from some conceptual problems Flatness problem $Amplitude\ problem\ \frac{V(\varphi)}{\Delta\varphi^4} \le 10^{-12}$ $Trans-Planckian\ problem$ $Singularity\ problem$

.....

Some other attempts Matter bounce, Ekpyrotic, String gas, pre big bang theory.....

Inflation suffers from some conceptual problems Flatness problem $Amplitude\ problem\ \frac{V(\varphi)}{\Delta \varphi^{+}} \leq 10^{-12}$ $Trans-Planckian\ problem$ $Singularity\ problem$

.....

Some other attempts Matter bounce, Ekpyrotic, String gas, pre big bang theory.....

Inflation suffers from some conceptual problems Flatness problem $Amplitude\ problem\ \frac{V(\varphi)}{\Delta\varphi^+} \le 10^{-12}$ $Trans-Planckian\ problem$ $Singularity\ problem$

.....

Some other attempts Matter bounce, Ekpyrotic, String gas, pre big bang theory.....

Inflation suffers from some conceptual problems Flatness problem $Amplitude\ problem\ \frac{V(\varphi)}{\Delta\varphi^{+}} \le 10^{-12}$ $Trans-Planckian\ problem$ $Singularity\ problem$

.....

Some other attempts Matter bounce, Ekpyrotic, String gas, pre big bang theory.....

Inflation suffers from some conceptual problems Flatness problem $Amplitude\ problem\ \frac{V(\varphi)}{\Delta\varphi^{4}} \le 10^{-12}$ $Trans-Planckian\ problem$ $Singularity\ problem$

.....

Some other attempts Matter bounce, Ekpyrotic, String gas, pre big bang theory.....

Inflation suffers from some conceptual problems Flatness problem $Amplitude\ problem\ \frac{V(\varphi)}{\Delta\varphi^{+}} \le 10^{-12}$ $Trans-Planckian\ problem$ $Singularity\ problem$

.....

Some other attempts Matter bounce, Ekpyrotic, String gas, pre big bang theory.....

Inflation suffers from some conceptual problems Flatness problem $Amplitude\ problem\ \frac{V(\varphi)}{\Delta\varphi^{4}} \le 10^{-12}$ $Trans-Planckian\ problem$ $Singularity\ problem$

.....

Some other attempts Matter bounce, Ekpyrotic, String gas, pre big bang theory.....

Inflation suffers from some conceptual problems Flatness problem $Amplitude\ problem\ \frac{V(\varphi)}{\Delta\varphi^{+}} \le 10^{-12}$ $Trans-Planckian\ problem$ $Singularity\ problem$

.....

Some other attempts Matter bounce, Ekpyrotic, String gas, pre big bang theory.....

• Inflation suffers from some conceptual problems Flatness problem $Amplitude\ problem\ \frac{V(\varphi)}{\Delta\varphi^4} \le 10^{-12}$ $Trans-Planckian\ problem$

.....

Some other attempts Matter bounce, Ekpyrotic, String gas, pre big bang theory.....

Singularity problem

• Inflation suffers from some conceptual problems Flatness problem Amplitude problem $\frac{V(\varphi)}{\Delta \varphi^4} \le 10^{-12}$ Trans-Planckian problem

.....

Some other attempts Matter bounce, Ekpyrotic, String gas, pre big bang theory.....

Singularity problem

Inflation suffers from some conceptual problems Flatness problem $Amplitude\ problem\ \frac{V(\varphi)}{\Delta\varphi^{+}} \le 10^{-12}$ $Trans-Planckian\ problem$ $Singularity\ problem$

.....

Some other attempts Matter bounce, Ekpyrotic, String gas, pre big bang theory.....

Inflation suffers from some conceptual problems Flatness problem $Amplitude\ problem\ \frac{V(\varphi)}{\Delta\varphi^{+}} \le 10^{-12}$ $Trans-Planckian\ problem$ $Singularity\ problem$

.....

Some other attempts Matter bounce, Ekpyrotic, String gas, pre big bang theory.....

Inflation suffers from some conceptual problems Flatness problem $Amplitude\ problem\ \frac{V(\varphi)}{\Delta\varphi^{+}} \le 10^{-12}$ $Trans-Planckian\ problem$ $Singularity\ problem$

.....

Some other attempts Matter bounce, Ekpyrotic, String gas, pre big bang theory.....

Inflation suffers from some conceptual problems Flatness problem $Amplitude\ problem\ \frac{V(\varphi)}{\Delta\varphi^4} \le 10^{-12}$ $Trans-Planckian\ problem$

....

Some other attempts Matter bounce, Ekpyrotic, String gas, pre big bang theory.....

Singularity problem

Inflation suffers from some conceptual problems Flatness problem $Amplitude\ problem\ \frac{V(\varphi)}{\Delta\varphi^+} \le 10^{-12}$ $Trans-Planckian\ problem$ $Singularity\ problem$

.....

Some other attempts Matter bounce, Ekpyrotic, String gas, pre big bang theory.....

Inflation suffers from some conceptual problems Flatness problem $Amplitude\ problem\ \frac{V(\varphi)}{\Delta\varphi^{+}} \le 10^{-12}$ $Trans-Planckian\ problem$ $Singularity\ problem$

.....

Some other attempts Matter bounce, Ekpyrotic, String gas, pre big bang theory.....

Inflation suffers from some conceptual problems Flatness problem $Amplitude\ problem\ \frac{V(\varphi)}{\Delta\varphi^{+}} \le 10^{-12}$ $Trans-Planckian\ problem$ $Singularity\ problem$

.....

Some other attempts Matter bounce, Ekpyrotic, String gas, pre big bang theory.....

Inflation suffers from some conceptual problems Flatness problem $Amplitude\ problem\ \frac{V(\varphi)}{\Delta\varphi^+} \le 10^{-12}$ $Trans-Planckian\ problem$ $Singularity\ problem$

.....

Some other attempts Matter bounce, Ekpyrotic, String gas, pre big bang theory.....

Inflation suffers from some conceptual problems Flatness problem $Amplitude\ problem\ \frac{V(\varphi)}{\Delta\varphi^{+}} \le 10^{-12}$ $Trans-Planckian\ problem$ $Singularity\ problem$

.....

Some other attempts Matter bounce, Ekpyrotic, String gas, pre big bang theory.....

- Contracting universe before big bang
- Cold pressureless matter
- Scale invariant spectrum
 Horizon crossing

$$\delta \varphi_* \propto H_* \propto t_*^{-1}$$

super horizon growing

$$\varsigma(t) \propto t^{-1}$$

- Contracting universe before big bang
- Cold pressureless matter
- Scale invariant spectrum
 Horizon crossing

$$\delta \varphi_* \propto H_* \propto t_*^{-1}$$

super horizon growing

$$\varsigma(t) \propto t^{-1}$$

- Contracting universe before big bang
- Cold pressureless matter
- Scale invariant spectrum
 Horizon crossing

$$\delta \varphi_* \propto H_* \propto t_*^{-1}$$

super horizon growing

$$\varsigma(t) \propto t^{-1}$$

- Contracting universe before big bang
- Cold pressureless matter
- Scale invariant spectrum
 Horizon crossing

$$\delta \varphi_* \propto H_* \propto t_*^{-1}$$

super horizon growing

$$\varsigma(t) \propto t^{-1}$$

- Contracting universe before big bang
- Cold pressureless matter
- Scale invariant spectrum
 Horizon crossing

$$\delta \varphi_* \propto H_* \propto t_*^{-1}$$

super horizon growing

$$\varsigma(t) \propto t^{-1}$$

- Contracting universe before big bang
- Cold pressureless matter
- Scale invariant spectrum
 Horizon crossing

$$\delta \varphi_* \propto H_* \propto t_*^{-1}$$

super horizon growing

$$\varsigma(t) \propto t^{-1}$$

- Contracting universe before big bang
- Cold pressureless matter
- Scale invariant spectrum
 Horizon crossing

$$\delta \varphi_* \propto H_* \propto t_*^{-1}$$

super horizon growing

$$\varsigma(t) \propto t^{-1}$$

- Contracting universe before big bang
- Cold pressureless matter
- Scale invariant spectrum
 Horizon crossing

$$\delta \varphi_* \propto H_* \propto t_*^{-1}$$

super horizon growing

$$\varsigma(t) \propto t^{-1}$$

- Contracting universe before big bang
- Cold pressureless matter
- Scale invariant spectrum
 Horizon crossing

$$\delta \varphi_* \propto H_* \propto t_*^{-1}$$

super horizon growing

$$\varsigma(t) \propto t^{-1}$$

- Contracting universe before big bang
- Cold pressureless matter
- Scale invariant spectrum
 Horizon crossing

$$\delta \varphi_* \propto H_* \propto t_*^{-1}$$

super horizon growing

$$\varsigma(t) \propto t^{-1}$$

- Contracting universe before big bang
- Cold pressureless matter
- Scale invariant spectrum
 Horizon crossing

$$\delta \varphi_* \propto H_* \propto t_*^{-1}$$

super horizon growing

$$\varsigma(t) \propto t^{-1}$$

- Contracting universe before big bang
- Cold pressureless matter
- Scale invariant spectrum
 Horizon crossing

$$\delta \varphi_* \propto H_* \propto t_*^{-1}$$

super horizon growing

$$\varsigma(t) \propto t^{-1}$$

- Contracting universe before big bang
- Cold pressureless matter
- Scale invariant spectrum
 Horizon crossing

$$\delta \varphi_* \propto H_* \propto t_*^{-1}$$

super horizon growing

$$\varsigma(t) \propto t^{-1}$$

- Contracting universe before big bang
- Cold pressureless matter
- Scale invariant spectrum
 Horizon crossing

$$\delta \varphi_* \propto H_* \propto t_*^{-1}$$

super horizon growing

$$\varsigma(t) \propto t^{-1}$$

- Contracting universe before big bang
- Cold pressureless matter
- Scale invariant spectrum
 Horizon crossing

$$\delta \varphi_* \propto H_* \propto t_*^{-1}$$

super horizon growing

$$\varsigma(t) \propto t^{-1}$$

- Contracting universe before big bang
- Cold pressureless matter
- Scale invariant spectrum
 Horizon crossing

$$\delta \varphi_* \propto H_* \propto t_*^{-1}$$

super horizon growing

$$\varsigma(t) \propto t^{-1}$$

- Contracting universe before big bang
- Cold pressureless matter
- Scale invariant spectrum
 Horizon crossing

$$\delta \varphi_* \propto H_* \propto t_*^{-1}$$

super horizon growing

$$\varsigma(t) \propto t^{-1}$$

- Contracting universe before big bang
- Cold pressureless matter
- Scale invariant spectrum
 Horizon crossing

$$\delta \varphi_* \propto H_* \propto t_*^{-1}$$

super horizon growing

$$\varsigma(t) \propto t^{-1}$$

- Contracting universe before big bang
- Cold pressureless matter
- Scale invariant spectrum
 Horizon crossing

$$\delta \varphi_* \propto H_* \propto t_*^{-1}$$

super horizon growing

$$\varsigma(t) \propto t^{-1}$$

- Contracting universe before big bang
- Cold pressureless matter
- Scale invariant spectrum
 Horizon crossing

$$\delta \varphi_* \propto H_* \propto t_*^{-1}$$

super horizon growing

$$\varsigma(t) \propto t^{-1}$$

Amplitude of the larger scale perturbation mode will catch up with the smaller scale perturbation mode.

Pirsa: 10090090 mode.

- Contracting universe before big bang
- Cold pressureless matter
- Scale invariant spectrum
 Horizon crossing

$$\delta \varphi_* \propto H_* \propto t_*^{-1}$$

super horizon growing

$$\varsigma(t) \propto t^{-1}$$

- Contracting universe before big bang
- Cold pressureless matter
- Scale invariant spectrum
 Horizon crossing

$$\delta \varphi_* \propto H_* \propto t_*^{-1}$$

super horizon growing

$$\varsigma(t) \propto t^{-1}$$

- Contracting universe before big bang
- Cold pressureless matter
- Scale invariant spectrum
 Horizon crossing

$$\delta \varphi_* \propto H_* \propto t_*^{-1}$$

super horizon growing

$$\varsigma(t) \propto t^{-1}$$

- Contracting universe before big bang
- Cold pressureless matter
- Scale invariant spectrum
 Horizon crossing

$$\delta \varphi_* \propto H_* \propto t_*^{-1}$$

super horizon growing

$$\varsigma(t) \propto t^{-1}$$

- Contracting universe before big bang
- Cold pressureless matter
- Scale invariant spectrum
 Horizon crossing

$$\delta \varphi_* \propto H_* \propto t_*^{-1}$$

super horizon growing

$$\varsigma(t) \propto t^{-1}$$

- Contracting universe before big bang
- Cold pressureless matter
- Scale invariant spectrum
 Horizon crossing

$$\delta \varphi_* \propto H_* \propto t_*^{-1}$$

super horizon growing

$$\varsigma(t) \propto t^{-1}$$

- Contracting universe before big bang
- Cold pressureless matter
- Scale invariant spectrum
 Horizon crossing

$$\delta \varphi_* \propto H_* \propto t_*^{-1}$$

super horizon growing

$$\varsigma(t) \propto t^{-1}$$

- Contracting universe before big bang
- Cold pressureless matter
- Scale invariant spectrum
 Horizon crossing

$$\delta \varphi_* \propto H_* \propto t_*^{-1}$$

super horizon growing

$$\varsigma(t) \propto t^{-1}$$

- Modifying gravity
- non-singular Universe

- higher derivative gravity action T. Biswas, A. Mazumdar and W. Siegel hep-th/0508194
- » mirage cosmology R. Brandenberger, H. Firouzjahi and O. Saremi, arXiv:0707.4181
- Horava-Lifshitz gravity P. Horava, arXiv:0904.2835

- Modifying matter
 quintom bounce, Lee-wick bounce......
- J.Cline, S.Jeon and G. Moore, hep-ph/0311312
- J. Karouby and R. Brandenberge arXiv:1004.4947
- Anisotropic stress scales as a^{-6}

- Modifying gravity
- non-singular Universe

- higher derivative gravity action T. Biswas, A. Mazumdar and W. Siegel hep-th/0508194
- » mirage cosmology R. Brandenberger, H. Firouzjahi and O. Saremi, arXiv:0707.4181
- Horava-Lifshitz gravity P. Horava, arXiv:0904.2835

- Modifying matter
 quintom bounce, Lee-wick bounce......
- J.Cline, S.Jeon and G. Moore, hep-ph/0311312
- J. Karouby and R. Brandenberge arXiv:1004.4947
- Anisotropic stress

- Modifying gravity
- non-singular Universe

R. H. Brandenberger, V. F. Mukhanov and A. Sornborger, gr-qc/9303001

- higher derivative gravity action T. Biswas, A. Mazumdar and W. Siegel hep-th/0508194
- » mirage cosmology R. Brandenberger, H. Firouzjahi and O. Saremi, arXiv:0707.4181
- Horava-Lifshitz gravity P. Horava, arXiv:0904.2835

Modifying matter
 quintom bounce, Lee-wick bounce......

- J.Cline, S.Jeon and G. Moore, hep-ph/0311312
- Bounce may be unstable
 J. Karouby and R. Brandenberge
 arXiv:1004.4947
- > Anisotropic stress

- Modifying gravity
- non-singular Universe

- higher derivative gravity action T. Biswas, A. Mazumdar and W. Siegel hep-th/0508194
- » mirage cosmology R. Brandenberger, H. Firouzjahi and O. Saremi, arXiv:0707.4181
- P. Horava, arXiv:0904.2835

- Modifying matter
 quintom bounce, Lee-wick bounce......
- J.Cline, S.Jeon and G. Moore, hep-ph/0311312
- J. Karouby and R. Brandenberge arXiv:1004.4947
- Anisotropic stress scales as a^{-6}

- Modifying gravity
- non-singular Universe

- higher derivative gravity action T. Biswas, A. Mazumdar and W. Siegel hep-th/0508194
- » mirage cosmology R. Brandenberger, H. Firouzjahi and O. Saremi, arXiv:0707.4181
- Horava-Lifshitz gravity P. Horava, arXiv:0904.2835

- Modifying matter
 quintom bounce, Lee-wick bounce......
- J.Cline, S.Jeon and G. Moore, hep-ph/0311312
- Bounce may be unstable J. Karouby and R. Brandenberge arXiv:1004.4947
- Anisotropic stress scales as a^{-6}

- Modifying gravity
- non-singular Universe

- higher derivative gravity action T. Biswas, A. Mazumdar and W. Siegel hep-th/0508194
- » mirage cosmology R. Brandenberger, H. Firouzjahi and O. Saremi, arXiv:0707.4181
- P. Horava, arXiv:0904.2835

- Modifying matter
 quintom bounce, Lee-wick bounce......
- J.Cline, S.Jeon and G. Moore, hep-ph/0311312
- J. Karouby and R. Brandenberge arXiv:1004.4947
- > Anisotropic stress scales as a^{-6}

- Modifying gravity
- non-singular Universe

- higher derivative gravity action T. Biswas, A. Mazumdar and W. Siegel hep-th/0508194
- » mirage cosmology R. Brandenberger, H. Firouzjahi and O. Saremi, arXiv:0707.4181
- Horava-Lifshitz gravity P. Horava, arXiv:0904.2835

- Modifying matter
 quintom bounce, Lee-wick bounce......
- J.Cline, S.Jeon and G. Moore, hep-ph/0311312
- J. Karouby and R. Brandenberge arXiv:1004.4947
- > Anisotropic stress

- Modifying gravity
- non-singular Universe

- higher derivative gravity action T. Biswas, A. Mazumdar and W. Siegel hep-th/0508194
- » mirage cosmology R. Brandenberger, H. Firouzjahi and O. Saremi, arXiv:0707.4181
- P. Horava, arXiv:0904.2835

- Modifying matter
 quintom bounce, Lee-wick bounce......
- J.Cline, S.Jeon and G. Moore, hep-ph/0311312
- Bounce may be unstable J. Karouby and R. Brandenberge arXiv:1004.4947
- Anisotropic stress scales as a^{-6}

- Modifying gravity
- non-singular Universe

- higher derivative gravity action T. Biswas, A. Mazumdar and W. Siegel hep-th/0508194
- » mirage cosmology R. Brandenberger, H. Firouzjahi and O. Saremi, arXiv:0707.4181
- Horava-Lifshitz gravity P. Horava, arXiv:0904.2835

- Modifying matter
 quintom bounce, Lee-wick bounce......
- J.Cline, S.Jeon and G. Moore, hep-ph/0311312
- J. Karouby and R. Brandenberge arXiv:1004.4947
- > Anisotropic stress scales as a^{-6}

- Modifying gravity
- non-singular Universe

- higher derivative gravity action T. Biswas, A. Mazumdar and W. Siegel hep-th/0508194
- » mirage cosmology R. Brandenberger, H. Firouzjahi and O. Saremi, arXiv:0707.4181
- P. Horava, arXiv:0904.2835

- Modifying matter
 quintom bounce, Lee-wick bounce......
- J.Cline, S.Jeon and G. Moore, hep-ph/0311312
- J. Karouby and R. Brandenberge arXiv:1004.4947
- > Anisotropic stress

- Modifying gravity
- non-singular Universe

- higher derivative gravity action T. Biswas, A. Mazumdar and W. Siegel hep-th/0508194
- » mirage cosmology R. Brandenberger, H. Firouzjahi and O. Saremi, arXiv:0707.4181
- Horava-Lifshitz gravity P. Horava, arXiv:0904.2835

- Modifying matter
 quintom bounce, Lee-wick bounce......
- J.Cline, S.Jeon and G. Moore, hep-ph/0311312
- J. Karouby and R. Brandenberge arXiv:1004.4947
- > Anisotropic stress

- Modifying gravity
- non-singular Universe

- higher derivative gravity action T. Biswas, A. Mazumdar and W. Siegel hep-th/0508194
- » mirage cosmology R. Brandenberger, H. Firouzjahi and O. Saremi, arXiv:0707.4181
- Horava-Lifshitz gravity P. Horava, arXiv:0904.2835

- Modifying matter
 quintom bounce, Lee-wick bounce......
- J.Cline, S.Jeon and G. Moore, hep-ph/0311312
- Bounce may be unstable J. Karouby and R. Brandenberge arXiv:1004.4947
- > Anisotropic stress

- Modifying gravity
- non-singular Universe

- higher derivative gravity action T. Biswas, A. Mazumdar and W. Siegel hep-th/0508194
- » mirage cosmology R. Brandenberger, H. Firouzjahi and O. Saremi, arXiv:0707.4181
- Horava-Lifshitz gravity
 P. Horava, arXiv:0904.2835

- Modifying matter
 quintom bounce, Lee-wick bounce......
- J.Cline, S.Jeon and G. Moore, hep-ph/0311312
- J. Karouby and R. Brandenberge arXiv:1004.4947
- > Anisotropic stress

- Modifying gravity
- non-singular Universe

- higher derivative gravity action T. Biswas, A. Mazumdar and W. Siegel hep-th/0508194
- » mirage cosmology R. Brandenberger, H. Firouzjahi and O. Saremi, arXiv:0707.4181
- Horava-Lifshitz gravity P. Horava, arXiv:0904.2835

- Modifying matter
 quintom bounce, Lee-wick bounce......
- J.Cline, S.Jeon and G. Moore, hep-ph/0311312
- J. Karouby and R. Brandenberge arXiv:1004.4947
- Anisotropic stress scales as a^{-6}

- Modifying gravity
- non-singular Universe

R. H. Brandenberger, V. F. Mukhanov and A. Sornborger, gr-qc/9303001

- higher derivative gravity action T. Biswas, A. Mazumdar and W. Siegel hep-th/0508194
- » mirage cosmology R. Brandenberger, H. Firouzjahi and O. Saremi, arXiv:0707.4181
- Horava-Lifshitz gravity P. Horava, arXiv:0904.2835

Modifying matter
 quintom bounce, Lee-wick bounce......

- J.Cline, S.Jeon and G. Moore, hep-ph/0311312
- J. Karouby and R. Brandenberge arXiv:1004.4947
- Anisotropic stress scales as a^{-6}

Ghost condensation

- Modifying gravity
- non-singular Universe

R. H. Brandenberger, V. F. Mukhanov and A. Sornborger, gr-qc/9303001

- higher derivative gravity action T. Biswas, A. Mazumdar and W. Siegel hep-th/0508194
- » mirage cosmology R. Brandenberger, H. Firouzjahi and O. Saremi, arXiv:0707.4181
- Horava-Lifshitz gravity P. Horava, arXiv:0904.2835

- Modifying matter
 quintom bounce, Lee-wick bounce......
 - Ghost instability

 J.Cline, S.Jeon and G. Moore, hep-ph/0311312
- J. Karouby and R. Brandenberge arXiv:1004.4947
- > Anisotropic stress scales as a^{-6}

Ghost condensation

Part II Ghost Condensation Theory

Pirsa: 10090090

$$L = -\frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi + \dots$$

$$P = \frac{1}{8} (X - c^2)^2, \quad X = \partial^{\mu} \phi \partial_{\mu} \phi$$

$$V_{tachyon} = -\frac{1}{2} m^2 \phi^2 + \lambda \phi^4 + \dots$$

$$L = -\frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi + \dots$$

$$P = \frac{1}{8} (X - c^2)^2, \quad X = \partial^{\mu} \phi \partial_{\mu} \phi$$

$$V_{tachyon} = -\frac{1}{2} m^2 \phi^2 + \lambda \phi^4 + \dots$$

$$L = -\frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi + \dots$$

$$P = \frac{1}{8} (X - c^2)^2, \quad X = \partial^{\mu} \phi \partial_{\mu} \phi$$

$$V_{tachyon} = -\frac{1}{2} m^2 \phi^2 + \lambda \phi^4 + \dots$$

$$L = -\frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi + \dots$$

$$P = \frac{1}{8} (X - c^2)^2, \quad X = \partial^{\mu} \phi \partial_{\mu} \phi$$

$$V_{tachyon} = -\frac{1}{2} m^2 \phi^2 + \lambda \phi^4 + \dots$$

$$L = -\frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi + \dots$$

$$P = \frac{1}{8}(X - c^2)^2, \quad X = \partial^{\mu}\phi\partial_{\mu}\phi$$

$$V_{tachyon} = -\frac{1}{2} m^2 \phi^2 + \lambda \phi^4 + \dots$$

$$L = -\frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi + \dots$$

$$P = \frac{1}{8}(X - c^2)^2, \quad X = \partial^{\mu}\phi \partial_{\mu}\phi$$

$$V_{tachyon} = -\frac{1}{2} m^2 \phi^2 + \lambda \phi^4 + \dots$$

$$L = -\frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi + \dots$$

$$P = \frac{1}{8}(X - c^2)^2, \quad X = \partial^{\mu}\phi\partial_{\mu}\phi$$

$$V_{tachyon} = -\frac{1}{2} m^2 \phi^2 + \lambda \phi^4 + \dots$$

$$L = -\frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi + \dots$$

$$P = \frac{1}{8}(X - c^2)^2, \quad X = \partial^{\mu}\phi\partial_{\mu}\phi$$

$$V_{tachyon} = -\frac{1}{2} m^2 \phi^2 + \lambda \phi^4 + \dots$$

$$L = -\frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi + \dots$$

$$P = \frac{1}{8} (X - c^2)^2, \quad X = \partial^{\mu} \phi \partial_{\mu} \phi$$

$$V_{tachyon} = -\frac{1}{2} m^2 \phi^2 + \lambda \phi^4 + \dots$$

$$L = -\frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi + \dots$$

$$P = \frac{1}{8} (X - c^2)^2, \quad X = \partial^{\mu} \phi \partial_{\mu} \phi$$

$$V_{tachyon} = -\frac{1}{2} m^2 \phi^2 + \lambda \phi^4 + \dots$$

$$L = -\frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi + \dots$$

$$P = \frac{1}{8} (X - c^2)^2, \quad X = \partial^{\mu} \phi \partial_{\mu} \phi$$

$$V_{tachyon} = -\frac{1}{2} m^2 \phi^2 + \lambda \phi^4 + \dots$$

 $T_{\mu\nu} = -M^4 P(X) g_{\mu\nu} + 2M^4 P'(X) \partial_{\mu} \phi \partial_{\nu} \phi$ where $P' \equiv \frac{\partial P}{\partial X}$

$$P'(X) = 0, \quad P(X) \neq 0$$

$$T_{\mu\nu} \rightarrow -g_{\mu\nu}M^4P(c_*^2)$$
,

$$w = -1$$

Inflation, Dark Energy

$$P'(X) \neq 0$$
, $P(X) = 0$

$$T_{00} \sim M^4 P' \sim a^{-3}, \quad T_{ij} = 0$$

$$w = 0$$

 $T_{\mu\nu} = -M^4 P(X) g_{\mu\nu} + 2M^4 P'(X) \partial_{\mu} \phi \partial_{\nu} \phi$ where $P' \equiv \frac{\partial P}{\partial X}$

$$P'(X) = 0, \quad P(X) \neq 0$$

$$T_{\mu\nu} \rightarrow -g_{\mu\nu}M^4P(c_*^2)$$
,

$$w = -1$$

Inflation, Dark Energy

$$P'(X) \neq 0$$
, $P(X) = 0$

$$T_{00} \sim M^4 P' \sim a^{-3}, \quad T_{ij} = 0$$

$$w = 0$$

 $T_{\mu\nu} = -M^4 P(X) g_{\mu\nu} + 2M^4 P'(X) \partial_{\mu} \phi \partial_{\nu} \phi$ where $P' \equiv \frac{\partial P}{\partial X}$

$$P'(X) = 0, \quad P(X) \neq 0$$

$$T_{\mu\nu} \rightarrow -g_{\mu\nu}M^4P(c_*^2)$$
,

$$w = -1$$

Inflation, Dark Energy

$$P'(X) \neq 0$$
, $P(X) = 0$

$$T_{00} \sim M^4 P' \sim a^{-3}, \quad T_{ij} = 0$$

$$w = 0$$

 $T_{\mu\nu} = -M^4 P(X) g_{\mu\nu} + 2M^4 P'(X) \partial_{\mu} \phi \partial_{\nu} \phi$ where $P' \equiv \frac{\partial P}{\partial X}$

$$P'(X) = 0, \quad P(X) \neq 0$$

$$T_{\mu\nu} \rightarrow -g_{\mu\nu}M^4P(c_*^2)$$
,

$$w = -1$$

Inflation, Dark Energy

$$P'(X) \neq 0$$
, $P(X) = 0$

$$T_{00} \sim M^4 P' \sim a^{-3}, \quad T_{ij} = 0$$

$$w = 0$$

 $T_{\mu\nu} = -M^4 P(X) g_{\mu\nu} + 2M^4 P'(X) \partial_{\mu} \phi \partial_{\nu} \phi$ where $P' \equiv \frac{\partial P}{\partial X}$

$$P'(X) = 0, \quad P(X) \neq 0$$

$$T_{\mu\nu} \rightarrow -g_{\mu\nu}M^4P(c_*^2)$$
,

$$w = -1$$

Inflation, Dark Energy

$$P'(X) \neq 0$$
, $P(X) = 0$

$$T_{00} \sim M^4 P' \sim a^{-3}, \quad T_{ij} = 0$$

$$w = 0$$

 $T_{\mu\nu} = -M^4 P(X) g_{\mu\nu} + 2M^4 P'(X) \partial_{\mu} \phi \partial_{\nu} \phi$ where $P' \equiv \frac{\partial P}{\partial X}$

$$P'(X) = 0, \quad P(X) \neq 0$$

$$T_{\mu\nu} \rightarrow -g_{\mu\nu}M^4P(c_*^2),$$

$$w = -1$$

Inflation, Dark Energy

$$P'(X) \neq 0$$
, $P(X) = 0$

$$T_{00} \sim M^4 P' \sim a^{-3}, \quad T_{ij} = 0$$

$$w = 0$$

 $T_{\mu\nu} = -M^4 P(X) g_{\mu\nu} + 2M^4 P'(X) \partial_{\mu} \phi \partial_{\nu} \phi$ where $P' \equiv \frac{\partial P}{\partial X}$

$$P'(X) = 0, \quad P(X) \neq 0$$

$$T_{\mu\nu} \rightarrow -g_{\mu\nu}M^4P(c_*^2)$$
,

$$w = -1$$

Inflation, Dark Energy

$$P'(X) \neq 0$$
, $P(X) = 0$

$$T_{00} \sim M^4 P' \sim a^{-3}, \quad T_{ij} = 0$$

$$w = 0$$

 $T_{\mu\nu} = -M^4 P(X) g_{\mu\nu} + 2M^4 P'(X) \partial_{\mu} \phi \partial_{\nu} \phi$ where $P' \equiv \frac{\partial P}{\partial X}$

$$P'(X) = 0$$
, $P(X) \neq 0$

$$T_{\mu\nu} \rightarrow -g_{\mu\nu}M^4P(c_*^2),$$

$$w = -1$$

Inflation, Dark Energy

$$P'(X) \neq 0$$
, $P(X) = 0$

$$T_{00} \sim M^4 P' \sim a^{-3}, \quad T_{ij} = 0$$

$$w = 0$$

 $T_{\mu\nu} = -M^4 P(X) g_{\mu\nu} + 2M^4 P'(X) \partial_{\mu} \phi \partial_{\nu} \phi$ where $P' \equiv \frac{\partial P}{\partial X}$

$$P'(X) = 0, \quad P(X) \neq 0$$

$$T_{\mu\nu} \rightarrow -g_{\mu\nu}M^4P(c_*^2),$$

$$w = -1$$

Inflation, Dark Energy

$$P'(X) \neq 0$$
, $P(X) = 0$

$$T_{00} \sim M^4 P' \sim a^{-3}, \quad T_{ij} = 0$$

$$w = 0$$

 $T_{\mu\nu} = -M^4 P(X) g_{\mu\nu} + 2M^4 P'(X) \partial_{\mu} \phi \partial_{\nu} \phi$ where $P' \equiv \frac{\partial P}{\partial X}$

$$P'(X) = 0, \quad P(X) \neq 0$$

$$T_{\mu\nu} \rightarrow -g_{\mu\nu}M^4P(c_*^2)$$
,

$$w = -1$$

Inflation, Dark Energy

$$P'(X) \neq 0$$
, $P(X) = 0$

$$T_{00} \sim M^4 P' \sim a^{-3}, \quad T_{ij} = 0$$

$$w = 0$$

 $T_{\mu\nu} = -M^4 P(X) g_{\mu\nu} + 2M^4 P'(X) \partial_{\mu} \phi \partial_{\nu} \phi$ where $P' \equiv \frac{\partial P}{\partial X}$

$$P'(X) = 0, \quad P(X) \neq 0$$

$$T_{\mu\nu} \rightarrow -g_{\mu\nu}M^4P(c_*^2),$$

$$w = -1$$

Inflation, Dark Energy

$$P'(X) \neq 0$$
, $P(X) = 0$

$$T_{00} \sim M^4 P' \sim a^{-3}, \quad T_{ij} = 0$$

$$w = 0$$

 $T_{\mu\nu} = -M^4 P(X) g_{\mu\nu} + 2M^4 P'(X) \partial_{\mu}\phi \partial_{\nu}\phi$ where $P' \equiv \frac{\partial P}{\partial X}$

$$P'(X) = 0$$
, $P(X) \neq 0$

$$T_{\mu\nu} \rightarrow -g_{\mu\nu}M^4P(c_*^2)$$
,

$$w = -1$$

Inflation, Dark Energy

$$P'(X) \neq 0$$
, $P(X) = 0$

$$T_{00} \sim M^4 P' \sim a^{-3}, \quad T_{ij} = 0$$

$$w = 0$$

 $T_{\mu\nu} = -M^4 P(X) g_{\mu\nu} + 2M^4 P'(X) \partial_{\mu} \phi \partial_{\nu} \phi$ where $P' \equiv \frac{\partial P}{\partial X}$

$$P'(X) = 0$$
, $P(X) \neq 0$

$$T_{\mu\nu} \rightarrow -g_{\mu\nu}M^4P(c_*^2)$$
,

$$w = -1$$

Inflation, Dark Energy

$$P'(X) \neq 0$$
, $P(X) = 0$

$$T_{00} \sim M^4 P' \sim a^{-3}, \quad T_{ij} = 0$$

$$w = 0$$

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

 $v^2 \sim k^2/M^2$.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

$$v^2 \sim k^2/M^2$$
.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$. Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

 $v^2 \sim k^2/M^2$.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

$$v^2 \sim k^2/M^2$$
.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int \!\! d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

Pirsa: 10090090

$$\omega^2 \sim \frac{k^4}{M^2}.$$

 $v^2 \sim k^2/M^2$.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$. Group velocity

Pirsa: 10090090

$$\omega^2 \sim \frac{k^4}{M^2}.$$

 $v^2 \sim k^2/M^2$.

Page 123/901

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$. Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

 $v^2 \sim k^2/M^2$.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$. Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

$$v^2 \sim k^2/M^2$$
.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int \!\! d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

 $v^2 \sim k^2/M^2$.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int \!\! d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

$$v^2 \sim k^2/M^2$$
.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

 $v^2 \sim k^2/M^2$.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

$$v^2 \sim k^2/M^2$$
.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = ct + \pi$$

Low energy effective action for π is

$$S \sim \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$. Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

$$v^2 \sim k^2/M^2$$
.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int \!\! d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}$$
.

 $v^2 \sim k^2/M^2$.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int \!\! d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

 $v^2 \sim k^2/M^2$.

 $T_{\mu\nu} = -M^4 P(X) g_{\mu\nu} + 2M^4 P'(X) \partial_{\mu} \phi \partial_{\nu} \phi$ where $P' \equiv \frac{\partial P}{\partial X}$

$$P'(X) = 0$$
, $P(X) \neq 0$

$$T_{\mu\nu} \rightarrow -g_{\mu\nu}M^4P(c_*^2)$$
,

$$w = -1$$

Inflation, Dark Energy

$$P'(X) \neq 0$$
, $P(X) = 0$

$$T_{00} \sim M^4 P' \sim a^{-3}, \quad T_{ij} = 0$$

$$w = 0$$

$$L = -\frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi + \dots$$

$$P = \frac{1}{8} (X - c^2)^2, \quad X = \partial^{\mu} \phi \partial_{\mu} \phi$$

$$V_{tachyon} = -\frac{1}{2} m^2 \phi^2 + \lambda \phi^4 + \dots$$

$$L = -\frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi + \dots$$

$$P = \frac{1}{8} (X - c^2)^2, \quad X = \partial^{\mu} \phi \partial_{\mu} \phi$$

$$V_{tachyon} = -\frac{1}{2} m^2 \phi^2 + \lambda \phi^4 + \dots$$

$$L = -\frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi + \dots$$

$$P = \frac{1}{8} (X - c^2)^2, \quad X = \partial^{\mu} \phi \partial_{\mu} \phi$$

$$V_{tachyon} = -\frac{1}{2} m^2 \phi^2 + \lambda \phi^4 + \dots$$

$$L = -\frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi + \dots$$

$$P = \frac{1}{8} (X - c^2)^2, \quad X = \partial^{\mu} \phi \partial_{\mu} \phi$$

$$V_{tachyon} = -\frac{1}{2} m^2 \phi^2 + \lambda \phi^4 + \dots$$

 $T_{\mu\nu} = -M^4 P(X) g_{\mu\nu} + 2M^4 P'(X) \partial_{\mu} \phi \partial_{\nu} \phi$ where $P' \equiv \frac{\partial P}{\partial X}$

$$P'(X) = 0$$
, $P(X) \neq 0$

$$T_{\mu\nu} \rightarrow -g_{\mu\nu}M^4P(c_*^2)$$
,

$$w = -1$$

Inflation, Dark Energy

$$P'(X) \neq 0, \quad P(X) = 0$$

$$T_{00} \sim M^4 P' \sim a^{-3}, \quad T_{ij} = 0$$

$$w = 0$$

res

 $\partial^{\nu}\phi\partial_{\mu}\partial_{\nu}\phi + \cdots$.

excitation

Application:

 $T_{\mu\nu} = -M^4 P(X)g_{\mu\nu} + 2M^4 P'(X)\partial_{\mu}$

$$P'(X) = 0$$
, $P(X) \neq 0$

$$T_{\mu\nu} \to -g_{\mu\nu} M^4 P(c_*^2)$$
.

$$w = -1$$

Inflation, Dark Energy

$$P'(X) \neq$$

$$T_{00} \sim M^4 I$$

Matter Bounce

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int \!\! d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}$$
.

 $v^2 \sim k^2/M^2$.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = ct + \pi$$

Low energy effective action for π is

$$S \sim \int \!\! d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

Pirsa: 10090090

$$\omega^2 \sim \frac{k^4}{M^2}.$$

 $v^2 \sim k^2/M^2$.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = ct + \pi$$

Low energy effective action for π is

$$S \sim \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$. Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

 $v^2 \sim k^2/M^2$.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = ct + \pi$$

Low energy effective action for π is

$$S \sim \int \!\! d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$. Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

$$v^2 \sim k^2/M^2$$
.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$. Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

 $v^2 \sim k^2/M^2$.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$. Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

 $v^2 \sim k^2/M^2$.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

$$v^2 \sim k^2/M^2$$
.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

 $v^2 \sim k^2/M^2$.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = ct + \pi$$

Low energy effective action for π is

$$S \sim \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$. Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

 $v^2 \sim k^2/M^2$.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int \!\! d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

Pirsa: 10090090

$$\omega^2 \sim \frac{k^4}{M^2}.$$

 $v^2 \sim k^2/M^2$.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = ct + \pi$$

Low energy effective action for π is

$$S \sim \int \!\! d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$. Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

 $v^2 \sim k^2/M^2$.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

 $v^2 \sim k^2/M^2$.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = ct + \pi$$

Low energy effective action for π is

$$S \sim \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

 $v^2 \sim k^2/M^2$.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = ct + \pi$$

Low energy effective action for π is

$$S \sim \int \!\! d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

$$v^2 \sim k^2/M^2$$
.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$. Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

 $v^2 \sim k^2/M^2$.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

 $v^2 \sim k^2/M^2$.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$. Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

 $v^2 \sim k^2/M^2$.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$. Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

$$v^2 \sim k^2/M^2$$
.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$. Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

$$v^2 \sim k^2/M^2$$
.

Pirsa: 10090090 Page 158/901

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = ct + \pi$$

Low energy effective action for π is

$$S \sim \int \!\! d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

 $v^2 \sim k^2/M^2$.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int \!\! d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

 $v^2 \sim k^2/M^2$.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

 $v^2 \sim k^2/M^2$.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

 $v^2 \sim k^2/M^2$.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int \!\! d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}$$

 $v^2 \sim k^2/M^2$.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = ct + \pi$$

Low energy effective action for π is

$$S \sim \int \!\! d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

 $v^2 \sim k^2/M^2$.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = ct + \pi$$

Low energy effective action for π is

$$S \sim \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

 $v^2 \sim k^2/M^2$.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int \!\! d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right].$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

$$v^2 \sim k^2/M^2$$
.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

 $v^2 \sim k^2/M^2$.

- > Small lumps expand faster than larger lumps since $\omega^2 \sim \frac{k^4}{M^2}$.
- > Small lumps also move faster than larger lumps since $v^2 \sim k^2/M^2$.

- > Small lumps expand faster than larger lumps since $\omega^2 \sim \frac{k^4}{M^2}$.
- > Small lumps also move faster than larger lumps since $v^2 \sim k^2/M^2$.

- > Small lumps expand faster than larger lumps since $\omega^2 \sim \frac{k^4}{M^2}$.
- > Small lumps also move faster than larger lumps since $v^2 \sim k^2/M^2$.

- > Small lumps expand faster than larger lumps since $\omega^2 \sim \frac{k^4}{M^2}$.
- > Small lumps also move faster than larger lumps since $v^2 \sim k^2/M^2$.

- > Small lumps expand faster than larger lumps since $\omega^2 \sim \frac{k^4}{M^2}$.
- > Small lumps also move faster than larger lumps since $v^2 \sim k^2/M^2$.

"Particle physics" energy density

$$\mathcal{E}_{pp} = \int d^3x \, T_{00} - c_* Q \sim \frac{1}{2} \dot{\pi}^2 + \frac{(\nabla^2 \pi)^2}{2M^2} + \cdots$$
 Inertial Mass!

Gravitational energy density

"Particle physics" energy density

$$\mathcal{E}_{pp} = \int d^3x \, T_{00} - c_* Q \sim \frac{1}{2} \dot{\pi}^2 + \frac{(\nabla^2 \pi)^2}{2M^2} + \cdots$$
 Inertial Mass!

Gravitational energy density

Pirsa: 10090090

"Particle physics" energy density

$$\mathcal{E}_{pp} = \int d^3x \, T_{00} - c_* Q \sim \frac{1}{2} \dot{\pi}^2 + \frac{(\nabla^2 \pi)^2}{2M^2} + \cdots$$
 Inertial Mass!

Gravitational energy density

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

 $v^2 \sim k^2/M^2$.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = ct + \pi$$

Low energy effective action for π is

$$S \sim \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

 $v^2 \sim k^2/M^2$.

"Particle physics" energy density

$$\mathcal{E}_{pp} = \int d^3x \, T_{00} - c_* Q \sim \frac{1}{2} \dot{\pi}^2 + \frac{(\nabla^2 \pi)^2}{2M^2} + \cdots$$
 Inertial Mass!

Gravitational energy density

Pirsa: 10090090

"Particle physics" energy density

$$\mathcal{E}_{pp} = \int d^3x \, T_{00} - c_* Q \sim \frac{1}{2} \dot{\pi}^2 + \frac{(\nabla^2 \pi)^2}{2M^2} + \cdots$$
 Inertial Mass!

Gravitational energy density

$$\mathcal{E}_{pp} = \int d^3x \, T_{00} - c_* Q \sim \frac{1}{2} \dot{\pi}^2 + \frac{(\nabla^2 \pi)^2}{2M^2} + \cdots$$
 Inertial Mass!

Gravitational energy density

"Particle physics" energy density

$$\mathcal{E}_{pp} = \int d^3x \, T_{00} - c_* Q \sim \frac{1}{2} \dot{\pi}^2 + \frac{(\nabla^2 \pi)^2}{2M^2} + \cdots$$
 Inertial Mass!

Gravitational energy density

"Particle physics" energy density

$$\mathcal{E}_{pp} = \int d^3x \, T_{00} - c_* Q \sim \frac{1}{2} \dot{\pi}^2 + \frac{(\nabla^2 \pi)^2}{2M^2} + \cdots$$
 Inertial Mass!

Gravitational energy density

"Particle physics" energy density

$$\mathcal{E}_{pp} = \int d^3x \, T_{00} - c_* Q \sim \frac{1}{2} \dot{\pi}^2 + \frac{(\nabla^2 \pi)^2}{2M^2} + \cdots$$
 Inertial Mass!

Gravitational energy density

"Particle physics" energy density

$$\mathcal{E}_{pp} = \int d^3x \, T_{00} - c_* Q \sim \frac{1}{2} \dot{\pi}^2 + \frac{(\nabla^2 \pi)^2}{2M^2} + \cdots$$
 Inertial Mass!

Gravitational energy density

"Particle physics" energy density

$$\mathcal{E}_{pp} = \int d^3x \, T_{00} - c_* Q \sim \frac{1}{2} \dot{\pi}^2 + \frac{(\nabla^2 \pi)^2}{2M^2} + \cdots$$
 Inertial Mass!

Gravitational energy density

"Particle physics" energy density

$$\mathcal{E}_{pp} = \int d^3x \, T_{00} - c_* Q \sim \frac{1}{2} \dot{\pi}^2 + \frac{(\nabla^2 \pi)^2}{2M^2} + \cdots$$
 Inertial Mass!

Gravitational energy density

"Particle physics" energy density

$$\mathcal{E}_{pp} = \int d^3x \, T_{00} - c_* Q \sim \frac{1}{2} \dot{\pi}^2 + \frac{(\nabla^2 \pi)^2}{2M^2} + \cdots$$
 Inertial Mass!

Gravitational energy density

Pirsa: 10090090

"Particle physics" energy density

$$\mathcal{E}_{pp} = \int d^3x \, T_{00} - c_* Q \sim \frac{1}{2} \dot{\pi}^2 + \frac{(\nabla^2 \pi)^2}{2M^2} + \cdots$$
 Inertial Mass!

Gravitational energy density

"Particle physics" energy density

$$\mathcal{E}_{pp} = \int d^3x \, T_{00} - c_* Q \sim \frac{1}{2} \dot{\pi}^2 + \frac{(\nabla^2 \pi)^2}{2M^2} + \cdots$$
 Inertial Mass!

Gravitational energy density

"Particle physics" energy density

$$\mathcal{E}_{pp} = \int d^3x \, T_{00} - c_* Q \sim \frac{1}{2} \dot{\pi}^2 + \frac{(\nabla^2 \pi)^2}{2M^2} + \cdots$$
 Inertial Mass!

Gravitational energy density

"Particle physics" energy density

$$\mathcal{E}_{pp} = \int d^3x \, T_{00} - c_* Q \sim \frac{1}{2} \dot{\pi}^2 + \frac{(\nabla^2 \pi)^2}{2M^2} + \cdots$$
 Inertial Mass!

Gravitational energy density

$$\mathcal{E}_{pp} = \int d^3x \, T_{00} - c_* Q \sim \frac{1}{2} \dot{\pi}^2 + \frac{(\nabla^2 \pi)^2}{2M^2} + \cdots$$
 Inertial Mass!

➤ Gravitational energy density

 $\mathcal{E}_{\text{grav}} = T_{00} \sim M^2 \dot{\pi} + \cdots$

Gravitational Wass

- > Small lumps expand faster than larger lumps since $\omega^2 \sim \frac{k^4}{M^2}$.
- > Small lumps also move faster than larger lumps since $v^2 \sim k^2/M^2$.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int \!\! d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

 $v^2 \sim k^2/M^2$.

Pirsa: 10090090

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

 $v^2 \sim k^2/M^2$.

Pirsa: 10090090

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = ct + \pi$$

Low energy effective action for π is

$$S \sim \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$. Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

$$v^2 \sim k^2/M^2.$$

Pirsa: 10090090

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int \!\! d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$. Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

 $v^2 \sim k^2/M^2$.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = ct + \pi$$

Low energy effective action for π is

$$S \sim \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

$$v^2 \sim k^2/M^2.$$

Pirsa: 10090090 Page 198/901

"Particle physics" energy density

$$\mathcal{E}_{pp} = \int d^3x \, T_{00} - c_* Q \sim \frac{1}{2} \dot{\pi}^2 + \frac{(\nabla^2 \pi)^2}{2M^2} + \cdots$$
 Inertial Mass!

Gravitational energy density

Applications

 $T_{\mu\nu} = -M^4 P(X) g_{\mu\nu} + 2M^4 P'(X) \partial_{\mu} \phi \partial_{\nu} \phi$ where $P' \equiv \frac{\partial P}{\partial X}$

$$P'(X) = 0$$
, $P(X) \neq 0$

$$T_{\mu\nu} \rightarrow -g_{\mu\nu}M^4P(c_*^2)$$
,

$$w = -1$$

Inflation, Dark Energy

$$P'(X) \neq 0$$
, $P(X) = 0$

$$T_{00} \sim M^4 P' \sim a^{-3}, \quad T_{ij} = 0$$

$$w = 0$$

Dark matter

Applications

$$T_{\mu\nu} = -M^4 P(X) g_{\mu\nu} + 2M^4 P'(X) \partial_{\mu} \phi \partial_{\nu} \phi$$
 where $P' \equiv \frac{\partial P}{\partial X}$

Inflation, Dark Energy

Dark matter

$$L = -\frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi + \dots$$

$$P = \frac{1}{8} (X - c^2)^2, \quad X = \partial^{\mu} \phi \partial_{\mu} \phi$$

$$V_{tachyon} = -\frac{1}{2} m^2 \phi^2 + \lambda \phi^4 + \dots$$

$$L = -\frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi + \dots$$

$$P = \frac{1}{8} (X - c^2)^2, \quad X = \partial^{\mu} \phi \partial_{\mu} \phi$$

$$V_{tachyon} = -\frac{1}{2} m^2 \phi^2 + \lambda \phi^4 + \dots$$

$$L = -\frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi + \dots$$

$$P = \frac{1}{8} (X - c^2)^2, \quad X = \partial^{\mu} \phi \partial_{\mu} \phi$$

$$V_{tachyon} = -\frac{1}{2} m^2 \phi^2 + \lambda \phi^4 + \dots$$

$$L = -\frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi + \dots$$

$$P = \frac{1}{8} (X - c^2)^2, \quad X = \partial^{\mu} \phi \partial_{\mu} \phi$$

$$V_{tachyon} = -\frac{1}{2} m^2 \phi^2 + \lambda \phi^4 + \dots$$

$$L = -\frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi + \dots$$

$$P = \frac{1}{8} (X - c^2)^2, \quad X = \partial^{\mu} \phi \partial_{\mu} \phi$$

$$V_{tachyon} = -\frac{1}{2} m^2 \phi^2 + \lambda \phi^4 + \dots$$

$$L = -\frac{1}{2} \, \partial^{\mu} \phi \partial_{\mu} \phi + \dots$$

$$P = \frac{1}{8} (X - c^2)^2, \quad X = \partial^{\mu} \phi \partial_{\mu} \phi$$

$$V_{tachyon} = -\frac{1}{2} m^2 \phi^2 + \lambda \phi^4 + \dots$$

$$L = -\frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi + \dots$$

$$P = \frac{1}{8} (X - c^2)^2, \quad X = \partial^{\mu} \phi \partial_{\mu} \phi$$

$$V_{tachyon} = -\frac{1}{2} m^2 \phi^2 + \lambda \phi^4 + \dots$$

Applications

 $T_{\mu\nu} = -M^4 P(X) g_{\mu\nu} + 2M^4 P'(X) \partial_{\mu} \phi \partial_{\nu} \phi$ where $P' \equiv \frac{\partial P}{\partial X}$

$$P'(X) = 0, \quad P(X) \neq 0$$

$$T_{\mu\nu} \rightarrow -g_{\mu\nu}M^4P(c_*^2)$$
,

$$w = -1$$

Inflation, Dark Energy

$$P'(X) \neq 0$$
, $P(X) = 0$

$$T_{00} \sim M^4 P' \sim a^{-3}, \quad T_{ij} = 0$$

$$w = 0$$

Dark matter

More g

 $\mathcal{L} =$

Ghost

Lower

- > Small lumps expand faster than larger lumps since $\omega^2 \sim \frac{k^4}{M^2}$.
- \succ Small lumps also move faster than larger lumps since $v^2 \sim k^2$

The dis

Lorentz invariance

$$\mathcal{E}_{pp} = \int d^3x \, T_{00} - c_* Q \sim \frac{1}{2} \dot{\pi}^2 + \frac{(\nabla^2 \pi)^2}{2M^2} + \cdots$$
 Inertial Mass!

Gravitational energy density

Lumps come from scalar excitation, its energy density always positive in terms of "particle physics", but the induced gravity can be either attractive or repulsive!

 $\dot{\pi} > 0$

attractive

Pirsa: 10090090

repulsive

"Particle physics" energy density

$$\mathcal{E}_{pp} = \int d^3x \, T_{00} - c_* Q \sim \frac{1}{2} \dot{\pi}^2 + \frac{(\nabla^2 \pi)^2}{2M^2} + \cdots$$
 Inertial Mass!

Gravitational energy density

"Particle physics" energy density

$$\mathcal{E}_{pp} = \int d^3x \, T_{00} - c_* Q \sim \frac{1}{2} \dot{\pi}^2 + \frac{(\nabla^2 \pi)^2}{2M^2} + \cdots$$
 Inertial Mass!

Gravitational energy density

Pirsa: 10090090

Lumps come from scalar excitation, its energy density always positive in terms of "particle physics", but the induced gravity can be either attractive or repulsive!

 $\dot{\pi} > 0$

attractive

 $\dot{\pi} < 0$

repulsive

"Particle physics" energy density

$$\mathcal{E}_{pp} = \int d^3x \, T_{00} - c_* Q \sim \frac{1}{2} \dot{\pi}^2 + \frac{(\nabla^2 \pi)^2}{2M^2} + \cdots$$
 Inertial Mass!

Gravitational energy density

"Particle physics" energy density

$$\mathcal{E}_{pp} = \int d^3x \, T_{00} - c_* Q \sim \frac{1}{2} \dot{\pi}^2 + \frac{(\nabla^2 \pi)^2}{2M^2} + \cdots$$
 Inertial Mass!

Gravitational energy density

Pirsa: 10090090

"Particle physics" energy density

$$\mathcal{E}_{pp} = \int d^3x \, T_{00} - c_* Q \sim \frac{1}{2} \dot{\pi}^2 + \frac{(\nabla^2 \pi)^2}{2M^2} + \cdots$$
 Inertial Mass!

Gravitational energy density

Pirsa: 10090090

"Particle physics" energy density

$$\mathcal{E}_{pp} = \int d^3x \, T_{00} - c_* Q \sim \frac{1}{2} \dot{\pi}^2 + \frac{(\nabla^2 \pi)^2}{2M^2} + \cdots$$
 Inertial Mass!

Gravitational energy density

Lumps come from scalar excitation, its energy density always positive in terms of "particle physics", but the induced gravity can be either attractive or repulsive!

 $\dot{\pi} > 0$

attractive

 $\dot{\pi} < 0$

Lumps come from scalar excitation, its energy density always positive in terms of "particle physics", but the induced gravity can be either attractive or repulsive!

 $\dot{\pi} > 0$

attractive

 $\dot{\pi} < 0$

Lumps come from scalar excitation, its energy density always positive in terms of "particle physics", but the induced gravity can be either attractive or repulsive!

 $\dot{\pi} > 0$

attractive

 $\dot{\pi} < 0$

Lumps come from scalar excitation, its energy density always positive in terms of "particle physics", but the induced gravity can be either attractive or repulsive!

 $\dot{\pi} > 0$

attractive

 $\dot{\pi} < 0$

"Particle physics" energy density

$$\mathcal{E}_{pp} = \int d^3x \, T_{00} - c_* Q \sim \frac{1}{2} \dot{\pi}^2 + \frac{(\nabla^2 \pi)^2}{2M^2} + \cdots$$
 Inertial Mass!

Gravitational energy density

Pirsa: 10090090

"Particle physics" energy density

$$\mathcal{E}_{pp} = \int d^3x \, T_{00} - c_* Q \sim \frac{1}{2} \dot{\pi}^2 + \frac{(\nabla^2 \pi)^2}{2M^2} + \cdots$$
 Inertial Mass!

Gravitational energy density

"Particle physics" energy density

$$\mathcal{E}_{pp} = \int d^3x \, T_{00} - c_* Q \sim \frac{1}{2} \dot{\pi}^2 + \frac{(\nabla^2 \pi)^2}{2M^2} + \cdots$$
 Inertial Mass!

Gravitational energy density

"Particle physics" energy density

$$\mathcal{E}_{pp} = \int d^3x \, T_{00} - c_* Q \sim \frac{1}{2} \dot{\pi}^2 + \frac{(\nabla^2 \pi)^2}{2M^2} + \cdots$$
 Inertial Mass!

Gravitational energy density

Pirsa: 10090090

"Particle physics" energy density

$$\mathcal{E}_{pp} = \int d^3x \, T_{00} - c_* Q \sim \frac{1}{2} \dot{\pi}^2 + \frac{(\nabla^2 \pi)^2}{2M^2} + \cdots$$
 Inertial Mass!

Gravitational energy density

Pirsa: 10090090

Lumps come from scalar excitation, its energy density always positive in terms of "particle physics", but the induced gravity can be either attractive or repulsive!

 $\dot{\pi} > 0$

attractive

 $\dot{\pi} < 0$

Lumps come from scalar excitation, its energy density always positive in terms of "particle physics", but the induced gravity can be either attractive or repulsive!

 $\dot{\pi} > 0$

attractive

 $\dot{\pi} < 0$

Pirsa: 10090090

"Particle physics" energy density

$$\mathcal{E}_{pp} = \int d^3x \, T_{00} - c_* Q \sim \frac{1}{2} \dot{\pi}^2 + \frac{(\nabla^2 \pi)^2}{2M^2} + \cdots$$
 Inertial Mass!

Gravitational energy density

Lumps come from scalar excitation, its energy density always positive in terms of "particle physics", but the induced gravity can be either attractive or repulsive!

 $\dot{\pi} > 0$

attractive

 $\dot{\pi} < 0$

Lumps come from scalar excitation, its energy density always positive in terms of "particle physics", but the induced gravity can be either attractive or repulsive!

 $\dot{\pi} > 0$

attractive

 $\dot{\pi} < 0$

Lumps come from scalar excitation, its energy density always positive in terms of "particle physics", but the induced gravity can be either attractive or repulsive!

 $\dot{\pi} > 0$

attractive

 $\dot{\pi} < 0$

For a fluid with pressure p and energy density ρ,

$$\omega^2 = \frac{\delta p}{\delta \rho} k^2 - \omega_J^2$$
, where $\omega_J^2 = \frac{\rho}{2M_{Pl}^2}$.

When $\omega^2 < 0$, Jeans collapse happens.

$$L_{\rm J} \sim \frac{M_{\rm Pl}}{M^2}.$$
 $T_{\rm J} \sim \frac{M_{\rm Pl}^2}{M^3}$

In linear regime, fluctuation with wavelength $\lambda \gtrsim L_{\rm J}$ grows on a time scale $\tau \sim T_{\rm J} \frac{\lambda}{L_{\rm J}}$. So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} {\rm eV}$ Ghost condensation plays the role of DE.

For a fluid with pressure p and energy density ρ,

$$\omega^2 = \frac{\delta p}{\delta \rho} k^2 - \omega_J^2$$
, where $\omega_J^2 = \frac{\rho}{2M_{Pl}^2}$.

When $\omega^2 < 0$, Jeans collapse happens.

$$L_{\rm J} \sim \frac{M_{\rm Pl}}{M^2}$$
, $T_{\rm J} \sim \frac{M_{\rm Pl}^2}{M^3}$

In linear regime, fluctuation with wavelength $\lambda \gtrsim L_{\rm J}$ grows on a time scale $\tau \sim T_{\rm J} \frac{\lambda}{L_{\rm J}}$. So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} {\rm eV}$ Ghost condensation plays the role of DE.

For a fluid with pressure p and energy density ρ,

$$\omega^2 = \frac{\delta p}{\delta \rho} k^2 - \omega_J^2$$
, where $\omega_J^2 = \frac{\rho}{2M_{Pl}^2}$.

When $\omega^2 < 0$, Jeans collapse happens.

$$L_{\rm J} \sim \frac{M_{\rm Pl}}{M^2}$$
, $T_{\rm J} \sim \frac{M_{\rm Pl}^2}{M^3}$

In linear regime, fluctuation with wavelength $\lambda \gtrsim L_{\rm J}$ grows on a time scale $\tau \sim T_{\rm J} \frac{\lambda}{L_{\rm J}}$. So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} {\rm eV}$ Ghost condensation plays the role of DE.

For a fluid with pressure p and energy density ρ,

$$\omega^2 = \frac{\delta p}{\delta \rho} k^2 - \omega_J^2$$
, where $\omega_J^2 = \frac{\rho}{2M_{Pl}^2}$.

When $\omega^2 < 0$, Jeans collapse happens.

$$L_{\rm J} \sim \frac{M_{\rm Pl}}{M^2}$$
, $T_{\rm J} \sim \frac{M_{\rm Pl}^2}{M^3}$

In linear regime, fluctuation with wavelength $\lambda \gtrsim L_{\rm J}$ grows on a time scale $\tau \sim T_{\rm J} \frac{\lambda}{L_{\rm J}}$. So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} {\rm eV}$ Ghost condensation plays the role of DE.

For a fluid with pressure p and energy density ρ,

$$\omega^2 = \frac{\delta p}{\delta \rho} k^2 - \omega_J^2$$
, where $\omega_J^2 = \frac{\rho}{2M_{Pl}^2}$.

When $\omega^2 < 0$, Jeans collapse happens.

$$L_{\rm J} \sim \frac{M_{\rm Pl}}{M^2}.$$
 $T_{\rm J} \sim \frac{M_{\rm Pl}^2}{M^3}$

In linear regime, fluctuation with wavelength $\lambda \gtrsim L_{\rm J}$ grows on a time scale $\tau \sim T_{\rm J} \frac{\lambda}{L_{\rm J}}$. So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} {\rm eV}$ Ghost condensation plays the role of DE.

For a fluid with pressure p and energy density ρ,

$$\omega^2 = \frac{\delta p}{\delta \rho} k^2 - \omega_J^2$$
, where $\omega_J^2 = \frac{\rho}{2M_{Pl}^2}$.

When $\omega^2 < 0$, Jeans collapse happens.

$$L_{\rm J} \sim \frac{M_{\rm Pl}}{M^2}$$
, $T_{\rm J} \sim \frac{M_{\rm Pl}^2}{M^3}$

In linear regime, fluctuation with wavelength $\lambda \gtrsim L_{\rm J}$ grows on a time scale $\tau \sim T_{\rm J} \frac{\lambda}{L_{\rm J}}$. So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} {\rm eV}$ Ghost condensation plays the role of DE.

For a fluid with pressure p and energy density ρ,

$$\omega^2 = \frac{\delta p}{\delta \rho} k^2 - \omega_J^2$$
, where $\omega_J^2 = \frac{\rho}{2M_{Pl}^2}$.

When $\omega^2 < 0$, Jeans collapse happens.

$$L_{\rm J} \sim \frac{M_{\rm Pl}}{M^2}$$
. $T_{\rm J} \sim \frac{M_{\rm Pl}^2}{M^3}$

In linear regime, fluctuation with wavelength $\lambda \gtrsim L_{\rm J}$ grows on a time scale $\tau \sim T_{\rm J} \frac{\lambda}{L_{\rm J}}$. So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} {\rm eV}$ Ghost condensation plays the role of DE.

For a fluid with pressure p and energy density ρ,

$$\omega^2 = \frac{\delta p}{\delta \rho} k^2 - \omega_J^2$$
, where $\omega_J^2 = \frac{\rho}{2M_{Pl}^2}$.

When $\omega^2 < 0$, Jeans collapse happens.

$$L_{\rm J} \sim \frac{M_{\rm Pl}}{M^2}$$
, $T_{\rm J} \sim \frac{M_{\rm Pl}^2}{M^3}$

In linear regime, fluctuation with wavelength $\lambda \gtrsim L_{\rm J}$ grows on a time scale $\tau \sim T_{\rm J} \frac{\lambda}{L_{\rm J}}$. So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} {\rm eV}$ Ghost condensation plays the role of DE.

For a fluid with pressure p and energy density ρ,

$$\omega^2 = \frac{\delta p}{\delta \rho} k^2 - \omega_J^2$$
, where $\omega_J^2 = \frac{\rho}{2M_{Pl}^2}$.

When $\omega^2 < 0$, Jeans collapse happens.

$$L_{\rm J} \sim \frac{M_{\rm Pl}}{M^2}$$
, $T_{\rm J} \sim \frac{M_{\rm Pl}^2}{M^3}$

In linear regime, fluctuation with wavelength $\lambda \gtrsim L_{\rm J}$ grows on a time scale $\tau \sim T_{\rm J} \frac{\lambda}{L_{\rm J}}$. So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} {\rm eV}$ Ghost condensation plays the role of DE.

For a fluid with pressure p and energy density ρ,

$$\omega^2 = \frac{\delta p}{\delta \rho} k^2 - \omega_J^2$$
, where $\omega_J^2 = \frac{\rho}{2M_{Pl}^2}$.

When $\omega^2 < 0$, Jeans collapse happens.

$$L_{\rm J} \sim \frac{M_{\rm Pl}}{M^2}$$
. $T_{\rm J} \sim \frac{M_{\rm Pl}^2}{M^3}$

In linear regime, fluctuation with wavelength $\lambda \gtrsim L_{\rm J}$ grows on a time scale $\tau \sim T_{\rm J} \frac{\lambda}{L_{\rm J}}$. So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} {\rm eV}$ Ghost condensation plays the role of DE.

For a fluid with pressure p and energy density ρ,

$$\omega^2 = \frac{\delta p}{\delta \rho} k^2 - \omega_J^2$$
, where $\omega_J^2 = \frac{\rho}{2M_{Pl}^2}$.

When $\omega^2 < 0$, Jeans collapse happens.

$$L_{\rm J} \sim \frac{M_{\rm Pl}}{M^2}$$
. $T_{\rm J} \sim \frac{M_{\rm Pl}^2}{M^3}$

In linear regime, fluctuation with wavelength $\lambda \gtrsim L_{\rm J}$ grows on a time scale $\tau \sim T_{\rm J} \frac{\lambda}{L_{\rm J}}$. So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} {\rm eV}$ Ghost condensation plays the role of DE.

For a fluid with pressure p and energy density ρ,

$$\omega^2 = \frac{\delta p}{\delta \rho} k^2 - \omega_J^2$$
, where $\omega_J^2 = \frac{\rho}{2M_{Pl}^2}$.

When $\omega^2 < 0$, Jeans collapse happens.

$$L_{\rm J} \sim \frac{M_{\rm Pl}}{M^2}.$$
 $T_{\rm J} \sim \frac{M_{\rm Pl}^2}{M^3}$

In linear regime, fluctuation with wavelength $\lambda \gtrsim L_{\rm J}$ grows on a time scale $\tau \sim T_{\rm J} \frac{\lambda}{L_{\rm J}}$. So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} {\rm eV}$ Ghost condensation plays the role of DE.

For a fluid with pressure p and energy density ρ,

$$\omega^2 = \frac{\delta p}{\delta \rho} k^2 - \omega_J^2$$
, where $\omega_J^2 = \frac{\rho}{2M_{Pl}^2}$.

When $\omega^2 < 0$, Jeans collapse happens.

$$L_{\rm J} \sim \frac{M_{\rm Pl}}{M^2}$$
, $T_{\rm J} \sim \frac{M_{\rm Pl}^2}{M^3}$

In linear regime, fluctuation with wavelength $\lambda \gtrsim L_{\rm J}$ grows on a time scale $\tau \sim T_{\rm J} \frac{\lambda}{L_{\rm J}}$. So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} {\rm eV}$ Ghost condensation plays the role of DE.

For a fluid with pressure p and energy density ρ,

$$\omega^2 = \frac{\delta p}{\delta \rho} k^2 - \omega_J^2$$
, where $\omega_J^2 = \frac{\rho}{2M_{Pl}^2}$.

When $\omega^2 < 0$, Jeans collapse happens.

$$L_{\rm J} \sim \frac{M_{\rm Pl}}{M^2}.$$
 $T_{\rm J} \sim \frac{M_{\rm Pl}^2}{M^3}$

In linear regime, fluctuation with wavelength $\lambda \gtrsim L_{\rm J}$ grows on a time scale $\tau \sim T_{\rm J} \frac{\lambda}{L_{\rm J}}$. So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} {\rm eV}$ Ghost condensation plays the role of DE.

For a fluid with pressure p and energy density ρ,

$$\omega^2 = \frac{\delta p}{\delta \rho} k^2 - \omega_J^2$$
, where $\omega_J^2 = \frac{\rho}{2M_{Pl}^2}$.

When $\omega^2 < 0$, Jeans collapse happens.

$$L_{\rm J} \sim \frac{M_{\rm Pl}}{M^2}, \qquad T_{\rm J} \sim \frac{M_{\rm Pl}^2}{M^3}$$

In linear regime, fluctuation with wavelength $\lambda \gtrsim L_{\rm J}$ grows on a time scale $\tau \sim T_{\rm J} \frac{\lambda}{L_{\rm J}}$. So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} {\rm eV}$ Ghost condensation plays the role of DE.

For a fluid with pressure p and energy density ρ,

$$\omega^2 = \frac{\delta p}{\delta \rho} k^2 - \omega_J^2$$
, where $\omega_J^2 = \frac{\rho}{2M_{Pl}^2}$.

When $\omega^2 < 0$, Jeans collapse happens.

$$L_{\rm J} \sim \frac{M_{\rm Pl}}{M^2}$$
. $T_{\rm J} \sim \frac{M_{\rm Pl}^2}{M^3}$

In linear regime, fluctuation with wavelength $\lambda \gtrsim L_{\rm J}$ grows on a time scale $\tau \sim T_{\rm J} \frac{\lambda}{L_{\rm J}}$. So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} {\rm eV}$ Ghost condensation plays the role of DE.

For a fluid with pressure p and energy density ρ,

$$\omega^2 = \frac{\delta p}{\delta \rho} k^2 - \omega_J^2$$
, where $\omega_J^2 = \frac{\rho}{2M_{Pl}^2}$.

When $\omega^2 < 0$, Jeans collapse happens.

$$L_{\rm J} \sim \frac{M_{\rm Pl}}{M^2}$$
. $T_{\rm J} \sim \frac{M_{\rm Pl}^2}{M^3}$

In linear regime, fluctuation with wavelength $\lambda \gtrsim L_{\rm J}$ grows on a time scale $\tau \sim T_{\rm J} \frac{\lambda}{L_{\rm J}}$. So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} {\rm eV}$ Ghost condensation plays the role of DE.

For a fluid with pressure p and energy density ρ,

$$\omega^2 = \frac{\delta p}{\delta \rho} k^2 - \omega_J^2$$
, where $\omega_J^2 = \frac{\rho}{2M_{Pl}^2}$.

When $\omega^2 < 0$, Jeans collapse happens.

$$L_{\rm J} \sim \frac{M_{\rm Pl}}{M^2}$$
, $T_{\rm J} \sim \frac{M_{\rm Pl}^2}{M^3}$

In linear regime, fluctuation with wavelength $\lambda \gtrsim L_{\rm J}$ grows on a time scale $\tau \sim T_{\rm J} \frac{\lambda}{L_{\rm J}}$. So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} {\rm eV}$ Ghost condensation plays the role of DE.

Pirsa: 10090090 Page 252/901

For a fluid with pressure p and energy density ρ,

$$\omega^2 = \frac{\delta p}{\delta \rho} k^2 - \omega_J^2$$
, where $\omega_J^2 = \frac{\rho}{2M_{Pl}^2}$.

When $\omega^2 < 0$, Jeans collapse happens.

$$L_{\rm J} \sim \frac{M_{\rm Pl}}{M^2}$$
. $T_{\rm J} \sim \frac{M_{\rm Pl}^2}{M^3}$

In linear regime, fluctuation with wavelength $\lambda \gtrsim L_{\rm J}$ grows on a time scale $\tau \sim T_{\rm J} \frac{\lambda}{L_{\rm J}}$. So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} {\rm eV}$ Ghost condensation plays the role of DE.

For a fluid with pressure p and energy density ρ,

$$\omega^2 = \frac{\delta p}{\delta \rho} k^2 - \omega_J^2$$
, where $\omega_J^2 = \frac{\rho}{2M_{Pl}^2}$.

When $\omega^2 < 0$, Jeans collapse happens.

$$L_{\rm J} \sim \frac{M_{\rm Pl}}{M^2}$$
, $T_{\rm J} \sim \frac{M_{\rm Pl}^2}{M^3}$

In linear regime, fluctuation with wavelength $\lambda \gtrsim L_{\rm J}$ grows on a time scale $\tau \sim T_{\rm J} \frac{\lambda}{L_{\rm J}}$. So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} {\rm eV}$ Ghost condensation plays the role of DE.

For a fluid with pressure p and energy density ρ,

$$\omega^2 = \frac{\delta p}{\delta \rho} k^2 - \omega_J^2$$
, where $\omega_J^2 = \frac{\rho}{2M_{Pl}^2}$.

When $\omega^2 < 0$, Jeans collapse happens.

$$L_{\rm J} \sim \frac{M_{\rm Pl}}{M^2}.$$
 $T_{\rm J} \sim \frac{M_{\rm Pl}^2}{M^3}$

In linear regime, fluctuation with wavelength $\lambda \gtrsim L_{\rm J}$ grows on a time scale $\tau \sim T_{\rm J} \frac{\lambda}{L_{\rm J}}$. So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} {\rm eV}$ Ghost condensation plays the role of DE.

For a fluid with pressure p and energy density ρ,

$$\omega^2 = \frac{\delta p}{\delta \rho} k^2 - \omega_J^2$$
, where $\omega_J^2 = \frac{\rho}{2M_{Pl}^2}$.

When $\omega^2 < 0$, Jeans collapse happens.

$$L_{\rm J} \sim \frac{M_{\rm Pl}}{M^2}, \qquad T_{\rm J} \sim \frac{M_{\rm Pl}^2}{M^3}$$

In linear regime, fluctuation with wavelength $\lambda \gtrsim L_{\rm J}$ grows on a time scale $\tau \sim T_{\rm J} \frac{\lambda}{L_{\rm J}}$. So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} {\rm eV}$ Ghost condensation plays the role of DE.

For a fluid with pressure p and energy density ρ,

$$\omega^2 = \frac{\delta p}{\delta \rho} k^2 - \omega_J^2$$
, where $\omega_J^2 = \frac{\rho}{2M_{Pl}^2}$.

When $\omega^2 < 0$, Jeans collapse happens.

$$L_{\rm J} \sim \frac{M_{\rm Pl}}{M^2}$$
, $T_{\rm J} \sim \frac{M_{\rm Pl}^2}{M^3}$

In linear regime, fluctuation with wavelength $\lambda \gtrsim L_{\rm J}$ grows on a time scale $\tau \sim T_{\rm J} \frac{\lambda}{L_{\rm J}}$. So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} {\rm eV}$ Ghost condensation plays the role of DE.

For a fluid with pressure p and energy density ρ,

$$\omega^2 = \frac{\delta p}{\delta \rho} k^2 - \omega_J^2$$
, where $\omega_J^2 = \frac{\rho}{2M_{Pl}^2}$.

When $\omega^2 < 0$, Jeans collapse happens.

$$L_{\rm J} \sim \frac{M_{\rm Pl}}{M^2}$$
. $T_{\rm J} \sim \frac{M_{\rm Pl}^2}{M^3}$

In linear regime, fluctuation with wavelength $\lambda \gtrsim L_{\rm J}$ grows on a time scale $\tau \sim T_{\rm J} \frac{\lambda}{L_{\rm J}}$. So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} {\rm eV}$ Ghost condensation plays the role of DE.

For a fluid with pressure p and energy density ρ,

$$\omega^2 = \frac{\delta p}{\delta \rho} k^2 - \omega_J^2$$
, where $\omega_J^2 = \frac{\rho}{2M_{Pl}^2}$.

When $\omega^2 < 0$, Jeans collapse happens.

$$L_{\rm J} \sim \frac{M_{\rm Pl}}{M^2}.$$
 $T_{\rm J} \sim \frac{M_{\rm Pl}^2}{M^3}$

In linear regime, fluctuation with wavelength $\lambda \gtrsim L_{\rm J}$ grows on a time scale $\tau \sim T_{\rm J} \frac{\lambda}{L_{\rm J}}$. So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} {\rm eV}$ Ghost condensation plays the role of DE.

For a fluid with pressure p and energy density ρ,

$$\omega^2 = \frac{\delta p}{\delta \rho} k^2 - \omega_J^2$$
, where $\omega_J^2 = \frac{\rho}{2M_{Pl}^2}$.

When $\omega^2 < 0$, Jeans collapse happens.

$$L_{\rm J} \sim \frac{M_{\rm Pl}}{M^2}.$$
 $T_{\rm J} \sim \frac{M_{\rm Pl}^2}{M^3}$

In linear regime, fluctuation with wavelength $\lambda \gtrsim L_{\rm J}$ grows on a time scale $\tau \sim T_{\rm J} \frac{\lambda}{L_{\rm J}}$. So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} {\rm eV}$ Ghost condensation plays the role of DE.

- So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} {\rm eV}$ Ghost condensation plays the role of DE. The gravity is modified at length scale $r_J \sim H_0^{-1}$ But we need to wait $\tau >> H_0^{-1}$ to see this modification!
- An upper bound of M has been given in hep-ph/0507120, (N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

Light lensing

Supernova time delay

M < 100 Gev

- So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} \mathrm{eV}$ Ghost condensation plays the role of DE. The gravity is modified at length scale $r_J \sim H_0^{-1}$ But we need to wait $\tau >> H_0^{-1}$ to see this modification!
- An upper bound of M has been given in hep-ph/0507120,
 (N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

Light lensing

Supernova time delay

M < 100 Gev

- So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} \mathrm{eV}$ Ghost condensation plays the role of DE. The gravity is modified at length scale $r_J \sim H_0^{-1}$ But we need to wait $\tau >> H_0^{-1}$ to see this modification!
- An upper bound of M has been given in hep-ph/0507120, (N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

 $Light \, lensing$

Supernova time delay

M < 100 Gev

- So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} \mathrm{eV}$ Ghost condensation plays the role of DE. The gravity is modified at length scale $r_J \sim H_0^{-1}$ But we need to wait $\tau >> H_0^{-1}$ to see this modification!
- An upper bound of M has been given in hep-ph/0507120,
 (N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

Light lensing

Supernova time delay

M < 100 Gev

- So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} \mathrm{eV}$ Ghost condensation plays the role of DE. The gravity is modified at length scale $r_J \sim H_0^{-1}$ But we need to wait $\tau >> H_0^{-1}$ to see this modification!
- An upper bound of M has been given in hep-ph/0507120,
 (N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

Light lensing

Supernova time delay

M < 100 Gev

- So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} \mathrm{eV}$ Ghost condensation plays the role of DE. The gravity is modified at length scale $r_J \sim H_0^{-1}$ But we need to wait $\tau >> H_0^{-1}$ to see this modification!
- An upper bound of M has been given in hep-ph/0507120, (N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

Light lensing

Supernova time delay

M < 100 Gev

- So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} \mathrm{eV}$ Ghost condensation plays the role of DE. The gravity is modified at length scale $r_J \sim H_0^{-1}$ But we need to wait $\tau >> H_0^{-1}$ to see this modification!
- An upper bound of M has been given in hep-ph/0507120, (N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

Light lensing

Supernova time delay

M < 100 Gev

- So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} \mathrm{eV}$ Ghost condensation plays the role of DE. The gravity is modified at length scale $r_J \sim H_0^{-1}$ But we need to wait $\tau >> H_0^{-1}$ to see this modification!
- An upper bound of M has been given in hep-ph/0507120,
 (N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

Light lensing

Supernova time delay

M < 100 Gev

- So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} \mathrm{eV}$ Ghost condensation plays the role of DE. The gravity is modified at length scale $r_J \sim H_0^{-1}$ But we need to wait $\tau >> H_0^{-1}$ to see this modification!
- An upper bound of M has been given in hep-ph/0507120,
 (N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

Light lensing

Supernova time delay

M < 100 Gev

- So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} \mathrm{eV}$ Ghost condensation plays the role of DE. The gravity is modified at length scale $r_J \sim H_0^{-1}$ But we need to wait $\tau >> H_0^{-1}$ to see this modification!
- An upper bound of M has been given in hep-ph/0507120,
 (N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

Light lensing

Supernova time delay

M < 100 Gev

- So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} \mathrm{eV}$ Ghost condensation plays the role of DE. The gravity is modified at length scale $r_J \sim H_0^{-1}$ But we need to wait $\tau >> H_0^{-1}$ to see this modification!
- An upper bound of M has been given in hep-ph/0507120,
 (N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

Light lensing

Supernova time delay

M < 100 Gev

- So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} \mathrm{eV}$ Ghost condensation plays the role of DE. The gravity is modified at length scale $r_J \sim H_0^{-1}$ But we need to wait $\tau >> H_0^{-1}$ to see this modification!
- An upper bound of M has been given in hep-ph/0507120, (N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

Light lensing

Supernova time delay

M < 100 Gev

- So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} \mathrm{eV}$ Ghost condensation plays the role of DE. The gravity is modified at length scale $r_J \sim H_0^{-1}$ But we need to wait $\tau >> H_0^{-1}$ to see this modification!
- An upper bound of M has been given in hep-ph/0507120, (N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

Light lensing

Supernova time delay

M < 100 Gev

- So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} \mathrm{eV}$ Ghost condensation plays the role of DE. The gravity is modified at length scale $r_J \sim H_0^{-1}$ But we need to wait $\tau >> H_0^{-1}$ to see this modification!
- An upper bound of M has been given in hep-ph/0507120, (N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

Light lensing

Supernova time delay

M < 100 Gev

- So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} \mathrm{eV}$ Ghost condensation plays the role of DE. The gravity is modified at length scale $r_J \sim H_0^{-1}$ But we need to wait $\tau >> H_0^{-1}$ to see this modification!
- An upper bound of M has been given in hep-ph/0507120, (N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

Light lensing

Supernova time delay

M < 100 Gev

- So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} \mathrm{eV}$ Ghost condensation plays the role of DE. The gravity is modified at length scale $r_J \sim H_0^{-1}$ But we need to wait $\tau >> H_0^{-1}$ to see this modification!
- An upper bound of M has been given in hep-ph/0507120, (N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

Light lensing

Supernova time delay

M < 100 Gev

- So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} \mathrm{eV}$ Ghost condensation plays the role of DE. The gravity is modified at length scale $r_J \sim H_0^{-1}$ But we need to wait $\tau >> H_0^{-1}$ to see this modification!
- An upper bound of M has been given in hep-ph/0507120, (N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

Light lensing

Supernova time delay

M < 100 Gev

- So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} \mathrm{eV}$ Ghost condensation plays the role of DE. The gravity is modified at length scale $r_J \sim H_0^{-1}$ But we need to wait $\tau >> H_0^{-1}$ to see this modification!
- An upper bound of M has been given in hep-ph/0507120, (N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

Light lensing

Supernova time delay

M < 100 Gev

- So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} {\rm eV}$ Ghost condensation plays the role of DE. The gravity is modified at length scale $r_J \sim H_0^{-1}$ But we need to wait $\tau >> H_0^{-1}$ to see this modification!
- An upper bound of M has been given in hep-ph/0507120, (N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

Light lensing

Supernova time delay

M < 100 Gev

- So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} \mathrm{eV}$ Ghost condensation plays the role of DE. The gravity is modified at length scale $r_J \sim H_0^{-1}$ But we need to wait $\tau >> H_0^{-1}$ to see this modification!
- An upper bound of M has been given in hep-ph/0507120,
 (N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

Light lensing

Supernova time delay

M < 100 Gev

- So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} \text{eV}$ Ghost condensation plays the role of DE. The gravity is modified at length scale $r_J \sim H_0^{-1}$ But we need to wait $\tau >> H_0^{-1}$ to see this modification!
- An upper bound of M has been given in hep-ph/0507120, (N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

Light lensing

Supernova time delay

M < 100 Gev

- So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} \mathrm{eV}$ Ghost condensation plays the role of DE. The gravity is modified at length scale $r_J \sim H_0^{-1}$ But we need to wait $\tau >> H_0^{-1}$ to see this modification!
- An upper bound of M has been given in hep-ph/0507120, (N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

Light lensing

Supernova time delay

M < 100 Gev

- So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} \mathrm{eV}$ Ghost condensation plays the role of DE. The gravity is modified at length scale $r_J \sim H_0^{-1}$ But we need to wait $\tau >> H_0^{-1}$ to see this modification!
- An upper bound of M has been given in hep-ph/0507120, (N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

Light lensing

Supernova time delay

M < 100 Gev

- So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} \mathrm{eV}$ Ghost condensation plays the role of DE. The gravity is modified at length scale $r_J \sim H_0^{-1}$ But we need to wait $\tau >> H_0^{-1}$ to see this modification!
- An upper bound of M has been given in hep-ph/0507120, (N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

Light lensing

Supernova time delay

M < 100 Gev

- So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} \mathrm{eV}$ Ghost condensation plays the role of DE. The gravity is modified at length scale $r_J \sim H_0^{-1}$ But we need to wait $\tau >> H_0^{-1}$ to see this modification!
- An upper bound of M has been given in hep-ph/0507120,
 (N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

Light lensing

Supernova time delay

M < 100 Gev

- So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} \mathrm{eV}$ Ghost condensation plays the role of DE. The gravity is modified at length scale $r_J \sim H_0^{-1}$ But we need to wait $\tau >> H_0^{-1}$ to see this modification!
- An upper bound of M has been given in hep-ph/0507120, (N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

Light lensing

Supernova time delay

M < 100 Gev

- So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} \mathrm{eV}$ Ghost condensation plays the role of DE. The gravity is modified at length scale $r_J \sim H_0^{-1}$ But we need to wait $\tau >> H_0^{-1}$ to see this modification!
- An upper bound of M has been given in hep-ph/0507120,
 (N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

Light lensing

Supernova time delay

M < 100 Gev

- So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} \mathrm{eV}$ Ghost condensation plays the role of DE. The gravity is modified at length scale $r_J \sim H_0^{-1}$ But we need to wait $\tau >> H_0^{-1}$ to see this modification!
- An upper bound of M has been given in hep-ph/0507120,
 (N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

Light lensing

Supernova time delay

M < 100 Gev

Jeans instability

- So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} \mathrm{eV}$ Ghost condensation plays the role of DE. The gravity is modified at length scale $r_J \sim H_0^{-1}$ But we need to wait $\tau >> H_0^{-1}$ to see this modification!
- An upper bound of M has been given in hep-ph/0507120, (N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

Light lensing

Supernova time delay

M < 100 Gev

Our ghost bounce model is free from this upper bound!

Jeans instability

- So we need a very small M to protect the IR gravity. e.g. $M \sim 10^{-3} \mathrm{eV}$ Ghost condensation plays the role of DE. The gravity is modified at length scale $r_J \sim H_0^{-1}$ But we need to wait $\tau >> H_0^{-1}$ to see this modification!
- An upper bound of M has been given in hep-ph/0507120,
 (N.Arkani-Hamed, H.Cheng, M. Luty, S.Mukohyama and T.Wiseman)

Light lensing

Supernova time delay

M < 100 Gev

Our ghost bounce model is free from this upper bound!

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{qrad}^2 > 0$$

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{qrad}^2 > 0$$

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{qrad}^2 > 0$$

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{grad}^2 > 0$$

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{grad}^2 > 0$$

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{grad}^2 > 0$$

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{qrad}^2 > 0$$

Interesting features

Lumps come from scalar excitation, its energy density always positive in terms of "particle physics", but the induced gravity can be either attractive or repulsive!

 $\dot{\pi} > 0$

attractive

 $\dot{\pi} < 0$

repulsive

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{qrad}^2 > 0$$

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{grad}^2 > 0$$

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{qrad}^2 > 0$$

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{grad}^2 > 0$$

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{qrad}^2 > 0$$

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{qrad}^2 > 0$$

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{qrad}^2 > 0$$

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{qrad}^2 > 0$$

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2(S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{qrad}^2 > 0$$

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{qrad}^2 > 0$$

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{qrad}^2 > 0$$

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\bar{M}^2}{M^4}k^4 \quad \text{ where } \quad \bar{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{qrad}^2 > 0$$

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{qrad}^2 > 0$$

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{qrad}^2 > 0$$

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{qrad}^2 > 0$$

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{qrad}^2 > 0$$

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{grad}^2 > 0$$

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{qrad}^2 > 0$$

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{qrad}^2 > 0$$

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{qrad}^2 > 0$$

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{qrad}^2 > 0$$

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{qrad}^2 > 0$$

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{qrad}^2 > 0$$

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{qrad}^2 > 0$$

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{qrad}^2 > 0$$

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{qrad}^2 > 0$$

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{qrad}^2 > 0$$

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{qrad}^2 > 0$$

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{qrad}^2 > 0$$

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{qrad}^2 > 0$$

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{qrad}^2 > 0$$

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{qrad}^2 > 0$$

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{qrad}^2 > 0$$

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{qrad}^2 > 0$$

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{qrad}^2 > 0$$

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{qrad}^2 > 0$$

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{grad}^2 > 0$$

Up to 2nd order,

$$\mathcal{L} = M^4 \left[(P' + 2P''c^2)\dot{\pi}^2 - P'(\nabla \pi)^2 \right] + M^2 (S_1 + S_2)(\nabla^2 \pi)^2$$

the relevant dispersion relation

$$(P'+2P''c^2)\omega^2 = -P'k^2 + \frac{\tilde{M}^2}{M^4}k^4 \quad \text{ where } \quad \tilde{M}^2 = M^2(S_1 + S_2)$$

Ghost condensation locates at the minima of Lagrangian

$$P' = 0$$

 $P' + 2P''\dot{\phi}^2 > 0$ is ghost free condition, so we get

$$\omega_{grad}^2 > 0$$

Part III Realization of Matter Bounce

Part III Realization of Matter Bounce

Part III Realization of Matter Bounce

Matter sector + ghost condensation

$$\rho_m(t) \sim a(t)^{-3(1+w_m)}$$
 $\rho_X \sim a(t)^{-p}$

minimal requirement p > 3

against radiation p > 4

against anisotropic stress p > 6

Lagrangian of GC takes the following general form

$$\mathcal{L} = M^4 P(X) - V(\phi)$$

$$P(X) = \frac{1}{8}(X - c^2)^2$$

Matter sector + ghost condensation

$$\rho_m(t) \sim a(t)^{-3(1+w_m)}$$
 $\rho_X \sim a(t)^{-p}$

minimal requirement p > 3

against radiation p > 4

against anisotropic stress p > 6

Lagrangian of GC takes the following general form

$$\mathcal{L} = M^4 P(X) - V(\phi)$$

$$P(X) = \frac{1}{8}(X - c^2)^2$$

Matter sector + ghost condensation

$$\rho_m(t) \sim a(t)^{-3(1+w_m)}$$
 $\rho_X \sim a(t)^{-p}$

minimal requirement p > 3

against radiation p > 4

against anisotropic stress p > 6

Lagrangian of GC takes the following general form

$$\mathcal{L} = M^4 P(X) - V(\phi)$$

$$P(X) = \frac{1}{8}(X - c^2)^2$$

Matter sector + ghost condensation

$$\rho_m(t) \sim a(t)^{-3(1+w_m)}$$
 $\rho_X \sim a(t)^{-p}$

minimal requirement p > 3

against radiation p > 4

against anisotropic stress p > 6

Lagrangian of GC takes the following general form

$$\mathcal{L} = M^4 P(X) - V(\phi)$$

$$P(X) = \frac{1}{8}(X - c^2)^2$$

Matter sector + ghost condensation

$$\rho_m(t) \sim a(t)^{-3(1+w_m)}$$
 $\rho_X \sim a(t)^{-p}$

minimal requirement p > 3

against radiation p > 4

against anisotropic stress p > 6

Lagrangian of GC takes the following general form

$$\mathcal{L} = M^4 P(X) - V(\phi)$$

$$P(X) = \frac{1}{8}(X - c^2)^2$$

Matter sector + ghost condensation

$$\rho_m(t) \sim a(t)^{-3(1+w_m)}$$
 $\rho_X \sim a(t)^{-p}$

minimal requirement p > 3

against radiation p > 4

against anisotropic stress p > 6

Lagrangian of GC takes the following general form

$$\mathcal{L} = M^4 P(X) - V(\phi)$$

$$P(X) = \frac{1}{8}(X - c^2)^2$$

Matter sector + ghost condensation

$$\rho_m(t) \sim a(t)^{-3(1+w_m)}$$
 $\rho_X \sim a(t)^{-p}$

minimal requirement p > 3

against radiation p > 4

against anisotropic stress p > 6

Lagrangian of GC takes the following general form

$$\mathcal{L} = M^4 P(X) - V(\phi)$$

$$P(X) = \frac{1}{8}(X - c^2)^2$$

Matter sector + ghost condensation

$$\rho_m(t) \sim a(t)^{-3(1+w_m)}$$
 $\rho_X \sim a(t)^{-p}$

minimal requirement p > 3

against radiation p > 4

against anisotropic stress p > 6

Lagrangian of GC takes the following general form

$$\mathcal{L} = M^4 P(X) - V(\phi)$$

$$P(X) = \frac{1}{8}(X - c^2)^2$$

Matter sector + ghost condensation

$$\rho_m(t) \sim a(t)^{-3(1+w_m)}$$
 $\rho_X \sim a(t)^{-p}$

minimal requirement p > 3

against radiation p > 4

against anisotropic stress p > 6

Lagrangian of GC takes the following general form

$$\mathcal{L} = M^4 P(X) - V(\phi)$$

P(X) takes the prototypical form

$$P(X) = \frac{1}{8}(X - c^2)^2$$

Matter sector + ghost condensation

$$\rho_m(t) \sim a(t)^{-3(1+w_m)}$$
 $\rho_X \sim a(t)^{-p}$

minimal requirement p > 3

against radiation p > 4

against anisotropic stress p > 6

Lagrangian of GC takes the following general form

$$\mathcal{L} = M^4 P(X) - V(\phi)$$

P(X) takes the prototypical form

$$P(X) = \frac{1}{8}(X - c^2)^2$$

Matter sector + ghost condensation

$$\rho_m(t) \sim a(t)^{-3(1+w_m)}$$
 $\rho_X \sim a(t)^{-p}$

minimal requirement p > 3

against radiation p > 4

against anisotropic stress p > 6

Lagrangian of GC takes the following general form

$$\mathcal{L} = M^4 P(X) - V(\phi)$$

$$P(X) = \frac{1}{8}(X - c^2)^2$$

Matter sector + ghost condensation

$$\rho_m(t) \sim a(t)^{-3(1+w_m)}$$
 $\rho_X \sim a(t)^{-p}$

minimal requirement p > 3

against radiation p > 4

against anisotropic stress p > 6

Lagrangian of GC takes the following general form

$$\mathcal{L} = M^4 P(X) - V(\phi)$$

$$P(X) = \frac{1}{8}(X - c^2)^2$$

Matter sector + ghost condensation

$$\rho_m(t) \sim a(t)^{-3(1+w_m)}$$
 $\rho_X \sim a(t)^{-p}$

minimal requirement p > 3

against radiation p > 4

against anisotropic stress p > 6

Lagrangian of GC takes the following general form

$$\mathcal{L} = M^4 P(X) - V(\phi)$$

$$P(X) = \frac{1}{8}(X - c^2)^2$$

Matter sector + ghost condensation

$$\rho_m(t) \sim a(t)^{-3(1+w_m)}$$
 $\rho_X \sim a(t)^{-p}$

minimal requirement p > 3

against radiation p > 4

against anisotropic stress p > 6

Lagrangian of GC takes the following general form

$$\mathcal{L} = M^4 P(X) - V(\phi)$$

$$P(X) = \frac{1}{8}(X - c^2)^2$$

Matter sector + ghost condensation

$$\rho_m(t) \sim a(t)^{-3(1+w_m)}$$
 $\rho_X \sim a(t)^{-p}$

minimal requirement p > 3

against radiation p > 4

against anisotropic stress p > 6

Lagrangian of GC takes the following general form

$$\mathcal{L} = M^4 P(X) - V(\phi)$$

P(X) takes the prototypical form

$$P(X) = \frac{1}{8}(X - c^2)^2$$

Matter sector + ghost condensation

$$\rho_m(t) \sim a(t)^{-3(1+w_m)}$$
 $\rho_X \sim a(t)^{-p}$

minimal requirement p > 3

against radiation p > 4

against anisotropic stress p > 6

Lagrangian of GC takes the following general form

$$\mathcal{L} = M^4 P(X) - V(\phi)$$

$$P(X) = \frac{1}{8}(X - c^2)^2$$

Matter sector + ghost condensation

$$\rho_m(t) \sim a(t)^{-3(1+w_m)}$$
 $\rho_X \sim a(t)^{-p}$

minimal requirement p > 3

against radiation p > 4

against anisotropic stress p > 6

Lagrangian of GC takes the following general form

$$\mathcal{L} = M^4 P(X) - V(\phi)$$

P(X) takes the prototypical form

$$P(X) = \frac{1}{8}(X - c^2)^2$$

Matter sector + ghost condensation

$$\rho_m(t) \sim a(t)^{-3(1+w_m)}$$
 $\rho_X \sim a(t)^{-p}$

minimal requirement p > 3

against radiation p > 4

against anisotropic stress p > 6

Lagrangian of GC takes the following general form

$$\mathcal{L} = M^4 P(X) - V(\phi)$$

P(X) takes the prototypical form

$$P(X) = \frac{1}{8}(X - c^2)^2$$

Matter sector + ghost condensation

$$\rho_m(t) \sim a(t)^{-3(1+w_m)}$$
 $\rho_X \sim a(t)^{-p}$

minimal requirement p > 3

against radiation p > 4

against anisotropic stress p > 6

Lagrangian of GC takes the following general form

$$\mathcal{L} = M^4 P(X) - V(\phi)$$

$$P(X) = \frac{1}{8}(X - c^2)^2$$

Matter sector + ghost condensation

$$\rho_m(t) \sim a(t)^{-3(1+w_m)}$$
 $\rho_X \sim a(t)^{-p}$

minimal requirement p > 3

against radiation p > 4

against anisotropic stress p > 6

Lagrangian of GC takes the following general form

$$\mathcal{L} = M^4 P(X) - V(\phi)$$

P(X) takes the prototypical form

$$P(X) = \frac{1}{8}(X - c^2)^2$$

Matter sector + ghost condensation

$$\rho_m(t) \sim a(t)^{-3(1+w_m)}$$
 $\rho_X \sim a(t)^{-p}$

minimal requirement p > 3

against radiation p > 4

against anisotropic stress p > 6

Lagrangian of GC takes the following general form

$$\mathcal{L} = M^4 P(X) - V(\phi)$$

P(X) takes the prototypical form

$$P(X) = \frac{1}{8}(X - c^2)^2$$

Matter sector + ghost condensation

$$\rho_m(t) \sim a(t)^{-3(1+w_m)}$$
 $\rho_X \sim a(t)^{-p}$

minimal requirement p > 3

against radiation p > 4

against anisotropic stress p > 6

Lagrangian of GC takes the following general form

$$\mathcal{L} = M^4 P(X) - V(\phi)$$

$$P(X) = \frac{1}{8}(X - c^2)^2$$

Matter sector + ghost condensation

$$\rho_m(t) \sim a(t)^{-3(1+w_m)}$$
 $\rho_X \sim a(t)^{-p}$

minimal requirement p > 3

against radiation p > 4

against anisotropic stress p > 6

Lagrangian of GC takes the following general form

$$\mathcal{L} = M^4 P(X) - V(\phi)$$

P(X) takes the prototypical form

$$P(X) = \frac{1}{8}(X - c^2)^2$$

Pirsa: 10090090

Matter sector + ghost condensation

$$\rho_m(t) \sim a(t)^{-3(1+w_m)}$$
 $\rho_X \sim a(t)^{-p}$

minimal requirement p > 3

against radiation p > 4

against anisotropic stress p > 6

Lagrangian of GC takes the following general form

$$\mathcal{L} = M^4 P(X) - V(\phi)$$

$$P(X) = \frac{1}{8}(X - c^2)^2$$

Matter sector + ghost condensation

$$\rho_m(t) \sim a(t)^{-3(1+w_m)}$$
 $\rho_X \sim a(t)^{-p}$

minimal requirement p > 3

against radiation p > 4

against anisotropic stress p > 6

Lagrangian of GC takes the following general form

$$\mathcal{L} = M^4 P(X) - V(\phi)$$

$$P(X) = \frac{1}{8}(X - c^2)^2$$

Matter sector + ghost condensation

$$\rho_m(t) \sim a(t)^{-3(1+w_m)}$$
 $\rho_X \sim a(t)^{-p}$

minimal requirement p > 3

against radiation p > 4

against anisotropic stress p > 6

Lagrangian of GC takes the following general form

$$\mathcal{L} = M^4 P(X) - V(\phi)$$

$$P(X) = \frac{1}{8}(X - c^2)^2$$

Matter sector + ghost condensation

$$\rho_m(t) \sim a(t)^{-3(1+w_m)}$$
 $\rho_X \sim a(t)^{-p}$

minimal requirement p > 3

against radiation p > 4

against anisotropic stress p > 6

Lagrangian of GC takes the following general form

$$\mathcal{L} = M^4 P(X) - V(\phi)$$

P(X) takes the prototypical form

$$P(X) = \frac{1}{8}(X - c^2)^2$$

Pirsa: 10090090

Matter sector + ghost condensation

$$\rho_m(t) \sim a(t)^{-3(1+w_m)}$$
 $\rho_X \sim a(t)^{-p}$

minimal requirement p > 3

against radiation p > 4

against anisotropic stress p > 6

Lagrangian of GC takes the following general form

$$\mathcal{L} = M^4 P(X) - V(\phi)$$

$$P(X) = \frac{1}{8}(X - c^2)^2$$

Matter sector + ghost condensation

$$\rho_m(t) \sim a(t)^{-3(1+w_m)}$$
 $\rho_X \sim a(t)^{-p}$

minimal requirement p > 3

against radiation p > 4

against anisotropic stress p > 6

Lagrangian of GC takes the following general form

$$\mathcal{L} = M^4 P(X) - V(\phi)$$

$$P(X) = \frac{1}{8}(X - c^2)^2$$

Matter sector + ghost condensation

$$\rho_m(t) \sim a(t)^{-3(1+w_m)}$$
 $\rho_X \sim a(t)^{-p}$

minimal requirement p > 3

against radiation p > 4

against anisotropic stress p > 6

Lagrangian of GC takes the following general form

$$\mathcal{L} = M^4 P(X) - V(\phi)$$

$$P(X) = \frac{1}{8}(X - c^2)^2$$

Matter sector + ghost condensation

$$\rho_m(t) \sim a(t)^{-3(1+w_m)}$$
 $\rho_X \sim a(t)^{-p}$

minimal requirement p > 3

against radiation p > 4

against anisotropic stress p > 6

Lagrangian of GC takes the following general form

$$\mathcal{L} = M^4 P(X) - V(\phi)$$

P(X) takes the prototypical form

$$P(X) = \frac{1}{8}(X - c^2)^2$$

Pirsa: 10090090

Matter sector + ghost condensation

$$\rho_m(t) \sim a(t)^{-3(1+w_m)}$$
 $\rho_X \sim a(t)^{-p}$

minimal requirement p > 3

against radiation p > 4

against anisotropic stress p > 6

Lagrangian of GC takes the following general form

$$\mathcal{L} = M^4 P(X) - V(\phi)$$

$$P(X) = \frac{1}{8}(X - c^2)^2$$

Matter sector + ghost condensation

$$\rho_m(t) \sim a(t)^{-3(1+w_m)}$$
 $\rho_X \sim a(t)^{-p}$

minimal requirement p > 3

against radiation p > 4

against anisotropic stress p > 6

Lagrangian of GC takes the following general form

$$\mathcal{L} = M^4 P(X) - V(\phi)$$

$$P(X) = \frac{1}{8}(X - c^2)^2$$

Matter sector + ghost condensation

$$\rho_m(t) \sim a(t)^{-3(1+w_m)}$$
 $\rho_X \sim a(t)^{-p}$

minimal requirement p > 3

against radiation p > 4

against anisotropic stress p > 6

Lagrangian of GC takes the following general form

$$\mathcal{L} = M^4 P(X) - V(\phi)$$

$$P(X) = \frac{1}{8}(X - c^2)^2$$

Matter sector + ghost condensation

$$\rho_m(t) \sim a(t)^{-3(1+w_m)}$$
 $\rho_X \sim a(t)^{-p}$

minimal requirement p > 3

against radiation p > 4

against anisotropic stress p > 6

Lagrangian of GC takes the following general form

$$\mathcal{L} = M^4 P(X) - V(\phi)$$

$$P(X) = \frac{1}{8}(X - c^2)^2$$

Matter sector + ghost condensation

$$\rho_m(t) \sim a(t)^{-3(1+w_m)}$$
 $\rho_X \sim a(t)^{-p}$

minimal requirement p > 3

against radiation p > 4

against anisotropic stress p > 6

Lagrangian of GC takes the following general form

$$\mathcal{L} = M^4 P(X) - V(\phi)$$

$$P(X) = \frac{1}{8}(X - c^2)^2$$

Matter sector + ghost condensation

$$\rho_m(t) \sim a(t)^{-3(1+w_m)}$$
 $\rho_X \sim a(t)^{-p}$

minimal requirement p > 3

against radiation p > 4

against anisotropic stress p > 6

Lagrangian of GC takes the following general form

$$\mathcal{L} = M^4 P(X) - V(\phi)$$

P(X) takes the prototypical form

$$P(X) = \frac{1}{8}(X - c^2)^2$$

Pirsa: 10090090

Matter sector + ghost condensation

$$\rho_m(t) \sim a(t)^{-3(1+w_m)}$$
 $\rho_X \sim a(t)^{-p}$

minimal requirement p > 3

against radiation p > 4

against anisotropic stress p > 6

Lagrangian of GC takes the following general form

$$\mathcal{L} = M^4 P(X) - V(\phi)$$

$$P(X) = \frac{1}{8}(X - c^2)^2$$

Matter sector + ghost condensation

$$\rho_m(t) \sim a(t)^{-3(1+w_m)}$$
 $\rho_X \sim a(t)^{-p}$

minimal requirement p > 3

against radiation p > 4

against anisotropic stress p > 6

Lagrangian of GC takes the following general form

$$\mathcal{L} = M^4 P(X) - V(\phi)$$

$$P(X) = \frac{1}{8}(X - c^2)^2$$

Matter sector + ghost condensation

$$\rho_m(t) \sim a(t)^{-3(1+w_m)}$$
 $\rho_X \sim a(t)^{-p}$

minimal requirement p > 3

against radiation p > 4

against anisotropic stress p > 6

Lagrangian of GC takes the following general form

$$\mathcal{L} = M^4 P(X) - V(\phi)$$

$$P(X) = \frac{1}{8}(X - c^2)^2$$

Matter sector + ghost condensation

$$\rho_m(t) \sim a(t)^{-3(1+w_m)}$$
 $\rho_X \sim a(t)^{-p}$

minimal requirement p > 3

against radiation p > 4

against anisotropic stress p > 6

Lagrangian of GC takes the following general form

$$\mathcal{L} = M^4 P(X) - V(\phi)$$

$$P(X) = \frac{1}{8}(X - c^2)^2$$

Matter sector + ghost condensation

$$\rho_m(t) \sim a(t)^{-3(1+w_m)}$$
 $\rho_X \sim a(t)^{-p}$

minimal requirement p > 3

against radiation p > 4

against anisotropic stress p > 6

Lagrangian of GC takes the following general form

$$\mathcal{L} = M^4 P(X) - V(\phi)$$

$$P(X) = \frac{1}{8}(X - c^2)^2$$

Ansatz for potential

$$V(\phi) = V_0 M^{-\alpha} \phi^{-\alpha}$$

Divergence is cut off at M^4

Ghost field changes as

$$\phi(t) = ct + \pi(t)$$

 $\pi(t)$ is the small deviation from minima, its EoM

$$\ddot{\pi} + 3H\dot{\pi} = 2c^{-2}V_0M^{-4-\alpha}\alpha(ct)^{-(\alpha+1)}$$

It yields $\rho_X \sim \dot{\pi} \sim t^{-\alpha}$.

Ansatz for potential

$$V(\phi) = V_0 M^{-\alpha} \phi^{-\alpha}$$

Divergence is cut off at M^4

Ghost field changes as

$$\phi(t) = ct + \pi(t)$$

 $\pi(t)$ is the small deviation from minima, its EoM

$$\ddot{\pi} + 3H\dot{\pi} = 2c^{-2}V_0M^{-4-\alpha}\alpha(ct)^{-(\alpha+1)}$$

It yields $\rho_X \sim \dot{\pi} \sim t^{-\alpha}$.

Ansatz for potential

$$V(\phi) = V_0 M^{-\alpha} \phi^{-\alpha}$$

Divergence is cut off at M^4

Ghost field changes as

$$\phi(t) = ct + \pi(t)$$

 $\pi(t)$ is the small deviation from minima, its EoM

$$\ddot{\pi} + 3H\dot{\pi} = 2c^{-2}V_0M^{-4-\alpha}\alpha(ct)^{-(\alpha+1)}$$

It yields $\rho_X \sim \dot{\pi} \sim t^{-\alpha}$.

Ansatz for potential

$$V(\phi) = V_0 M^{-\alpha} \phi^{-\alpha}$$

Divergence is cut off at M^4

Ghost field changes as

$$\phi(t) = ct + \pi(t)$$

 $\pi(t)$ is the small deviation from minima, its EoM

$$\ddot{\pi} + 3H\dot{\pi} = 2c^{-2}V_0M^{-4-\alpha}\alpha(ct)^{-(\alpha+1)}$$

It yields $\rho_X \sim \dot{\pi} \sim t^{-\alpha}$.

Ansatz for potential

$$V(\phi) = V_0 M^{-\alpha} \phi^{-\alpha}$$

Divergence is cut off at M^4

Ghost field changes as

$$\phi(t) = ct + \pi(t)$$

 $\pi(t)$ is the small deviation from minima, its EoM

$$\ddot{\pi} + 3H\dot{\pi} = 2c^{-2}V_0M^{-4-\alpha}\alpha(ct)^{-(\alpha+1)}$$

It yields $\rho_X \sim \dot{\pi} \sim t^{-\alpha}$.

Ansatz for potential

$$V(\phi) = V_0 M^{-\alpha} \phi^{-\alpha}$$

Divergence is cut off at M^4

Ghost field changes as

$$\phi(t) = ct + \pi(t)$$

 $\pi(t)$ is the small deviation from minima, its EoM

$$\ddot{\pi} + 3H\dot{\pi} = 2c^{-2}V_0M^{-4-\alpha}\alpha(ct)^{-(\alpha+1)}$$

It yields $\rho_X \sim \dot{\pi} \sim t^{-\alpha}$.

Ansatz for potential

$$V(\phi) = V_0 M^{-\alpha} \phi^{-\alpha}$$

Divergence is cut off at M^4

Ghost field changes as

$$\phi(t) = ct + \pi(t)$$

 $\pi(t)$ is the small deviation from minima, its EoM

$$\ddot{\pi} + 3H\dot{\pi} = 2c^{-2}V_0M^{-4-\alpha}\alpha(ct)^{-(\alpha+1)}$$

It yields $\rho_X \sim \dot{\pi} \sim t^{-\alpha}$.

Ansatz for potential

$$V(\phi) = V_0 M^{-\alpha} \phi^{-\alpha}$$

Divergence is cut off at M^4

Ghost field changes as

$$\phi(t) = ct + \pi(t)$$

 $\pi(t)$ is the small deviation from minima, its EoM

$$\ddot{\pi} + 3H\dot{\pi} = 2c^{-2}V_0M^{-4-\alpha}\alpha(ct)^{-(\alpha+1)}$$

It yields $\rho_X \sim \dot{\pi} \sim t^{-\alpha}$.

Ansatz for potential

$$V(\phi) = V_0 M^{-\alpha} \phi^{-\alpha}$$

Divergence is cut off at M^4

Ghost field changes as

$$\phi(t) = ct + \pi(t)$$

 $\pi(t)$ is the small deviation from minima, its EoM

$$\ddot{\pi} + 3H\dot{\pi} = 2c^{-2}V_0M^{-4-\alpha}\alpha(ct)^{-(\alpha+1)}$$

It yields $\rho_X \sim \dot{\pi} \sim t^{-\alpha}$.

Ansatz for potential

$$V(\phi) = V_0 M^{-\alpha} \phi^{-\alpha}$$

Divergence is cut off at M^4

Ghost field changes as

$$\phi(t) = ct + \pi(t)$$

$$\ddot{\pi} + 3H\dot{\pi} = 2c^{-2}V_0M^{-4-\alpha}\alpha(ct)^{-(\alpha+1)}$$

It yields $\rho_X \sim \dot{\pi} \sim t^{-\alpha}$.

Ansatz for potential

$$V(\phi) = V_0 M^{-\alpha} \phi^{-\alpha}$$

Divergence is cut off at M^4

Ghost field changes as

$$\phi(t) = ct + \pi(t)$$

 $\pi(t)$ is the small deviation from minima, its EoM

$$\ddot{\pi} + 3H\dot{\pi} = 2c^{-2}V_0M^{-4-\alpha}\alpha(ct)^{-(\alpha+1)}$$

It yields $\rho_X \sim \dot{\pi} \sim t^{-\alpha}$.

Ansatz for potential

$$V(\phi) = V_0 M^{-\alpha} \phi^{-\alpha}$$

Divergence is cut off at M^4

Ghost field changes as

$$\phi(t) = ct + \pi(t)$$

 $\pi(t)$ is the small deviation from minima, its EoM

$$\ddot{\pi} + 3H\dot{\pi} = 2c^{-2}V_0M^{-4-\alpha}\alpha(ct)^{-(\alpha+1)}$$

It yields $\rho_X \sim \dot{\pi} \sim t^{-\alpha}$.

Ansatz for potential

$$V(\phi) = V_0 M^{-\alpha} \phi^{-\alpha}$$

Divergence is cut off at M^4

Ghost field changes as

$$\phi(t) = ct + \pi(t)$$

 $\pi(t)$ is the small deviation from minima, its EoM

$$\ddot{\pi} + 3H\dot{\pi} = 2c^{-2}V_0M^{-4-\alpha}\alpha(ct)^{-(\alpha+1)}$$

It yields $\rho_X \sim \dot{\pi} \sim t^{-\alpha}$.

Ansatz for potential

$$V(\phi) = V_0 M^{-\alpha} \phi^{-\alpha}$$

Divergence is cut off at M^4

Ghost field changes as

$$\phi(t) = ct + \pi(t)$$

$$\ddot{\pi} + 3H\dot{\pi} = 2c^{-2}V_0M^{-4-\alpha}\alpha(ct)^{-(\alpha+1)}$$

It yields $\rho_X \sim \dot{\pi} \sim t^{-\alpha}$.

Ansatz for potential

$$V(\phi) = V_0 M^{-\alpha} \phi^{-\alpha}$$

Divergence is cut off at M^4

Ghost field changes as

$$\phi(t) = ct + \pi(t)$$

$$\ddot{\pi} + 3H\dot{\pi} = 2c^{-2}V_0M^{-4-\alpha}\alpha(ct)^{-(\alpha+1)}$$

It yields $\rho_X \sim \dot{\pi} \sim t^{-\alpha}$.

Ansatz for potential

$$V(\phi) = V_0 M^{-\alpha} \phi^{-\alpha}$$

Divergence is cut off at M^4

Ghost field changes as

$$\phi(t) = ct + \pi(t)$$

 $\pi(t)$ is the small deviation from minima, its EoM

$$\ddot{\pi} + 3H\dot{\pi} = 2c^{-2}V_0M^{-4-\alpha}\alpha(ct)^{-(\alpha+1)}$$

It yields $\rho_X \sim \dot{\pi} \sim t^{-\alpha}$.

Ansatz for potential

$$V(\phi) = V_0 M^{-\alpha} \phi^{-\alpha}$$

Divergence is cut off at M^4

Ghost field changes as

$$\phi(t) = ct + \pi(t)$$

 $\pi(t)$ is the small deviation from minima, its EoM

$$\ddot{\pi} + 3H\dot{\pi} = 2c^{-2}V_0M^{-4-\alpha}\alpha(ct)^{-(\alpha+1)}$$

It yields $\rho_X \sim \dot{\pi} \sim t^{-\alpha}$.

Ansatz for potential

$$V(\phi) = V_0 M^{-\alpha} \phi^{-\alpha}$$

Divergence is cut off at M^4

Ghost field changes as

$$\phi(t) = ct + \pi(t)$$

 $\pi(t)$ is the small deviation from minima, its EoM

$$\ddot{\pi} + 3H\dot{\pi} = 2c^{-2}V_0M^{-4-\alpha}\alpha(ct)^{-(\alpha+1)}$$

It yields $\rho_X \sim \dot{\pi} \sim t^{-\alpha}$.

Ansatz for potential

$$V(\phi) = V_0 M^{-\alpha} \phi^{-\alpha}$$

Divergence is cut off at M^4

Ghost field changes as

$$\phi(t) = ct + \pi(t)$$

 $\pi(t)$ is the small deviation from minima, its EoM

$$\ddot{\pi} + 3H\dot{\pi} = 2c^{-2}V_0M^{-4-\alpha}\alpha(ct)^{-(\alpha+1)}$$

It yields $\rho_X \sim \dot{\pi} \sim t^{-\alpha}$.

Ansatz for potential

$$V(\phi) = V_0 M^{-\alpha} \phi^{-\alpha}$$

Divergence is cut off at M^4

Ghost field changes as

$$\phi(t) = ct + \pi(t)$$

 $\pi(t)$ is the small deviation from minima, its EoM

$$\ddot{\pi} + 3H\dot{\pi} = 2c^{-2}V_0M^{-4-\alpha}\alpha(ct)^{-(\alpha+1)}$$

It yields $\rho_X \sim \dot{\pi} \sim t^{-\alpha}$.

 $\alpha = 4$ Marginally stable against anisotropic stress

Page 401/901

Ansatz for potential

$$V(\phi) = V_0 M^{-\alpha} \phi^{-\alpha}$$

Divergence is cut off at M^4

Ghost field changes as

$$\phi(t) = ct + \pi(t)$$

 $\pi(t)$ is the small deviation from minima, its EoM

$$\ddot{\pi} + 3H\dot{\pi} = 2c^{-2}V_0M^{-4-\alpha}\alpha(ct)^{-(\alpha+1)}$$

It yields $\rho_X \sim \dot{\pi} \sim t^{-\alpha}$.

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

Pirsa: 10090090 Page 403/901

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

Pirsa: 10090090 Page 428/901

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

Pirsa: 10090090 Page 432/901

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

Pirsa: 10090090 Page 435/901

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

Pirsa: 10090090 Page 455/901

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

Pirsa: 10090090 Page 481/901

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

Pirsa: 10090090 Page 484/901

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

Pirsa: 10090090 Page 485/901

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

Pirsa: 10090090 Page 490/901

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

Pirsa: 10090090 Page 494/901

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

Ansatz for potential

$$V(\phi) = V_0 M^{-\alpha} \phi^{-\alpha}$$

Divergence is cut off at M^4

Ghost field changes as

$$\phi(t) = ct + \pi(t)$$

$$\ddot{\pi} + 3H\dot{\pi} = 2c^{-2}V_0M^{-4-\alpha}\alpha(ct)^{-(\alpha+1)}$$

It yields $\rho_X \sim \dot{\pi} \sim t^{-\alpha}$.

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

Pirsa: 10090090 Page 510/901

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

Ansatz for potential

$$V(\phi) = V_0 M^{-\alpha} \phi^{-\alpha}$$

Divergence is cut off at M^4

Ghost field changes as

$$\phi(t) = ct + \pi(t)$$

 $\pi(t)$ is the small deviation from minima, its EoM

$$\ddot{\pi} + 3H\dot{\pi} = 2c^{-2}V_0M^{-4-\alpha}\alpha(ct)^{-(\alpha+1)}$$

It yields $\rho_X \sim \dot{\pi} \sim t^{-\alpha}$.

Ansatz for potential

$$V(\phi) = V_0 M^{-\alpha} \phi^{-\alpha}$$

Divergence is cut off at M^4

Ghost field changes as

$$\phi(t) = ct + \pi(t)$$

 $\pi(t)$ is the small deviation from minima, its EoM

$$\ddot{\pi} + 3H\dot{\pi} = 2c^{-2}V_0M^{-4-\alpha}\alpha(ct)^{-(\alpha+1)}$$

It yields $\rho_X \sim \dot{\pi} \sim t^{-\alpha}$.

Ansatz for potential

$$V(\phi) = V_0 M^{-\alpha} \phi^{-\alpha}$$

Divergence is cut off at M^4

Ghost field changes as

$$\phi(t) = ct + \pi(t)$$

 $\pi(t)$ is the small deviation from minima, its EoM

$$\ddot{\pi} + 3H\dot{\pi} = 2c^{-2}V_0M^{-4-\alpha}\alpha(ct)^{-(\alpha+1)}$$

It yields $\rho_X \sim \dot{\pi} \sim t^{-\alpha}$.

Ansatz for potential

$$V(\phi) = V_0 M^{-\alpha} \phi^{-\alpha}$$

Divergence is cut off at M^4

Ghost field changes as

$$\phi(t) = ct + \pi(t)$$

 $\pi(t)$ is the small deviation from minima, its EoM

$$\ddot{\pi} + 3H\dot{\pi} = 2c^{-2}V_0M^{-4-\alpha}\alpha(ct)^{-(\alpha+1)}$$

It yields $\rho_X \sim \dot{\pi} \sim t^{-\alpha}$.

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

Ansatz for potential

$$V(\phi) = V_0 M^{-\alpha} \phi^{-\alpha}$$

Divergence is cut off at M^4

Ghost field changes as

$$\phi(t) = ct + \pi(t)$$

 $\pi(t)$ is the small deviation from minima, its EoM

$$\ddot{\pi} + 3H\dot{\pi} = 2c^{-2}V_0M^{-4-\alpha}\alpha(ct)^{-(\alpha+1)}$$

It yields $\rho_X \sim \dot{\pi} \sim t^{-\alpha}$.

Ansatz for potential

$$V(\phi) = V_0 M^{-\alpha} \phi^{-\alpha}$$

Divergence is cut off at M^4

Ghost field changes as

$$\phi(t) = ct + \pi(t)$$

$$\ddot{\pi} + 3H\dot{\pi} = 2c^{-2}V_0M^{-4-\alpha}\alpha(ct)^{-(\alpha+1)}$$

It yields $\rho_X \sim \dot{\pi} \sim t^{-\alpha}$.

 $\alpha = 4$ Marginally stable against anisotropic stress

Page 521/901

Ansatz for potential

$$V(\phi) = V_0 M^{-\alpha} \phi^{-\alpha}$$

Divergence is cut off at M^4

Ghost field changes as

$$\phi(t) = ct + \pi(t)$$

 $\pi(t)$ is the small deviation from minima, its EoM

$$\ddot{\pi} + 3H\dot{\pi} = 2c^{-2}V_0M^{-4-\alpha}\alpha(ct)^{-(\alpha+1)}$$

It yields $\rho_X \sim \dot{\pi} \sim t^{-\alpha}$.

Ansatz for potential

$$V(\phi) = V_0 M^{-\alpha} \phi^{-\alpha}$$

Divergence is cut off at M^4

Ghost field changes as

$$\phi(t) = ct + \pi(t)$$

 $\pi(t)$ is the small deviation from minima, its EoM

$$\ddot{\pi} + 3H\dot{\pi} = 2c^{-2}V_0M^{-4-\alpha}\alpha(ct)^{-(\alpha+1)}$$

It yields $\rho_X \sim \dot{\pi} \sim t^{-\alpha}$.

Ansatz for potential

$$V(\phi) = V_0 M^{-\alpha} \phi^{-\alpha}$$

Divergence is cut off at M^4

Ghost field changes as

$$\phi(t) = ct + \pi(t)$$

$$\ddot{\pi} + 3H\dot{\pi} = 2c^{-2}V_0M^{-4-\alpha}\alpha(ct)^{-(\alpha+1)}$$

It yields $\rho_X \sim \dot{\pi} \sim t^{-\alpha}$.

Ansatz for potential

$$V(\phi) = V_0 M^{-\alpha} \phi^{-\alpha}$$

Divergence is cut off at M^4

Ghost field changes as

$$\phi(t) = ct + \pi(t)$$

 $\pi(t)$ is the small deviation from minima, its EoM

$$\ddot{\pi} + 3H\dot{\pi} = 2c^{-2}V_0M^{-4-\alpha}\alpha(ct)^{-(\alpha+1)}$$

It yields $\rho_X \sim \dot{\pi} \sim t^{-\alpha}$.

Ansatz for potential

$$V(\phi) = V_0 M^{-\alpha} \phi^{-\alpha}$$

Divergence is cut off at M^4

Ghost field changes as

$$\phi(t) = ct + \pi(t)$$

 $\pi(t)$ is the small deviation from minima, its EoM

$$\ddot{\pi} + 3H\dot{\pi} = 2c^{-2}V_0M^{-4-\alpha}\alpha(ct)^{-(\alpha+1)}$$

It yields $\rho_X \sim \dot{\pi} \sim t^{-\alpha}$.

Ansatz for potential

$$V(\phi) = V_0 M^{-\alpha} \phi^{-\alpha}$$

Divergence is cut off at M^4

Ghost field changes as

$$\phi(t) = ct + \pi(t)$$

 $\pi(t)$ is the small deviation from minima, its EoM

$$\ddot{\pi} + 3H\dot{\pi} = 2c^{-2}V_0M^{-4-\alpha}\alpha(ct)^{-(\alpha+1)}$$

It yields $\rho_X \sim \dot{\pi} \sim t^{-\alpha}$.

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

Pirsa: 10090090 Page 531/901

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

Pirsa: 10090090 Page 533/901

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

Pirsa: 10090090 Page 535/901

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

$$2M_p^2 \dot{H} = -2M^4 X P' - (1 + w_m)\rho_m$$

Realization of NEC violation!

Numerical results

Initial condition of numerical calculation

$$\phi(0)=0$$
 and $\dot{\phi}(0)=\sqrt{2/3}$
$$M=2\times 10^{-3}$$

$$\rho_m(0)=10^{-12}$$

$$\alpha=4$$

Numerical results

Initial condition of numerical calculation

$$\phi(0)=0$$
 and $\dot{\phi}(0)=\sqrt{2/3}$
$$M=2\times 10^{-3}$$

$$\rho_m(0)=10^{-12}$$

$$\alpha=4$$

Numerical results

Pirsa: 10090090

Initial condition of numerical calculation

$$\phi(0)=0$$
 and $\dot{\phi}(0)=\sqrt{2/3}$
$$M=2\times 10^{-3}$$

$$\rho_m(0)=10^{-12}$$

$$\alpha=4$$

$$\phi(0) = 0$$
 and $\dot{\phi}(0) = \sqrt{2/3}$
 $M = 2 \times 10^{-3}$
 $\rho_m(0) = 10^{-12}$
 $\alpha = 4$

$$\phi(0)=0$$
 and $\dot{\phi}(0)=\sqrt{2/3}$
$$M=2\times 10^{-3}$$

$$\rho_m(0)=10^{-12}$$

$$\alpha=4$$

The metric in Newtonian gauge

$$ds^2 = -(1 + 2\Phi)dt^2 + a(t)^2(1 - 2\Psi)d\mathbf{x}^2$$

 $\varphi(\eta, \mathbf{x}) = \varphi_0(\eta) + \delta\varphi(\eta, \mathbf{x})$

Introduce M-S Variable

$$v = a \left[\delta \varphi + \frac{z}{a} \Phi\right]$$

$$S^{(2)} = \frac{1}{2} \int d^4x \left[v'^2 - v_{,i}v_{,i} + \frac{z''}{z}v^2\right]$$

EoM:

$$v_k'' + k^2 v_k - \frac{z''}{z} v_k = 0$$

In matter contracting phase $z \sim a$

$$v(t) \sim t^{-1/3}$$

The metric in Newtonian gauge

$$ds^2 = -(1 + 2\Phi)dt^2 + a(t)^2(1 - 2\Psi)d\mathbf{x}^2$$

 $\varphi(\eta, \mathbf{x}) = \varphi_0(\eta) + \delta\varphi(\eta, \mathbf{x})$

Introduce M-S Variable

$$\begin{split} v &= a \left[\delta \varphi + \frac{z}{a} \Phi \right] \\ S^{(2)} &= \frac{1}{2} \int d^4x \left[v'^2 - v_{,i} v_{,i} + \frac{z''}{z} v^2 \right] \end{split}$$

EoM:

$$v_k^{"} + k^2 v_k - \frac{z^{"}}{z} v_k = 0$$

In matter contracting phase $z \sim a$

$$v(t) \sim t^{-1/3}$$

The metric in Newtonian gauge

$$ds^2 = -(1 + 2\Phi)dt^2 + a(t)^2(1 - 2\Psi)d\mathbf{x}^2$$

 $\varphi(\eta, \mathbf{x}) = \varphi_0(\eta) + \delta\varphi(\eta, \mathbf{x})$

Introduce M-S Variable

$$v = a \left[\delta \varphi + \frac{z}{a} \Phi\right]$$

$$S^{(2)} = \frac{1}{2} \int d^4x \left[v'^2 - v_{,i}v_{,i} + \frac{z''}{z}v^2\right]$$

EoM:

$$v_k'' + k^2 v_k - \frac{z''}{z} v_k = 0$$

In matter contracting phase $z \sim a$

$$v(t) \sim t^{-1/3}$$

The metric in Newtonian gauge

$$ds^2 = -(1 + 2\Phi)dt^2 + a(t)^2(1 - 2\Psi)d\mathbf{x}^2$$

 $\varphi(\eta, \mathbf{x}) = \varphi_0(\eta) + \delta\varphi(\eta, \mathbf{x})$

Introduce M-S Variable

$$\begin{split} v &= a \left[\delta \varphi + \frac{z}{a} \Phi \right] \\ S^{(2)} &= \frac{1}{2} \int d^4x \left[v'^2 - v_{,i} v_{,i} + \frac{z''}{z} v^2 \right] \end{split}$$

EoM:

$$v_k'' + k^2 v_k - \frac{z''}{z} v_k = 0$$

In matter contracting phase $z \sim a$

$$v(t) \sim t^{-1/3}$$

The metric in Newtonian gauge

$$ds^2 = -(1 + 2\Phi)dt^2 + a(t)^2(1 - 2\Psi)d\mathbf{x}^2$$

 $\varphi(\eta, \mathbf{x}) = \varphi_0(\eta) + \delta\varphi(\eta, \mathbf{x})$

Introduce M-S Variable

$$v = a \left[\delta \varphi + \frac{z}{a} \Phi\right]$$

$$S^{(2)} = \frac{1}{2} \int d^4x \left[v'^2 - v_{,i}v_{,i} + \frac{z''}{z}v^2\right]$$

EoM:

$$v_k'' + k^2 v_k - \frac{z''}{z} v_k = 0$$

In matter contracting phase $z \sim a$

$$v(t) \sim t^{-1/3}$$

The metric in Newtonian gauge

$$ds^2 = -(1 + 2\Phi)dt^2 + a(t)^2(1 - 2\Psi)d\mathbf{x}^2$$

 $\varphi(\eta, \mathbf{x}) = \varphi_0(\eta) + \delta\varphi(\eta, \mathbf{x})$

Introduce M-S Variable

$$v = a \left[\delta \varphi + \frac{z}{a} \Phi\right]$$

$$S^{(2)} = \frac{1}{2} \int d^4x \left[v'^2 - v_{,i}v_{,i} + \frac{z''}{z}v^2\right]$$

EoM:

$$v_k'' + k^2 v_k - \frac{z''}{z} v_k = 0$$

In matter contracting phase $z \sim a$

$$v(t) \sim t^{-1/3}$$

The metric in Newtonian gauge

$$ds^2 = -(1 + 2\Phi)dt^2 + a(t)^2(1 - 2\Psi)d\mathbf{x}^2$$

 $\varphi(\eta, \mathbf{x}) = \varphi_0(\eta) + \delta\varphi(\eta, \mathbf{x})$

Introduce M-S Variable

$$\begin{split} v &= a \left[\delta \varphi + \frac{z}{a} \Phi \right] \\ S^{(2)} &= \frac{1}{2} \int d^4x \left[v'^2 - v_{,i} v_{,i} + \frac{z''}{z} v^2 \right] \end{split}$$

EoM:

$$v_k'' + k^2 v_k - \frac{z''}{z} v_k = 0$$

In matter contracting phase $z \sim a$

$$v(t) \sim t^{-1/3}$$

The metric in Newtonian gauge

$$ds^2 = -(1 + 2\Phi)dt^2 + a(t)^2(1 - 2\Psi)d\mathbf{x}^2$$

 $\varphi(\eta, \mathbf{x}) = \varphi_0(\eta) + \delta\varphi(\eta, \mathbf{x})$

Introduce M-S Variable

$$v = a \left[\delta \varphi + \frac{z}{a} \Phi\right]$$

$$S^{(2)} = \frac{1}{2} \int d^4x \left[v'^2 - v_{,i}v_{,i} + \frac{z''}{z}v^2\right]$$

EoM:

$$v_k'' + k^2 v_k - \frac{z''}{z} v_k = 0$$

In matter contracting phase $z \sim a$

$$v(t) \sim t^{-1/3}$$

The metric in Newtonian gauge

$$ds^2 = -(1 + 2\Phi)dt^2 + a(t)^2(1 - 2\Psi)d\mathbf{x}^2$$

 $\varphi(\eta, \mathbf{x}) = \varphi_0(\eta) + \delta\varphi(\eta, \mathbf{x})$

Introduce M-S Variable

$$\begin{split} v &= a \left[\delta \varphi + \frac{z}{a} \Phi \right] \\ S^{(2)} &= \frac{1}{2} \int d^4x \left[v'^2 - v_{,i} v_{,i} + \frac{z''}{z} v^2 \right] \end{split}$$

EoM:

$$v_k'' + k^2 v_k - \frac{z''}{z} v_k = 0$$

In matter contracting phase $z \sim a$

$$v(t) \sim t^{-1/3}$$

The metric in Newtonian gauge

$$ds^2 = -(1 + 2\Phi)dt^2 + a(t)^2(1 - 2\Psi)d\mathbf{x}^2$$

 $\varphi(\eta, \mathbf{x}) = \varphi_0(\eta) + \delta\varphi(\eta, \mathbf{x})$

Introduce M-S Variable

$$v = a \left[\delta \varphi + \frac{z}{a} \Phi\right]$$

$$S^{(2)} = \frac{1}{2} \int d^4x \left[v'^2 - v_{,i}v_{,i} + \frac{z''}{z}v^2\right]$$

EoM:

$$v_k'' + k^2 v_k - \frac{z''}{z} v_k = 0$$

In matter contracting phase $z \sim a$

$$v(t) \sim t^{-1/3}$$

The metric in Newtonian gauge

$$ds^2 = -(1 + 2\Phi)dt^2 + a(t)^2(1 - 2\Psi)d\mathbf{x}^2$$

 $\varphi(\eta, \mathbf{x}) = \varphi_0(\eta) + \delta\varphi(\eta, \mathbf{x})$

Introduce M-S Variable

$$v = a \left[\delta \varphi + \frac{z}{a} \Phi \right]$$

 $S^{(2)} = \frac{1}{2} \int d^4x \left[v'^2 - v_{,i}v_{,i} + \frac{z''}{z} v^2 \right]$

EoM:

$$v_k'' + k^2 v_k - \frac{z''}{z} v_k = 0$$

In matter contracting phase $z \sim a$

$$v(t) \sim t^{-1/3}$$

M-S variable corresponds to

$$\zeta = a^{-1}v \sim t^{-1}$$

So the relation between late time ζ and ζ at horizon crossing

$$\zeta(k,t) \sim \zeta(k,t_H) \cdot \frac{t_H}{t} \sim a(k,t_H)^{-1} \upsilon(k,t_H) \cdot \frac{t_H}{t}$$

where $v(k, t_H) \sim k^{-1/2}$, $t_H(k) = k^{-1}a(t_H(k))$

So we get

$$\zeta \sim t_H(k)^{1/3} v(k, t_H) \sim k^{-3/2}$$

$$P_{\zeta}(k,t) \sim k^3 |\zeta(k,t)|^2 \sim k^0$$

M-S variable corresponds to

$$\zeta = a^{-1}v \sim t^{-1}$$

So the relation between late time ζ and ζ at horizon crossing

$$\zeta(k,t) \sim \zeta(k,t_H) \cdot \frac{t_H}{t} \sim a(k,t_H)^{-1} \upsilon(k,t_H) \cdot \frac{t_H}{t}$$

where $v(k, t_H) \sim k^{-1/2}$, $t_H(k) = k^{-1}a(t_H(k))$

So we get

$$\zeta \sim t_H(k)^{1/3} v(k, t_H) \sim k^{-3/2}$$

$$P_{\zeta}(k,t) \sim k^3 |\zeta(k,t)|^2 \sim k^0$$

M-S variable corresponds to

$$\zeta = a^{-1}v \sim t^{-1}$$

So the relation between late time ζ and ζ at horizon crossing

$$\zeta(k,t) \sim \zeta(k,t_H) \cdot \frac{t_H}{t} \sim a(k,t_H)^{-1} \upsilon(k,t_H) \cdot \frac{t_H}{t}$$

where $v(k, t_H) \sim k^{-1/2}$, $t_H(k) = k^{-1}a(t_H(k))$

So we get

$$\zeta \sim t_H(k)^{1/3} v(k, t_H) \sim k^{-3/2}$$

$$P_{\zeta}(k,t) \sim k^3 |\zeta(k,t)|^2 \sim k^0$$

M-S variable corresponds to

$$\zeta = a^{-1}v \sim t^{-1}$$

So the relation between late time ζ and ζ at horizon crossing

$$\zeta(k,t) \sim \zeta(k,t_H) \cdot \frac{t_H}{t} \sim a(k,t_H)^{-1} \upsilon(k,t_H) \cdot \frac{t_H}{t}$$

where $v(k, t_H) \sim k^{-1/2}$, $t_H(k) = k^{-1}a(t_H(k))$

So we get

$$\zeta \sim t_H(k)^{1/3} v(k, t_H) \sim k^{-3/2}$$

$$P_{\zeta}(k,t) \sim k^3 |\zeta(k,t)|^2 \sim k^0$$

M-S variable corresponds to

$$\zeta = a^{-1}v \sim t^{-1}$$

So the relation between late time ζ and ζ at horizon crossing

$$\zeta(k,t) \sim \zeta(k,t_H) \cdot \frac{t_H}{t} \sim a(k,t_H)^{-1} \upsilon(k,t_H) \cdot \frac{t_H}{t}$$

where $v(k, t_H) \sim k^{-1/2}$, $t_H(k) = k^{-1}a(t_H(k))$

So we get

$$\zeta \sim t_H(k)^{1/3} v(k, t_H) \sim k^{-3/2}$$

$$P_{\zeta}(k,t) \sim k^3 |\zeta(k,t)|^2 \sim k^0$$

M-S variable corresponds to

$$\zeta = a^{-1}v \sim t^{-1}$$

So the relation between late time ζ and ζ at horizon crossing

$$\zeta(k,t) \sim \zeta(k,t_H) \cdot \frac{t_H}{t} \sim a(k,t_H)^{-1} \upsilon(k,t_H) \cdot \frac{t_H}{t}$$

where $v(k, t_H) \sim k^{-1/2}$, $t_H(k) = k^{-1}a(t_H(k))$

So we get

$$\zeta \sim t_H(k)^{1/3} v(k, t_H) \sim k^{-3/2}$$

$$P_{\zeta}(k,t) \sim k^3 |\zeta(k,t)|^2 \sim k^0$$

M-S variable corresponds to

$$\zeta = a^{-1}v \sim t^{-1}$$

So the relation between late time ζ and ζ at horizon crossing

$$\zeta(k,t) \sim \zeta(k,t_H) \cdot \frac{t_H}{t} \sim a(k,t_H)^{-1} \upsilon(k,t_H) \cdot \frac{t_H}{t}$$

where $v(k, t_H) \sim k^{-1/2}$, $t_H(k) = k^{-1}a(t_H(k))$

So we get

$$\zeta \sim t_H(k)^{1/3} v(k, t_H) \sim k^{-3/2}$$

$$P_{\zeta}(k,t) \sim k^3 |\zeta(k,t)|^2 \sim k^0$$

M-S variable corresponds to

$$\zeta = a^{-1}v \sim t^{-1}$$

So the relation between late time ζ and ζ at horizon crossing

$$\zeta(k,t) \sim \zeta(k,t_H) \cdot \frac{t_H}{t} \sim a(k,t_H)^{-1} \upsilon(k,t_H) \cdot \frac{t_H}{t}$$

where $v(k, t_H) \sim k^{-1/2}$, $t_H(k) = k^{-1}a(t_H(k))$

So we get

$$\zeta \sim t_H(k)^{1/3} v(k, t_H) \sim k^{-3/2}$$

$$P_{\zeta}(k,t) \sim k^3 |\zeta(k,t)|^2 \sim k^0$$

M-S variable corresponds to

$$\zeta = a^{-1}v \sim t^{-1}$$

So the relation between late time ζ and ζ at horizon crossing

$$\zeta(k,t) \sim \zeta(k,t_H) \cdot \frac{t_H}{t} \sim a(k,t_H)^{-1} \upsilon(k,t_H) \cdot \frac{t_H}{t}$$

where $v(k, t_H) \sim k^{-1/2}$, $t_H(k) = k^{-1}a(t_H(k))$

So we get

$$\zeta \sim t_H(k)^{1/3} v(k, t_H) \sim k^{-3/2}$$

$$P_{\zeta}(k,t) \sim k^3 |\zeta(k,t)|^2 \sim k^0$$

M-S variable corresponds to

$$\zeta = a^{-1}v \sim t^{-1}$$

So the relation between late time ζ and ζ at horizon crossing

$$\zeta(k,t) \sim \zeta(k,t_H) \cdot \frac{t_H}{t} \sim a(k,t_H)^{-1} \upsilon(k,t_H) \cdot \frac{t_H}{t}$$

where $v(k, t_H) \sim k^{-1/2}$, $t_H(k) = k^{-1}a(t_H(k))$

So we get

$$\zeta \sim t_H(k)^{1/3} v(k, t_H) \sim k^{-3/2}$$

$$P_{\zeta}(k,t) \sim k^3 |\zeta(k,t)|^2 \sim k^0$$

M-S variable corresponds to

$$\zeta = a^{-1}v \sim t^{-1}$$

So the relation between late time ζ and ζ at horizon crossing

$$\zeta(k,t) \sim \zeta(k,t_H) \cdot \frac{t_H}{t} \sim a(k,t_H)^{-1} \upsilon(k,t_H) \cdot \frac{t_H}{t}$$

where $v(k, t_H) \sim k^{-1/2}$, $t_H(k) = k^{-1}a(t_H(k))$

So we get

$$\zeta \sim t_H(k)^{1/3} v(k, t_H) \sim k^{-3/2}$$

$$P_{\zeta}(k,t) \sim k^3 |\zeta(k,t)|^2 \sim k^0$$

M-S variable corresponds to

$$\zeta = a^{-1}v \sim t^{-1}$$

So the relation between late time ζ and ζ at horizon crossing

$$\zeta(k,t) \sim \zeta(k,t_H) \cdot \frac{t_H}{t} \sim a(k,t_H)^{-1} \upsilon(k,t_H) \cdot \frac{t_H}{t}$$

where $v(k, t_H) \sim k^{-1/2}$, $t_H(k) = k^{-1}a(t_H(k))$

So we get

$$\zeta \sim t_H(k)^{1/3} v(k, t_H) \sim k^{-3/2}$$

$$P_{\zeta}(k,t) \sim k^3 |\zeta(k,t)|^2 \sim k^0$$

M-S variable corresponds to

$$\zeta = a^{-1}v \sim t^{-1}$$

So the relation between late time ζ and ζ at horizon crossing

$$\zeta(k,t) \sim \zeta(k,t_H) \cdot \frac{t_H}{t} \sim a(k,t_H)^{-1} \upsilon(k,t_H) \cdot \frac{t_H}{t}$$

where $v(k, t_H) \sim k^{-1/2}$, $t_H(k) = k^{-1}a(t_H(k))$

So we get

$$\zeta \sim t_H(k)^{1/3} v(k, t_H) \sim k^{-3/2}$$

$$P_{\zeta}(k,t) \sim k^3 |\zeta(k,t)|^2 \sim k^0$$

Ghost perturbation

We need to prove

- In matter contracting phase, Ghost perturbation does NOT grow faster than matter perturbation;
- The spectrum of ghost perturbation can NOT be red;
- There is NO large amplification of ghost perturbation around bounce phase;
- Focus on matter dominant contracting background

$$M_{pl}^2 G_{\mu\nu} = T_{\mu\nu}^{(\phi)} + T_{\mu\nu}$$

Linear decompose Newtonian potential

$$\Phi = \Phi_m + \Phi_g$$

Pirsa: 10090090 Page 574/901

Ghost perturbation

We need to prove

- In matter contracting phase, Ghost perturbation does NOT grow faster than matter perturbation;
- The spectrum of ghost perturbation can NOT be red;
- There is NO large amplification of ghost perturbation around bounce phase;
- Focus on matter dominant contracting background

$$M_{pl}^2 G_{\mu\nu} = T_{\mu\nu}^{(\phi)} + T_{\mu\nu}$$

Linear decompose Newtonian potential

$$\Phi = \Phi_m + \Phi_g$$

Pirsa: 10090090 Page 575/901

Ghost perturbation

We need to prove

- In matter contracting phase, Ghost perturbation does NOT grow faster than matter perturbation;
- The spectrum of ghost perturbation can NOT be red;
- There is NO large amplification of ghost perturbation around bounce phase;
- Focus on matter dominant contracting background

$$M_{pl}^2 G_{\mu\nu} = T_{\mu\nu}^{(\phi)} + T_{\mu\nu}$$

Linear decompose Newtonian potential

$$\Phi = \Phi_m + \Phi_g$$

We need to prove

- In matter contracting phase, Ghost perturbation does NOT grow faster than matter perturbation;
- The spectrum of ghost perturbation can NOT be red;
- There is NO large amplification of ghost perturbation around bounce phase;
- Focus on matter dominant contracting background

$$M_{pl}^2 G_{\mu\nu} = T_{\mu\nu}^{(\phi)} + T_{\mu\nu}$$

Linear decompose Newtonian potential

$$\Phi = \Phi_m + \Phi_g$$

Pirsa: 10090090 Page 577/901

We need to prove

- In matter contracting phase, Ghost perturbation does NOT grow faster than matter perturbation;
- The spectrum of ghost perturbation can NOT be red;
- There is NO large amplification of ghost perturbation around bounce phase;
- Focus on matter dominant contracting background

$$M_{pl}^2 G_{\mu\nu} = T_{\mu\nu}^{(\phi)} + T_{\mu\nu}$$

Linear decompose Newtonian potential

$$\Phi = \Phi_m + \Phi_g$$

We need to prove

- In matter contracting phase, Ghost perturbation does NOT grow faster than matter perturbation;
- The spectrum of ghost perturbation can NOT be red;
- There is NO large amplification of ghost perturbation around bounce phase;
- Focus on matter dominant contracting background

$$M_{pl}^2 G_{\mu\nu} = T_{\mu\nu}^{(\phi)} + T_{\mu\nu}$$

Linear decompose Newtonian potential

$$\Phi = \Phi_m + \Phi_g$$

We need to prove

- In matter contracting phase, Ghost perturbation does NOT grow faster than matter perturbation;
- The spectrum of ghost perturbation can NOT be red;
- There is NO large amplification of ghost perturbation around bounce phase;
- Focus on matter dominant contracting background

$$M_{pl}^2 G_{\mu\nu} = T_{\mu\nu}^{(\phi)} + T_{\mu\nu}$$

Linear decompose Newtonian potential

$$\Phi = \Phi_m + \Phi_g$$

We need to prove

- In matter contracting phase, Ghost perturbation does NOT grow faster than matter perturbation;
- The spectrum of ghost perturbation can NOT be red;
- There is NO large amplification of ghost perturbation around bounce phase;
- Focus on matter dominant contracting background

$$M_{pl}^2 G_{\mu\nu} = T_{\mu\nu}^{(\phi)} + T_{\mu\nu}$$

Linear decompose Newtonian potential

$$\Phi = \Phi_m + \Phi_g$$

We need to prove

- In matter contracting phase, Ghost perturbation does NOT grow faster than matter perturbation;
- The spectrum of ghost perturbation can NOT be red;
- There is NO large amplification of ghost perturbation around bounce phase;
- Focus on matter dominant contracting background

$$M_{pl}^2 G_{\mu\nu} = T_{\mu\nu}^{(\phi)} + T_{\mu\nu}$$

Linear decompose Newtonian potential

$$\Phi = \Phi_m + \Phi_g$$

We need to prove

- In matter contracting phase, Ghost perturbation does NOT grow faster than matter perturbation;
- The spectrum of ghost perturbation can NOT be red;
- There is NO large amplification of ghost perturbation around bounce phase;
- Focus on matter dominant contracting background

$$M_{pl}^2 G_{\mu\nu} = T_{\mu\nu}^{(\phi)} + T_{\mu\nu}$$

Linear decompose Newtonian potential

$$\Phi = \Phi_m + \Phi_g$$

We need to prove

- In matter contracting phase, Ghost perturbation does NOT grow faster than matter perturbation;
- The spectrum of ghost perturbation can NOT be red;
- There is NO large amplification of ghost perturbation around bounce phase;
- Focus on matter dominant contracting background

$$M_{pl}^2 G_{\mu\nu} = T_{\mu\nu}^{(\phi)} + T_{\mu\nu}$$

Linear decompose Newtonian potential

$$\Phi = \Phi_m + \Phi_g$$

We need to prove

- In matter contracting phase, Ghost perturbation does NOT grow faster than matter perturbation;
- The spectrum of ghost perturbation can NOT be red;
- There is NO large amplification of ghost perturbation around bounce phase;
- Focus on matter dominant contracting background

$$M_{pl}^2 G_{\mu\nu} = T_{\mu\nu}^{(\phi)} + T_{\mu\nu}$$

Linear decompose Newtonian potential

$$\Phi = \Phi_m + \Phi_g$$

Pirsa: 10090090 Page 585/901

We need to prove

- In matter contracting phase, Ghost perturbation does NOT grow faster than matter perturbation;
- The spectrum of ghost perturbation can NOT be red;
- There is NO large amplification of ghost perturbation around bounce phase;
- Focus on matter dominant contracting background

$$M_{pl}^2 G_{\mu\nu} = T_{\mu\nu}^{(\phi)} + T_{\mu\nu}$$

Linear decompose Newtonian potential

$$\Phi = \Phi_m + \Phi_g$$

We need to prove

- In matter contracting phase, Ghost perturbation does NOT grow faster than matter perturbation;
- The spectrum of ghost perturbation can NOT be red;
- There is NO large amplification of ghost perturbation around bounce phase;
- Focus on matter dominant contracting background

$$M_{pl}^2 G_{\mu\nu} = T_{\mu\nu}^{(\phi)} + T_{\mu\nu}$$

Linear decompose Newtonian potential

$$\Phi = \Phi_m + \Phi_g$$

We need to prove

- In matter contracting phase, Ghost perturbation does NOT grow faster than matter perturbation;
- The spectrum of ghost perturbation can NOT be red;
- There is NO large amplification of ghost perturbation around bounce phase;
- Focus on matter dominant contracting background

$$M_{pl}^2 G_{\mu\nu} = T_{\mu\nu}^{(\phi)} + T_{\mu\nu}$$

Linear decompose Newtonian potential

$$\Phi = \Phi_m + \Phi_g$$

Pirsa: 10090090 Page 588/901

We need to prove

- In matter contracting phase, Ghost perturbation does NOT grow faster than matter perturbation;
- The spectrum of ghost perturbation can NOT be red;
- There is NO large amplification of ghost perturbation around bounce phase;
- Focus on matter dominant contracting background

$$M_{pl}^2 G_{\mu\nu} = T_{\mu\nu}^{(\phi)} + T_{\mu\nu}$$

Linear decompose Newtonian potential

$$\Phi = \Phi_m + \Phi_g$$

We need to prove

- In matter contracting phase, Ghost perturbation does NOT grow faster than matter perturbation;
- The spectrum of ghost perturbation can NOT be red;
- There is NO large amplification of ghost perturbation around bounce phase;
- Focus on matter dominant contracting background

$$M_{pl}^2 G_{\mu\nu} = T_{\mu\nu}^{(\phi)} + T_{\mu\nu}$$

Linear decompose Newtonian potential

$$\Phi = \Phi_m + \Phi_q$$

We need to prove

- In matter contracting phase, Ghost perturbation does NOT grow faster than matter perturbation;
- The spectrum of ghost perturbation can NOT be red;
- There is NO large amplification of ghost perturbation around bounce phase;
- Focus on matter dominant contracting background

$$M_{pl}^2 G_{\mu\nu} = T_{\mu\nu}^{(\phi)} + T_{\mu\nu}$$

Linear decompose Newtonian potential

$$\Phi = \Phi_m + \Phi_g$$

Pirsa: 10090090 Page 591/901

We need to prove

- In matter contracting phase, Ghost perturbation does NOT grow faster than matter perturbation;
- The spectrum of ghost perturbation can NOT be red;
- There is NO large amplification of ghost perturbation around bounce phase;
- Focus on matter dominant contracting background

$$M_{pl}^2 G_{\mu\nu} = T_{\mu\nu}^{(\phi)} + T_{\mu\nu}$$

Linear decompose Newtonian potential

$$\Phi = \Phi_m + \Phi_g$$

We need to prove

- In matter contracting phase, Ghost perturbation does NOT grow faster than matter perturbation;
- The spectrum of ghost perturbation can NOT be red;
- There is NO large amplification of ghost perturbation around bounce phase;
- Focus on matter dominant contracting background

$$M_{pl}^2 G_{\mu\nu} = T_{\mu\nu}^{(\phi)} + T_{\mu\nu}$$

Linear decompose Newtonian potential

$$\Phi = \Phi_m + \Phi_g$$

We need to prove

- In matter contracting phase, Ghost perturbation does NOT grow faster than matter perturbation;
- The spectrum of ghost perturbation can NOT be red;
- There is NO large amplification of ghost perturbation around bounce phase;
- Focus on matter dominant contracting background

$$M_{pl}^2 G_{\mu\nu} = T_{\mu\nu}^{(\phi)} + T_{\mu\nu}$$

Linear decompose Newtonian potential

$$\Phi = \Phi_m + \Phi_g$$

We need to prove

- In matter contracting phase, Ghost perturbation does NOT grow faster than matter perturbation;
- The spectrum of ghost perturbation can NOT be red;
- There is NO large amplification of ghost perturbation around bounce phase;
- Focus on matter dominant contracting background

$$M_{pl}^2 G_{\mu\nu} = T_{\mu\nu}^{(\phi)} + T_{\mu\nu}$$

Linear decompose Newtonian potential

$$\Phi = \Phi_m + \Phi_g$$

We need to prove

- In matter contracting phase, Ghost perturbation does NOT grow faster than matter perturbation;
- The spectrum of ghost perturbation can NOT be red;
- There is NO large amplification of ghost perturbation around bounce phase;
- Focus on matter dominant contracting background

$$M_{pl}^2 G_{\mu\nu} = T_{\mu\nu}^{(\phi)} + T_{\mu\nu}$$

Linear decompose Newtonian potential

$$\Phi = \Phi_m + \Phi_g$$

We need to prove

- In matter contracting phase, Ghost perturbation does NOT grow faster than matter perturbation;
- The spectrum of ghost perturbation can NOT be red;
- There is NO large amplification of ghost perturbation around bounce phase;
- Focus on matter dominant contracting background

$$M_{pl}^2 G_{\mu\nu} = T_{\mu\nu}^{(\phi)} + T_{\mu\nu}$$

Linear decompose Newtonian potential

$$\Phi = \Phi_m + \Phi_g$$

We need to prove

- In matter contracting phase, Ghost perturbation does NOT grow faster than matter perturbation;
- The spectrum of ghost perturbation can NOT be red;
- There is NO large amplification of ghost perturbation around bounce phase;
- Focus on matter dominant contracting background

$$M_{pl}^2 G_{\mu\nu} = T_{\mu\nu}^{(\phi)} + T_{\mu\nu}$$

Linear decompose Newtonian potential

$$\Phi = \Phi_m + \Phi_g$$

We need to prove

- In matter contracting phase, Ghost perturbation does NOT grow faster than matter perturbation;
- The spectrum of ghost perturbation can NOT be red;
- There is NO large amplification of ghost perturbation around bounce phase;
- Focus on matter dominant contracting background

$$M_{pl}^2 G_{\mu\nu} = T_{\mu\nu}^{(\phi)} + T_{\mu\nu}$$

Linear decompose Newtonian potential

$$\Phi = \Phi_m + \Phi_g$$

We need to prove

- In matter contracting phase, Ghost perturbation does NOT grow faster than matter perturbation;
- The spectrum of ghost perturbation can NOT be red;
- There is NO large amplification of ghost perturbation around bounce phase;
- Focus on matter dominant contracting background

$$M_{pl}^2 G_{\mu\nu} = T_{\mu\nu}^{(\phi)} + T_{\mu\nu}$$

Linear decompose Newtonian potential

$$\Phi = \Phi_m + \Phi_g$$

Pirsa: 10090090 Page 600/901

We need to prove

- In matter contracting phase, Ghost perturbation does NOT grow faster than matter perturbation;
- The spectrum of ghost perturbation can NOT be red;
- There is NO large amplification of ghost perturbation around bounce phase;
- Focus on matter dominant contracting background

$$M_{pl}^2 G_{\mu\nu} = T_{\mu\nu}^{(\phi)} + T_{\mu\nu}$$

Linear decompose Newtonian potential

$$\Phi = \Phi_m + \Phi_g$$

The Eom of Φ is [hep-th/0607181, S.Mukohyama]

$$\partial_t^2 \Phi_g + 3H \partial_t \Phi_g + (2H^2 + \dot{H}) \Phi_g + \frac{\alpha}{M^2} \left(\frac{\mathbf{k}^2}{a^2}\right)^2 \Phi_g - \frac{\alpha M^2}{2M_{pl}^2} \frac{\mathbf{k}^2}{a^2} \Phi_g \ = \ \frac{\alpha}{2} \frac{M^2}{M_{pl}^2} \frac{\mathbf{k}^2}{a^2} \Phi_m$$

Define a new variable $\tilde{\Phi} = a(t)\Phi$,

$$\tilde{\Phi}_{g}'' + \frac{81\alpha}{M^{2}} \frac{\mathbf{k}^{4} t_{0}^{4}}{\tau^{4}} \tilde{\Phi}_{g} - \frac{\alpha M^{2}}{2M_{pl}^{2}} \mathbf{k}^{2} \tilde{\Phi}_{g} = \frac{\alpha}{2} \frac{M^{2}}{M_{pl}^{2}} \mathbf{k}^{2} \tilde{\Phi}_{m}$$

$$\tilde{\Phi}_{m} = a(t) \Phi_{m} = D\tau^{2} + \frac{S}{\tau^{3}}$$

The solution of the above EoM

$$\tilde{\Phi}_g^p(\tau) \, \simeq \, k^2 \gamma \tau \big(\frac{D}{3} \tau^3 - \frac{S}{2} \tau^{-2} \big)$$

Pirsa: 10090090 Page 602/901

The Eom of Φ is [hep-th/0607181, S.Mukohyama]

$$\partial_t^2 \Phi_g + 3H \partial_t \Phi_g + (2H^2 + \dot{H}) \Phi_g + \frac{\alpha}{M^2} \left(\frac{\mathbf{k}^2}{a^2}\right)^2 \Phi_g - \frac{\alpha M^2}{2M_{pl}^2} \frac{\mathbf{k}^2}{a^2} \Phi_g \ = \ \frac{\alpha}{2} \frac{M^2}{M_{pl}^2} \frac{\mathbf{k}^2}{a^2} \Phi_m$$

Define a new variable $\tilde{\Phi} = a(t)\Phi$,

$$\tilde{\Phi}_{g}'' + \frac{81\alpha}{M^{2}} \frac{\mathbf{k}^{4} t_{0}^{4}}{\tau^{4}} \tilde{\Phi}_{g} - \frac{\alpha M^{2}}{2M_{pl}^{2}} \mathbf{k}^{2} \tilde{\Phi}_{g} = \frac{\alpha}{2} \frac{M^{2}}{M_{pl}^{2}} \mathbf{k}^{2} \tilde{\Phi}_{m}$$

$$\tilde{\Phi}_{m} = a(t) \Phi_{m} = D\tau^{2} + \frac{S}{\tau^{3}}$$

The solution of the above EoM

$$\tilde{\Phi}_g^p(\tau) \, \simeq \, k^2 \gamma \tau \big(\frac{D}{3} \tau^3 - \frac{S}{2} \tau^{-2} \big)$$

The Eom of Φ is [hep-th/0607181, S.Mukohyama]

$$\partial_t^2 \Phi_g + 3H \partial_t \Phi_g + (2H^2 + \dot{H}) \Phi_g + \frac{\alpha}{M^2} \left(\frac{\mathbf{k}^2}{a^2}\right)^2 \Phi_g - \frac{\alpha M^2}{2M_{pl}^2} \frac{\mathbf{k}^2}{a^2} \Phi_g \ = \ \frac{\alpha}{2} \frac{M^2}{M_{pl}^2} \frac{\mathbf{k}^2}{a^2} \Phi_m$$

Define a new variable $\tilde{\Phi} = a(t)\Phi$,

$$\tilde{\Phi}_{g}'' + \frac{81\alpha}{M^{2}} \frac{\mathbf{k}^{4} t_{0}^{4}}{\tau^{4}} \tilde{\Phi}_{g} - \frac{\alpha M^{2}}{2M_{pl}^{2}} \mathbf{k}^{2} \tilde{\Phi}_{g} = \frac{\alpha}{2} \frac{M^{2}}{M_{pl}^{2}} \mathbf{k}^{2} \tilde{\Phi}_{m}$$

$$\tilde{\Phi}_{m} = a(t) \Phi_{m} = D\tau^{2} + \frac{S}{\tau^{3}}$$

The solution of the above EoM

$$\tilde{\Phi}_g^p(\tau) \simeq k^2 \gamma \tau \left(\frac{D}{3} \tau^3 - \frac{S}{2} \tau^{-2}\right)$$

The Eom of Φ is [hep-th/0607181, S.Mukohyama]

$$\partial_t^2 \Phi_g + 3H \partial_t \Phi_g + (2H^2 + \dot{H}) \Phi_g + \frac{\alpha}{M^2} \left(\frac{\mathbf{k}^2}{a^2}\right)^2 \Phi_g - \frac{\alpha M^2}{2M_{pl}^2} \frac{\mathbf{k}^2}{a^2} \Phi_g \ = \ \frac{\alpha}{2} \frac{M^2}{M_{pl}^2} \frac{\mathbf{k}^2}{a^2} \Phi_m$$

Define a new variable $\tilde{\Phi} = a(t)\Phi$,

$$\tilde{\Phi}_{g}'' + \frac{81\alpha}{M^{2}} \frac{\mathbf{k}^{4} t_{0}^{4}}{\tau^{4}} \tilde{\Phi}_{g} - \frac{\alpha M^{2}}{2M_{pl}^{2}} \mathbf{k}^{2} \tilde{\Phi}_{g} = \frac{\alpha}{2} \frac{M^{2}}{M_{pl}^{2}} \mathbf{k}^{2} \tilde{\Phi}_{m}$$

$$\tilde{\Phi}_{m} = a(t) \Phi_{m} = D\tau^{2} + \frac{S}{\tau^{3}}$$

The solution of the above EoM

$$\tilde{\Phi}_g^p(\tau) \simeq k^2 \gamma \tau \left(\frac{D}{3} \tau^3 - \frac{S}{2} \tau^{-2}\right)$$

The Eom of Φ is [hep-th/0607181, S.Mukohyama]

$$\partial_t^2 \Phi_g + 3H \partial_t \Phi_g + (2H^2 + \dot{H}) \Phi_g + \frac{\alpha}{M^2} \left(\frac{\mathbf{k}^2}{a^2}\right)^2 \Phi_g - \frac{\alpha M^2}{2 M_{pl}^2} \frac{\mathbf{k}^2}{a^2} \Phi_g \ = \ \frac{\alpha}{2} \frac{M^2}{M_{pl}^2} \frac{\mathbf{k}^2}{a^2} \Phi_m$$

Define a new variable $\tilde{\Phi} = a(t)\Phi$,

$$\tilde{\Phi}_{g}'' + \frac{81\alpha}{M^{2}} \frac{\mathbf{k}^{4} t_{0}^{4}}{\tau^{4}} \tilde{\Phi}_{g} - \frac{\alpha M^{2}}{2M_{pl}^{2}} \mathbf{k}^{2} \tilde{\Phi}_{g} = \frac{\alpha}{2} \frac{M^{2}}{M_{pl}^{2}} \mathbf{k}^{2} \tilde{\Phi}_{m}$$

$$\tilde{\Phi}_{m} = a(t) \Phi_{m} = D\tau^{2} + \frac{S}{\tau^{3}}$$

The solution of the above EoM

$$\tilde{\Phi}_g^p(\tau) \simeq k^2 \gamma \tau \left(\frac{D}{3} \tau^3 - \frac{S}{2} \tau^{-2}\right)$$

Page 606/901

The Eom of Φ is [hep-th/0607181, S.Mukohyama]

$$\partial_t^2 \Phi_g + 3H \partial_t \Phi_g + (2H^2 + \dot{H}) \Phi_g + \frac{\alpha}{M^2} \left(\frac{\mathbf{k}^2}{a^2}\right)^2 \Phi_g - \frac{\alpha M^2}{2M_{pl}^2} \frac{\mathbf{k}^2}{a^2} \Phi_g \ = \ \frac{\alpha}{2} \frac{M^2}{M_{pl}^2} \frac{\mathbf{k}^2}{a^2} \Phi_m$$

Define a new variable $\tilde{\Phi} = a(t)\Phi$,

$$\tilde{\Phi}_{g}'' + \frac{81\alpha}{M^{2}} \frac{\mathbf{k}^{4} t_{0}^{4}}{\tau^{4}} \tilde{\Phi}_{g} - \frac{\alpha M^{2}}{2M_{pl}^{2}} \mathbf{k}^{2} \tilde{\Phi}_{g} = \frac{\alpha}{2} \frac{M^{2}}{M_{pl}^{2}} \mathbf{k}^{2} \tilde{\Phi}_{m}$$

$$\tilde{\Phi}_{m} = a(t) \Phi_{m} = D\tau^{2} + \frac{S}{\tau^{3}}$$

The solution of the above EoM

$$\tilde{\Phi}_g^p(\tau) \simeq k^2 \gamma \tau \left(\frac{D}{3} \tau^3 - \frac{S}{2} \tau^{-2}\right)$$

The Eom of Φ is [hep-th/0607181, S.Mukohyama]

$$\partial_t^2 \Phi_g + 3H \partial_t \Phi_g + (2H^2 + \dot{H}) \Phi_g + \frac{\alpha}{M^2} \left(\frac{\mathbf{k}^2}{a^2}\right)^2 \Phi_g - \frac{\alpha M^2}{2M_{pl}^2} \frac{\mathbf{k}^2}{a^2} \Phi_g \ = \ \frac{\alpha}{2} \frac{M^2}{M_{pl}^2} \frac{\mathbf{k}^2}{a^2} \Phi_m$$

Define a new variable $\tilde{\Phi} = a(t)\Phi$,

$$\tilde{\Phi}_{g}'' + \frac{81\alpha}{M^{2}} \frac{\mathbf{k}^{4} t_{0}^{4}}{\tau^{4}} \tilde{\Phi}_{g} - \frac{\alpha M^{2}}{2M_{pl}^{2}} \mathbf{k}^{2} \tilde{\Phi}_{g} = \frac{\alpha}{2} \frac{M^{2}}{M_{pl}^{2}} \mathbf{k}^{2} \tilde{\Phi}_{m}$$

$$\tilde{\Phi}_{m} = a(t) \Phi_{m} = D\tau^{2} + \frac{S}{\tau^{3}}$$

The solution of the above EoM

$$\tilde{\Phi}_g^p(\tau) \, \simeq \, k^2 \gamma \tau \big(\frac{D}{3} \tau^3 - \frac{S}{2} \tau^{-2} \big)$$

The Eom of Φ is [hep-th/0607181, S.Mukohyama]

$$\partial_t^2 \Phi_g + 3H \partial_t \Phi_g + (2H^2 + \dot{H}) \Phi_g + \frac{\alpha}{M^2} \left(\frac{\mathbf{k}^2}{a^2}\right)^2 \Phi_g - \frac{\alpha M^2}{2M_{pl}^2} \frac{\mathbf{k}^2}{a^2} \Phi_g \ = \ \frac{\alpha}{2} \frac{M^2}{M_{pl}^2} \frac{\mathbf{k}^2}{a^2} \Phi_m$$

Define a new variable $\bar{\Phi} = a(t)\Phi$,

$$\tilde{\Phi}_{g}'' + \frac{81\alpha}{M^{2}} \frac{\mathbf{k}^{4} t_{0}^{4}}{\tau^{4}} \tilde{\Phi}_{g} - \frac{\alpha M^{2}}{2M_{pl}^{2}} \mathbf{k}^{2} \tilde{\Phi}_{g} = \frac{\alpha}{2} \frac{M^{2}}{M_{pl}^{2}} \mathbf{k}^{2} \tilde{\Phi}_{m}$$

$$\tilde{\Phi}_{m} = a(t) \Phi_{m} = D\tau^{2} + \frac{S}{\tau^{3}}$$

The solution of the above EoM

$$\tilde{\Phi}_g^p(\tau) \simeq k^2 \gamma \tau \left(\frac{D}{3} \tau^3 - \frac{S}{2} \tau^{-2}\right)$$

The Eom of Φ is [hep-th/0607181, S.Mukohyama]

$$\partial_t^2 \Phi_g + 3H \partial_t \Phi_g + (2H^2 + \dot{H}) \Phi_g + \frac{\alpha}{M^2} \left(\frac{\mathbf{k}^2}{a^2}\right)^2 \Phi_g - \frac{\alpha M^2}{2M_{pl}^2} \frac{\mathbf{k}^2}{a^2} \Phi_g \ = \ \frac{\alpha}{2} \frac{M^2}{M_{pl}^2} \frac{\mathbf{k}^2}{a^2} \Phi_m$$

Define a new variable $\bar{\Phi} = a(t)\Phi$,

$$\tilde{\Phi}_{g}'' + \frac{81\alpha}{M^{2}} \frac{\mathbf{k}^{4} t_{0}^{4}}{\tau^{4}} \tilde{\Phi}_{g} - \frac{\alpha M^{2}}{2M_{pl}^{2}} \mathbf{k}^{2} \tilde{\Phi}_{g} = \frac{\alpha}{2} \frac{M^{2}}{M_{pl}^{2}} \mathbf{k}^{2} \tilde{\Phi}_{m}$$

$$\tilde{\Phi}_{m} = a(t) \Phi_{m} = D\tau^{2} + \frac{S}{\tau^{3}}$$

The solution of the above EoM

$$\tilde{\Phi}_g^p(\tau) \, \simeq \, k^2 \gamma \tau \big(\frac{D}{3} \tau^3 - \frac{S}{2} \tau^{-2} \big)$$

The Eom of Φ is [hep-th/0607181, S.Mukohyama]

$$\partial_t^2 \Phi_g + 3H \partial_t \Phi_g + (2H^2 + \dot{H}) \Phi_g + \frac{\alpha}{M^2} \left(\frac{\mathbf{k}^2}{a^2}\right)^2 \Phi_g - \frac{\alpha M^2}{2M_{pl}^2} \frac{\mathbf{k}^2}{a^2} \Phi_g \ = \ \frac{\alpha}{2} \frac{M^2}{M_{pl}^2} \frac{\mathbf{k}^2}{a^2} \Phi_m$$

Define a new variable $\tilde{\Phi} = a(t)\Phi$,

$$\tilde{\Phi}_{g}'' + \frac{81\alpha}{M^{2}} \frac{\mathbf{k}^{4} t_{0}^{4}}{\tau^{4}} \tilde{\Phi}_{g} - \frac{\alpha M^{2}}{2M_{pl}^{2}} \mathbf{k}^{2} \tilde{\Phi}_{g} = \frac{\alpha}{2} \frac{M^{2}}{M_{pl}^{2}} \mathbf{k}^{2} \tilde{\Phi}_{m}$$

$$\tilde{\Phi}_{m} = a(t) \Phi_{m} = D\tau^{2} + \frac{S}{\tau^{3}}$$

The solution of the above EoM

$$\tilde{\Phi}_g^p(\tau) \, \simeq \, k^2 \gamma \tau \big(\frac{D}{3} \tau^3 - \frac{S}{2} \tau^{-2} \big)$$

The Eom of Φ is [hep-th/0607181, S.Mukohyama]

$$\partial_t^2 \Phi_g + 3H \partial_t \Phi_g + (2H^2 + \dot{H}) \Phi_g + \frac{\alpha}{M^2} \left(\frac{\mathbf{k}^2}{a^2}\right)^2 \Phi_g - \frac{\alpha M^2}{2M_{pl}^2} \frac{\mathbf{k}^2}{a^2} \Phi_g \ = \ \frac{\alpha}{2} \frac{M^2}{M_{pl}^2} \frac{\mathbf{k}^2}{a^2} \Phi_m$$

Define a new variable $\tilde{\Phi} = a(t)\Phi$,

$$\tilde{\Phi}_{g}'' + \frac{81\alpha}{M^{2}} \frac{\mathbf{k}^{4} t_{0}^{4}}{\tau^{4}} \tilde{\Phi}_{g} - \frac{\alpha M^{2}}{2M_{pl}^{2}} \mathbf{k}^{2} \tilde{\Phi}_{g} = \frac{\alpha}{2} \frac{M^{2}}{M_{pl}^{2}} \mathbf{k}^{2} \tilde{\Phi}_{m}$$

$$\tilde{\Phi}_{m} = a(t) \Phi_{m} = D\tau^{2} + \frac{S}{\tau^{3}}$$

The solution of the above EoM

$$\tilde{\Phi}_g^p(\tau) \simeq k^2 \gamma \tau \left(\frac{D}{3} \tau^3 - \frac{S}{2} \tau^{-2}\right)$$

Page 612/901

The Eom of Φ is [hep-th/0607181, S.Mukohyama]

$$\partial_t^2 \Phi_g + 3H \partial_t \Phi_g + (2H^2 + \dot{H}) \Phi_g + \frac{\alpha}{M^2} \left(\frac{\mathbf{k}^2}{a^2}\right)^2 \Phi_g - \frac{\alpha M^2}{2M_{pl}^2} \frac{\mathbf{k}^2}{a^2} \Phi_g \ = \ \frac{\alpha}{2} \frac{M^2}{M_{pl}^2} \frac{\mathbf{k}^2}{a^2} \Phi_m$$

Define a new variable $\tilde{\Phi} = a(t)\Phi$,

$$\tilde{\Phi}_{g}'' + \frac{81\alpha}{M^{2}} \frac{\mathbf{k}^{4} t_{0}^{4}}{\tau^{4}} \tilde{\Phi}_{g} - \frac{\alpha M^{2}}{2M_{pl}^{2}} \mathbf{k}^{2} \tilde{\Phi}_{g} = \frac{\alpha}{2} \frac{M^{2}}{M_{pl}^{2}} \mathbf{k}^{2} \tilde{\Phi}_{m}$$

$$\tilde{\Phi}_{m} = a(t) \Phi_{m} = D\tau^{2} + \frac{S}{\tau^{3}}$$

The solution of the above EoM

$$\tilde{\Phi}_g^p(\tau) \simeq k^2 \gamma \tau \left(\frac{D}{3} \tau^3 - \frac{S}{2} \tau^{-2}\right)$$

The Eom of Φ is [hep-th/0607181, S.Mukohyama]

$$\partial_t^2 \Phi_g + 3H \partial_t \Phi_g + (2H^2 + \dot{H}) \Phi_g + \frac{\alpha}{M^2} \left(\frac{\mathbf{k}^2}{a^2}\right)^2 \Phi_g - \frac{\alpha M^2}{2 M_{pl}^2} \frac{\mathbf{k}^2}{a^2} \Phi_g \ = \ \frac{\alpha}{2} \frac{M^2}{M_{pl}^2} \frac{\mathbf{k}^2}{a^2} \Phi_m$$

Define a new variable $\tilde{\Phi} = a(t)\Phi$,

$$\tilde{\Phi}_{g}'' + \frac{81\alpha}{M^{2}} \frac{\mathbf{k}^{4} t_{0}^{4}}{\tau^{4}} \tilde{\Phi}_{g} - \frac{\alpha M^{2}}{2M_{pl}^{2}} \mathbf{k}^{2} \tilde{\Phi}_{g} = \frac{\alpha}{2} \frac{M^{2}}{M_{pl}^{2}} \mathbf{k}^{2} \tilde{\Phi}_{m}$$

$$\tilde{\Phi}_{m} = a(t) \Phi_{m} = D\tau^{2} + \frac{S}{\tau^{3}}$$

The solution of the above EoM

$$\tilde{\Phi}_g^p(\tau) \simeq k^2 \gamma \tau \left(\frac{D}{3} \tau^3 - \frac{S}{2} \tau^{-2}\right)$$

The Eom of Φ is [hep-th/0607181, S.Mukohyama]

$$\partial_t^2 \Phi_g + 3 H \partial_t \Phi_g + (2 H^2 + \dot{H}) \Phi_g + \frac{\alpha}{M^2} \left(\frac{\mathbf{k}^2}{a^2}\right)^2 \Phi_g - \frac{\alpha M^2}{2 M_{pl}^2} \frac{\mathbf{k}^2}{a^2} \Phi_g \ = \ \frac{\alpha}{2} \frac{M^2}{M_{pl}^2} \frac{\mathbf{k}^2}{a^2} \Phi_m$$

Define a new variable $\tilde{\Phi} = a(t)\Phi$,

$$\tilde{\Phi}_{g}'' + \frac{81\alpha}{M^{2}} \frac{\mathbf{k}^{4} t_{0}^{4}}{\tau^{4}} \tilde{\Phi}_{g} - \frac{\alpha M^{2}}{2M_{pl}^{2}} \mathbf{k}^{2} \tilde{\Phi}_{g} = \frac{\alpha}{2} \frac{M^{2}}{M_{pl}^{2}} \mathbf{k}^{2} \tilde{\Phi}_{m}$$

$$\tilde{\Phi}_{m} = a(t) \Phi_{m} = D\tau^{2} + \frac{S}{\tau^{3}}$$

The solution of the above EoM

$$\tilde{\Phi}_g^p(\tau) \, \simeq \, k^2 \gamma \tau \big(\frac{D}{3} \tau^3 - \frac{S}{2} \tau^{-2} \big)$$

We need to prove

- In matter contracting phase, Ghost perturbation does NOT grow faster than matter perturbation;
- The spectrum of ghost perturbation can NOT be red;
- There is NO large amplification of ghost perturbation around bounce phase;
- Focus on matter dominant contracting background

$$M_{pl}^2 G_{\mu\nu} = T_{\mu\nu}^{(\phi)} + T_{\mu\nu}$$

Linear decompose Newtonian potential

$$\Phi = \Phi_m + \Phi_g$$

We need to prove

- In matter contracting phase, Ghost perturbation does NOT grow faster than matter perturbation;
- The spectrum of ghost perturbation can NOT be red;
- There is NO large amplification of ghost perturbation around bounce phase;
- Focus on matter dominant contracting background

$$M_{pl}^2 G_{\mu\nu} = T_{\mu\nu}^{(\phi)} + T_{\mu\nu}$$

Linear decompose Newtonian potential

$$\Phi = \Phi_m + \Phi_g$$

We need to prove

- In matter contracting phase, Ghost perturbation does NOT grow faster than matter perturbation;
- The spectrum of ghost perturbation can NOT be red;
- There is NO large amplification of ghost perturbation around bounce phase;
- Focus on matter dominant contracting background

$$M_{pl}^2 G_{\mu\nu} = T_{\mu\nu}^{(\phi)} + T_{\mu\nu}$$

Linear decompose Newtonian potential

$$\Phi = \Phi_m + \Phi_g$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_g + \theta \Phi_g = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

The Eom of Φ is [hep-th/0607181, S.Mukohyama]

$$\partial_t^2 \Phi_g + 3H \partial_t \Phi_g + (2H^2 + \dot{H}) \Phi_g + \frac{\alpha}{M^2} \left(\frac{\mathbf{k}^2}{a^2}\right)^2 \Phi_g - \frac{\alpha M^2}{2M_{pl}^2} \frac{\mathbf{k}^2}{a^2} \Phi_g \ = \ \frac{\alpha}{2} \frac{M^2}{M_{pl}^2} \frac{\mathbf{k}^2}{a^2} \Phi_m$$

Define a new variable $\tilde{\Phi} = a(t)\Phi$,

$$\tilde{\Phi}_{g}'' + \frac{81\alpha}{M^{2}} \frac{\mathbf{k}^{4} t_{0}^{4}}{\tau^{4}} \tilde{\Phi}_{g} - \frac{\alpha M^{2}}{2M_{pl}^{2}} \mathbf{k}^{2} \tilde{\Phi}_{g} = \frac{\alpha}{2} \frac{M^{2}}{M_{pl}^{2}} \mathbf{k}^{2} \tilde{\Phi}_{m}$$

$$\tilde{\Phi}_{m} = a(t) \Phi_{m} = D\tau^{2} + \frac{S}{\tau^{3}}$$

The solution of the above EoM

$$\tilde{\Phi}_g^p(\tau) \, \simeq \, k^2 \gamma \tau \big(\frac{D}{3} \tau^3 - \frac{S}{2} \tau^{-2} \big)$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

the dispersion relation

$$\omega^2 \, = \, \frac{-(\tilde{M}^2 M^4 + 4 M_{pl}^4 \dot{H}) k^2 + 2 M_{pl}^2 \tilde{M}^2 k^4}{2 M_{pl}^2 M^4}$$

the typical instability rate

$$\omega_c = \frac{1}{4} \frac{\tilde{M}M^2}{M_{pl}^2} + \dot{H} \frac{M_{pl}^2}{M^2 \tilde{M}}$$

Its growing rate during bounce phase

$$\Delta t \omega_c \sim \left(\frac{V_0}{M^4}\right)^{1/\alpha} \left[\frac{1}{4} \frac{\tilde{M} M}{M_{pl}^2} + \dot{H} \frac{M_{pl}^2}{M^3 \tilde{M}}\right]$$

Since
$$\dot{H} \sim \frac{M^4 \dot{\pi}}{M_{pl}^2}$$
 if $V_0 \ll M^4$ We get

the dispersion relation

$$\omega^2 \, = \, \frac{-(\tilde{M}^2 M^4 + 4 M_{pl}^4 \dot{H}) k^2 + 2 M_{pl}^2 \tilde{M}^2 k^4}{2 M_{pl}^2 M^4}$$

the typical instability rate

$$\omega_c = \frac{1}{4} \frac{\tilde{M} M^2}{M_{pl}^2} + \dot{H} \frac{M_{pl}^2}{M^2 \tilde{M}}$$

Its growing rate during bounce phase

$$\Delta t \omega_c \sim \left(\frac{V_0}{M^4}\right)^{1/\alpha} \left[\frac{1}{4} \frac{\tilde{M} M}{M_{pl}^2} + \dot{H} \frac{M_{pl}^2}{M^3 \tilde{M}}\right]$$

Since
$$\dot{H} \sim \frac{M^4 \dot{\pi}}{M_{pl}^2}$$
 if $V_0 \ll M^4$ We get

$$\Delta t \omega_c \ll 1$$

the dispersion relation

$$\omega^2 \, = \, \frac{-(\tilde{M}^2 M^4 + 4 M_{pl}^4 \dot{H}) k^2 + 2 M_{pl}^2 \tilde{M}^2 k^4}{2 M_{pl}^2 M^4}$$

the typical instability rate

$$\omega_c = \frac{1}{4} \frac{\tilde{M} M^2}{M_{pl}^2} + \dot{H} \frac{M_{pl}^2}{M^2 \tilde{M}}$$

Its growing rate during bounce phase

$$\Delta t \omega_c \sim \left(\frac{V_0}{M^4}\right)^{1/\alpha} \left[\frac{1}{4} \frac{\tilde{M} M}{M_{pl}^2} + \dot{H} \frac{M_{pl}^2}{M^3 \tilde{M}}\right]$$

Since
$$\dot{H} \sim \frac{M^4 \dot{\pi}}{M_{pl}^2}$$
 if $V_0 \ll M^4$ We get

the dispersion relation

$$\omega^2 \, = \, \frac{-(\tilde{M}^2 M^4 + 4 M_{pl}^4 \dot{H}) k^2 + 2 M_{pl}^2 \tilde{M}^2 k^4}{2 M_{pl}^2 M^4}$$

the typical instability rate

$$\omega_c = \frac{1}{4} \frac{\tilde{M} M^2}{M_{pl}^2} + \dot{H} \frac{M_{pl}^2}{M^2 \tilde{M}}$$

Its growing rate during bounce phase

$$\Delta t \omega_c \sim \left(\frac{V_0}{M^4}\right)^{1/\alpha} \left[\frac{1}{4} \frac{\tilde{M} M}{M_{pl}^2} + \dot{H} \frac{M_{pl}^2}{M^3 \tilde{M}}\right]$$

Since
$$\dot{H} \sim \frac{M^4 \dot{\pi}}{M_{pl}^2}$$
 if $V_0 \ll M^4$ We get

the dispersion relation

$$\omega^2 \, = \, \frac{-(\tilde{M}^2 M^4 + 4 M_{pl}^4 \dot{H}) k^2 + 2 M_{pl}^2 \tilde{M}^2 k^4}{2 M_{pl}^2 M^4} \label{eq:omega2}$$

the typical instability rate

$$\omega_c = \frac{1}{4} \frac{\tilde{M} M^2}{M_{pl}^2} + \dot{H} \frac{M_{pl}^2}{M^2 \tilde{M}}$$

Its growing rate during bounce phase

$$\Delta t \omega_c \sim \left(\frac{V_0}{M^4}\right)^{1/\alpha} \left[\frac{1}{4} \frac{\tilde{M} M}{M_{pl}^2} + \dot{H} \frac{M_{pl}^2}{M^3 \tilde{M}}\right]$$

Since
$$\dot{H} \sim \frac{M^4 \dot{\pi}}{M_{pl}^2}$$
 if $V_0 \ll M^4$ We get

the dispersion relation

$$\omega^2 \, = \, \frac{-(\tilde{M}^2 M^4 + 4 M_{pl}^4 \dot{H}) k^2 + 2 M_{pl}^2 \tilde{M}^2 k^4}{2 M_{pl}^2 M^4}$$

the typical instability rate

$$\omega_c = \frac{1}{4} \frac{\tilde{M} M^2}{M_{pl}^2} + \dot{H} \frac{M_{pl}^2}{M^2 \tilde{M}}$$

Its growing rate during bounce phase

$$\Delta t \omega_c \sim \big(\frac{V_0}{M^4}\big)^{1/\alpha} \big[\frac{1}{4}\frac{\tilde{M}M}{M_{pl}^2} + \dot{H}\frac{M_{pl}^2}{M^3\tilde{M}}\big]$$
 Since $\dot{H} \sim \frac{M^4\dot{\pi}}{M_s^2}$ if $V_0 \ll M^4$ We get

the dispersion relation

$$\omega^2 \, = \, \frac{-(\tilde{M}^2 M^4 + 4 M_{pl}^4 \dot{H}) k^2 + 2 M_{pl}^2 \tilde{M}^2 k^4}{2 M_{pl}^2 M^4}$$

the typical instability rate

$$\omega_c = \frac{1}{4} \frac{\tilde{M}M^2}{M_{pl}^2} + \dot{H} \frac{M_{pl}^2}{M^2 \tilde{M}}$$

Its growing rate during bounce phase

$$\Delta t \omega_c \, \sim \, \big(\frac{V_0}{M^4}\big)^{1/\alpha} \big[\frac{1}{4}\frac{\tilde{M}M}{M_{pl}^2} + \dot{H}\frac{M_{pl}^2}{M^3\tilde{M}}\big]$$

Since
$$\dot{H} \sim \frac{M^4 \dot{\pi}}{M_{pl}^2}$$
 if $V_0 \ll M^4$ We get

the dispersion relation

$$\omega^2 \, = \, \frac{-(\tilde{M}^2 M^4 + 4 M_{pl}^4 \dot{H}) k^2 + 2 M_{pl}^2 \tilde{M}^2 k^4}{2 M_{pl}^2 M^4}$$

the typical instability rate

$$\omega_{c} = \frac{1}{4} \frac{\tilde{M}M^{2}}{M_{pl}^{2}} + \dot{H} \frac{M_{pl}^{2}}{M^{2}\tilde{M}}$$

Its growing rate during bounce phase

$$\Delta t \omega_c \sim \left(\frac{V_0}{M^4}\right)^{1/\alpha} \left[\frac{1}{4} \frac{\tilde{M} M}{M_{pl}^2} + \dot{H} \frac{M_{pl}^2}{M^3 \tilde{M}}\right]$$
 $M^4 \dot{\tau}$

Since
$$\dot{H} \sim \frac{M^4 \dot{\pi}}{M_{pl}^2}$$
 if $V_0 \ll M^4$ We get

$$\Delta t \omega_c \ll 1$$

the dispersion relation

$$\omega^2 \, = \, \frac{-(\tilde{M}^2 M^4 + 4 M_{pl}^4 \dot{H}) k^2 + 2 M_{pl}^2 \tilde{M}^2 k^4}{2 M_{pl}^2 M^4}$$

the typical instability rate

$$\omega_c = \frac{1}{4} \frac{\tilde{M}M^2}{M_{pl}^2} + \dot{H} \frac{M_{pl}^2}{M^2 \tilde{M}}$$

Its growing rate during bounce phase

$$\Delta t \omega_c \sim \left(\frac{V_0}{M^4}\right)^{1/\alpha} \left[\frac{1}{4} \frac{\tilde{M} M}{M_{pl}^2} + \dot{H} \frac{M_{pl}^2}{M^3 \tilde{M}}\right]$$

Since
$$\dot{H} \sim \frac{M^4 \dot{\pi}}{M_{pl}^2}$$
 if $V_0 \ll M^4$ We get

the dispersion relation

$$\omega^2 \, = \, \frac{-(\tilde{M}^2 M^4 + 4 M_{pl}^4 \dot{H}) k^2 + 2 M_{pl}^2 \tilde{M}^2 k^4}{2 M_{pl}^2 M^4}$$

the typical instability rate

$$\omega_c = \frac{1}{4} \frac{\tilde{M} M^2}{M_{pl}^2} + \dot{H} \frac{M_{pl}^2}{M^2 \tilde{M}}$$

Its growing rate during bounce phase

$$\Delta t \omega_c \sim \left(\frac{V_0}{M^4}\right)^{1/\alpha} \left[\frac{1}{4} \frac{\tilde{M} M}{M_{pl}^2} + \dot{H} \frac{M_{pl}^2}{M^3 \tilde{M}}\right]$$
 $M^4 \dot{\tau}$

Since
$$\dot{H} \sim \frac{M^4 \dot{\pi}}{M_{pl}^2}$$
 if $V_0 \ll M^4$ We get

$$\Delta t \omega_c \ll 1$$

the dispersion relation

$$\omega^2 \, = \, \frac{-(\tilde{M}^2 M^4 + 4 M_{pl}^4 \dot{H}) k^2 + 2 M_{pl}^2 \tilde{M}^2 k^4}{2 M_{pl}^2 M^4}$$

the typical instability rate

$$\omega_c = \frac{1}{4} \frac{\tilde{M} M^2}{M_{pl}^2} + \dot{H} \frac{M_{pl}^2}{M^2 \tilde{M}}$$

Its growing rate during bounce phase

$$\Delta t \omega_c \sim \left(\frac{V_0}{M^4}\right)^{1/\alpha} \left[\frac{1}{4} \frac{\tilde{M} M}{M_{pl}^2} + \dot{H} \frac{M_{pl}^2}{M^3 \tilde{M}}\right]$$

Since
$$\dot{H} \sim \frac{M^4 \dot{\pi}}{M_{pl}^2}$$
 if $V_0 \ll M^4$ We get

Stability during bounce

the dispersion relation

$$\omega^2 \, = \, \frac{-(\tilde{M}^2 M^4 + 4 M_{pl}^4 \dot{H}) k^2 + 2 M_{pl}^2 \tilde{M}^2 k^4}{2 M_{pl}^2 M^4}$$

the typical instability rate

$$\omega_c = \frac{1}{4} \frac{\tilde{M} M^2}{M_{pl}^2} + \dot{H} \frac{M_{pl}^2}{M^2 \tilde{M}}$$

Its growing rate during bounce phase

$$\Delta t \omega_c \sim \left(\frac{V_0}{M^4}\right)^{1/\alpha} \left[\frac{1}{4} \frac{\tilde{M}M}{M_{pl}^2} + \dot{H} \frac{M_{pl}^2}{M^3 \tilde{M}}\right]$$
 $M^4 \dot{\tau}$

Since
$$\dot{H} \sim \frac{M^4 \dot{\pi}}{M_{pl}^2}$$
 if $V_0 \ll M^4$ We get

$$\Delta t \omega_c \ll 1$$

Stability during bounce

the dispersion relation

$$\omega^2 \, = \, \frac{-(\tilde{M}^2 M^4 + 4 M_{pl}^4 \dot{H}) k^2 + 2 M_{pl}^2 \tilde{M}^2 k^4}{2 M_{pl}^2 M^4}$$

the typical instability rate

$$\omega_c = \frac{1}{4} \frac{\tilde{M}M^2}{M_{pl}^2} + \dot{H} \frac{M_{pl}^2}{M^2 \tilde{M}}$$

Its growing rate during bounce phase

$$\Delta t \omega_c \sim \left(\frac{V_0}{M^4}\right)^{1/\alpha} \left[\frac{1}{4} \frac{\tilde{M} M}{M_{pl}^2} + \dot{H} \frac{M_{pl}^2}{M^3 \tilde{M}}\right]$$

Since
$$\dot{H} \sim \frac{M^4 \dot{\pi}}{M_{pl}^2}$$
 if $V_0 \ll M^4$ We get

Stability during bounce

the dispersion relation

$$\omega^2 \, = \, \frac{-(\tilde{M}^2 M^4 + 4 M_{pl}^4 \dot{H}) k^2 + 2 M_{pl}^2 \tilde{M}^2 k^4}{2 M_{pl}^2 M^4}$$

the typical instability rate

$$\omega_c = \frac{1}{4} \frac{\tilde{M} M^2}{M_{pl}^2} + \dot{H} \frac{M_{pl}^2}{M^2 \tilde{M}}$$

Its growing rate during bounce phase

$$\Delta t \omega_c \sim \left(\frac{V_0}{M^4}\right)^{1/\alpha} \left[\frac{1}{4} \frac{\tilde{M} M}{M_{pl}^2} + \dot{H} \frac{M_{pl}^2}{M^3 \tilde{M}}\right]$$
 $M^4 \dot{\tau}$

Since
$$\dot{H} \sim \frac{M^4 \dot{\pi}}{M_{pl}^2}$$
 if $V_0 \ll M^4$ We get

For a fluid with pressure p and energy density ρ,

$$\omega^2 = \frac{\delta p}{\delta \rho} k^2 - \omega_J^2$$
, where $\omega_J^2 = \frac{\rho}{2M_{Pl}^2}$.

When $\omega^2 < 0$, Jeans collapse happens.

$$L_{\rm J} \sim \frac{M_{\rm Pl}}{M^2}$$
, $T_{\rm J} \sim \frac{M_{\rm Pl}^2}{M^3}$

So we need a very small M to protect the IR gravity.

For a fluid with pressure p and energy density ρ,

$$\omega^2 = \frac{\delta p}{\delta \rho} k^2 - \omega_J^2$$
, where $\omega_J^2 = \frac{\rho}{2M_{Pl}^2}$.

When $\omega^2 < 0$, Jeans collapse happens.

$$L_{\rm J} \sim \frac{M_{\rm Pl}}{M^2}.$$
 $T_{\rm J} \sim \frac{M_{\rm Pl}^2}{M^3}$

So we need a very small M to protect the IR gravity.

For a fluid with pressure p and energy density ρ,

$$\omega^2 = \frac{\delta p}{\delta \rho} k^2 - \omega_J^2$$
, where $\omega_J^2 = \frac{\rho}{2M_{Pl}^2}$.

When $\omega^2 < 0$, Jeans collapse happens.

$$L_{\rm J} \sim \frac{M_{\rm Pl}}{M^2}$$
, $T_{\rm J} \sim \frac{M_{\rm Pl}^2}{M^3}$

So we need a very small M to protect the IR gravity.

For a fluid with pressure p and energy density ρ,

$$\omega^2 = \frac{\delta p}{\delta \rho} k^2 - \omega_J^2$$
, where $\omega_J^2 = \frac{\rho}{2M_{Pl}^2}$.

When $\omega^2 < 0$, Jeans collapse happens.

$$L_{\rm J} \sim \frac{M_{\rm Pl}}{M^2}$$
, $T_{\rm J} \sim \frac{M_{\rm Pl}^2}{M^3}$

So we need a very small M to protect the IR gravity.

For a fluid with pressure p and energy density ρ,

$$\omega^2 = \frac{\delta p}{\delta \rho} k^2 - \omega_J^2$$
, where $\omega_J^2 = \frac{\rho}{2M_{Pl}^2}$.

When $\omega^2 < 0$, Jeans collapse happens.

$$L_{\rm J} \sim \frac{M_{\rm Pl}}{M^2}$$
, $T_{\rm J} \sim \frac{M_{\rm Pl}^2}{M^3}$

So we need a very small M to protect the IR gravity.

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

S_g =

Logarithmic growing

Matter epoch

 $\delta_{\rm g}$

8,

For a fluid with pressure p and energy density ρ,

$$\omega^2 = \frac{\delta p}{\delta \rho} k^2 - \omega_J^2$$
, where $\omega_J^2 = \frac{\rho}{2M_{Pl}^2}$.

When $\omega^2 < 0$, Jeans collapse happens.

$$L_{\rm J} \sim \frac{M_{\rm Pl}}{M^2}$$
, $T_{\rm J} \sim \frac{M_{\rm Pl}^2}{M^3}$

So we need a very small M to protect the IR gravity.

For a fluid with pressure p and energy density ρ,

$$\omega^2 = \frac{\delta p}{\delta \rho} k^2 - \omega_J^2$$
, where $\omega_J^2 = \frac{\rho}{2M_{Pl}^2}$.

When $\omega^2 < 0$, Jeans collapse happens.

$$L_{\rm J} \sim \frac{M_{\rm Pl}}{M^2}$$
. $T_{\rm J} \sim \frac{M_{\rm Pl}^2}{M^3}$

So we need a very small M to protect the IR gravity.

For a fluid with pressure p and energy density ρ,

$$\omega^2 = \frac{\delta p}{\delta \rho} k^2 - \omega_J^2$$
, where $\omega_J^2 = \frac{\rho}{2M_{Pl}^2}$.

When $\omega^2 < 0$, Jeans collapse happens.

$$L_{\rm J} \sim \frac{M_{\rm Pl}}{M^2}$$
, $T_{\rm J} \sim \frac{M_{\rm Pl}^2}{M^3}$

So we need a very small M to protect the IR gravity.

For a fluid with pressure p and energy density ρ,

$$\omega^2 = \frac{\delta p}{\delta \rho} k^2 - \omega_J^2$$
, where $\omega_J^2 = \frac{\rho}{2M_{Pl}^2}$.

When $\omega^2 < 0$, Jeans collapse happens.

$$L_{\rm J} \sim \frac{M_{\rm Pl}}{M^2}$$
, $T_{\rm J} \sim \frac{M_{\rm Pl}^2}{M^3}$

So we need a very small M to protect the IR gravity.

For a fluid with pressure p and energy density ρ,

$$\omega^2 = \frac{\delta p}{\delta \rho} k^2 - \omega_J^2$$
, where $\omega_J^2 = \frac{\rho}{2M_{Pl}^2}$.

When $\omega^2 < 0$, Jeans collapse happens.

$$L_{\rm J} \sim \frac{M_{\rm Pl}}{M^2}$$
, $T_{\rm J} \sim \frac{M_{\rm Pl}^2}{M^3}$

So we need a very small M to protect the IR gravity.

For a fluid with pressure p and energy density ρ,

$$\omega^2 = \frac{\delta p}{\delta \rho} k^2 - \omega_J^2$$
, where $\omega_J^2 = \frac{\rho}{2M_{Pl}^2}$.

When $\omega^2 < 0$, Jeans collapse happens.

$$L_{\rm J} \sim \frac{M_{\rm Pl}}{M^2}$$
, $T_{\rm J} \sim \frac{M_{\rm Pl}^2}{M^3}$

So we need a very small M to protect the IR gravity.

For a fluid with pressure p and energy density ρ,

$$\omega^2 = \frac{\delta p}{\delta \rho} k^2 - \omega_J^2$$
, where $\omega_J^2 = \frac{\rho}{2M_{Pl}^2}$.

When $\omega^2 < 0$, Jeans collapse happens.

$$L_{\rm J} \sim \frac{M_{\rm Pl}}{M^2}$$
. $T_{\rm J} \sim \frac{M_{\rm Pl}^2}{M^3}$

So we need a very small M to protect the IR gravity.

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

9

Logarithmic growing

Matter epoch

8,

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

) g

Logarithmic growing

Matter epoch

 $\delta_{\rm g}$

 \Rightarrow

 S_m

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

S_g =

 \Rightarrow

Logarithmic growing

Matter epoch

 $\delta_{\rm g}$

 \Rightarrow

8,

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

, m

Logarithmic growing

Matter epoch

 $\delta_{\rm g}$

8,

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

S_g

Logarithmic growing

Matter epoch

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

 δ_{ε}

Logarithmic growing

Matter epoch

 δ_{g}

8,

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

) g

Logarithmic growing

Matter epoch

 $\delta_{\rm g}$

 \Rightarrow

 S_m

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

9

Logarithmic growing

Matter epoch

8,

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

S_g

Logarithmic growing

Matter epoch

 $\delta_{\rm g}$

8,

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

Logarithmic growing

Matter epoch

 $\delta_{\rm g}$

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

g =

 \Rightarrow

Logarithmic growing

Matter epoch

 $\delta_{\rm g}$

 \Rightarrow

8,

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

, m

Logarithmic growing

Matter epoch

8,

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

) g

Logarithmic growing

Matter epoch

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

S_g I

Logarithmic growing

Matter epoch

 δ_{g}

8,

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

S_g

Logarithmic growing

Matter epoch

 \mathcal{S}_{g}

8,

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

Logarithmic growing

Matter epoch δ_{g}

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

) _ _

Logarithmic growing

Matter epoch

 \Rightarrow

 S_m

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

S_g ====

Logarithmic growing

Matter epoch

8,

Conclusion & Discussion

- Ghost condensation theory
 - Stablize vacuum
 - Interesting feature
 - Jeans instability → low energy scale 100Gev
- We realize matter bounce by means of ghost condensation Advantages:
 - No ghost;
 - Background is stable against radiation and anisotropic stress;
 - We have a high energy scale bounce>>100Gev

Preserve scale invariant spectrum:

- Grows slower than matter perturbation;
- Blue spectrum;
- No large amplification during bounce phase;

The gradient instability during bounce phase has no enough time develop.

Conclusion & Discussion

- Ghost condensation theory
 - Stablize vacuum
 - Interesting feature
 - Jeans instability → low energy scale 100Gev
- We realize matter bounce by means of ghost condensation Advantages:
 - No ghost;
 - Background is stable against radiation and anisotropic stress;
 - We have a high energy scale bounce>>100Gev

Preserve scale invariant spectrum:

- Grows slower than matter perturbation;
- Blue spectrum;
- No large amplification during bounce phase;

The gradient instability during bounce phase has no enough time develop.

Our ghost bounce model is free from cut-off upper bound

Radiation epoch

g ====

Logarithmic growing

Matter epoch

 $\delta_{\rm g}$

 \Rightarrow

 δ_m

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

S_g ====

Logarithmic growing

Matter epoch

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

S_g =

Logarithmic growing

Matter epoch

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

S_g ____

Logarithmic growing

Matter epoch

 δ_m

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

 S_{g}

Logarithmic growing

Matter epoch

Our ghost bounce model is free from cut-off upper bound

Radiation epoch

 S_g

Logarithmic growing

Matter epoch δ_{ε}

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

Logarithmic growing

Matter epoch

 \Rightarrow

 δ_m

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

Logarithmic growing

Matter epoch δ_{g}

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

, m

Logarithmic growing

Matter epoch

 δ_{g}

8,,

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

g E

Logarithmic growing

Matter epoch

 δ_{g}

 \Rightarrow

8.

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

S_g =

Logarithmic growing

Matter epoch

 $\delta_{\rm g}$

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

S_g

Logarithmic growing

Matter epoch

 \mathcal{S}_{g}

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

Logarithmic growing

Matter epoch δ_{g}

Page 697/901 Pirsa: 10090090

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

)_g =

Logarithmic growing

Matter epoch

 \Rightarrow

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

S

Logarithmic growing

Matter epoch

 δ_{g}

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

S_g =

Logarithmic growing

Matter epoch

 $\delta_{\rm g}$

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

S_g

Logarithmic growing

Matter epoch

 $\delta_{\rm g}$

 δ_m

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

g

Logarithmic growing

Matter epoch

 \Rightarrow

8,

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

S_g

Logarithmic growing

Matter epoch

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

) g

Logarithmic growing

Matter epoch

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

g E

Logarithmic growing

Matter epoch

 $\delta_{\rm g}$

 δ_m

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

S_g ==

Logarithmic growing

Matter epoch

 $\delta_{\rm g}$

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

S_g =

Logarithmic growing

Matter epoch

 $\delta_{\rm g}$

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

) g

Logarithmic growing

Matter epoch

8,

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

Logarithmic growing

Matter epoch δ_{g}

Page 709/901

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

Logarithmic growing

Matter epoch

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

5 1

Logarithmic growing

Matter epoch

 $\delta_{\rm g}$

Our ghost bounce model is free from cut-off upper bound

Radiation epoch

S_g

Logarithmic growing

Matter epoch

 δ_m

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

S_g

Logarithmic growing

Matter epoch

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

)_g =

 \Rightarrow

Logarithmic growing

Matter epoch

 δ_{g}

 \Rightarrow

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

S_g

Logarithmic growing

Matter epoch

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

) g

Logarithmic growing

Matter epoch

 \Rightarrow

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

8

Logarithmic growing

Matter epoch

 δ_m

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

Logarithmic growing

Matter epoch

 $\delta_{\rm g}$

8,,,

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

)_g =

Logarithmic growing

Matter epoch

Our ghost bounce model is free from cut-off upper bound

Radiation epoch

Logarithmic growing

Matter epoch δ_{g}

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

) _ _

Logarithmic growing

Matter epoch

 δ_{g}

8,

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

g

Logarithmic growing

Matter epoch

 δ_{g}

8,

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

) g

Logarithmic growing

Matter epoch

 δ_{g}

 \Rightarrow

8,

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

S_g

Logarithmic growing

Matter epoch

8,,,

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

Logarithmic growing

Matter epoch

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

S_g

Logarithmic growing

Matter epoch

 δ_{g}

8,

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

g

Logarithmic growing

Matter epoch

 δ_{g}

8,

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

) = ==

Logarithmic growing

Matter epoch

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

)_g =

 \Rightarrow

Logarithmic growing

Matter epoch

 $\delta_{\rm g}$

 \Rightarrow

 S_m

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

S_g =

Logarithmic growing

Matter epoch

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

98

Logarithmic growing

Matter epoch

 δ_{g}

 \Rightarrow

 δ_m

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

 S_{g}

Logarithmic growing

Matter epoch

 δ_{g}

8,

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

Logarithmic growing

Matter epoch

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

, E

Logarithmic growing

Matter epoch

8,

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

, I

Logarithmic growing

Matter epoch

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

Logarithmic growing

Matter epoch

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

S_g =

Logarithmic growing

Matter epoch

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

 S_g

Logarithmic growing

Matter epoch

8,,

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

S_g

Logarithmic growing

Matter epoch

 δ_{g}

 δ_m

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

Sg

Logarithmic growing

Matter epoch

 δ_{g}

8,

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

S_g =

Logarithmic growing

Matter epoch

 δ_{g}

 \Rightarrow

 S_m

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

S_g =

Logarithmic growing

Matter epoch

 \Rightarrow

 S_m

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

) g

Logarithmic growing

Matter epoch

 S_m

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

Logarithmic growing

Matter epoch

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

S_g ==

Logarithmic growing

Matter epoch

8,

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

9

Logarithmic growing

Matter epoch

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

g ==

Logarithmic growing

Matter epoch

8,

Our ghost bounce model is free from cut-off upper bound

$$\alpha = 4$$
, $\rho_g \sim a^{-6}$

Radiation epoch

 S_{g}

Logarithmic growing

Matter epoch

- Ghost condensation theory
 - Stablize vacuum
 - Interesting feature
 - Jeans instability → low energy scale 100Gev
- We realize matter bounce by means of ghost condensation
 Advantages:
 - No ghost;
 - Background is stable against radiation and anisotropic stress;
 - We have a high energy scale bounce>>100Gev

Preserve scale invariant spectrum:

- Grows slower than matter perturbation;
- Blue spectrum;
- No large amplification during bounce phase;

- Ghost condensation theory
 - Stablize vacuum
 - Interesting feature
 - Jeans instability → low energy scale 100Gev
- We realize matter bounce by means of ghost condensation Advantages:
 - No ghost;
 - Background is stable against radiation and anisotropic stress;
 - We have a high energy scale bounce>>100Gev

Preserve scale invariant spectrum:

- Grows slower than matter perturbation;
- Blue spectrum;
- No large amplification during bounce phase;

- Ghost condensation theory
 - Stablize vacuum
 - Interesting feature
 - Jeans instability → low energy scale 100Gev
- We realize matter bounce by means of ghost condensation
 Advantages:
 - No ghost;
 - Background is stable against radiation and anisotropic stress;
 - We have a high energy scale bounce>>100Gev

Preserve scale invariant spectrum:

- Grows slower than matter perturbation;
- Blue spectrum;
- No large amplification during bounce phase;

- Ghost condensation theory
 - Stablize vacuum
 - Interesting feature
 - Jeans instability → low energy scale 100Gev
- We realize matter bounce by means of ghost condensation
 Advantages:
 - No ghost;
 - Background is stable against radiation and anisotropic stress;
 - We have a high energy scale bounce>>100Gev

Preserve scale invariant spectrum:

- Grows slower than matter perturbation;
- Blue spectrum;
- No large amplification during bounce phase;

- Ghost condensation theory
 - Stablize vacuum
 - Interesting feature
 - Jeans instability → low energy scale 100Gev
- We realize matter bounce by means of ghost condensation
 Advantages:
 - No ghost;
 - Background is stable against radiation and anisotropic stress;
 - We have a high energy scale bounce>>100Gev

Preserve scale invariant spectrum:

- Grows slower than matter perturbation;
- Blue spectrum;
- No large amplification during bounce phase;

- Ghost condensation theory
 - Stablize vacuum
 - Interesting feature
 - Jeans instability → low energy scale 100Gev
- We realize matter bounce by means of ghost condensation
 Advantages:
 - No ghost;
 - Background is stable against radiation and anisotropic stress;
 - We have a high energy scale bounce>>100Gev

Preserve scale invariant spectrum:

- Grows slower than matter perturbation;
- Blue spectrum;
- No large amplification during bounce phase;

The gradient instability during bounce phase has no enough time to develop.

- Ghost condensation theory
 - Stablize vacuum
 - Interesting feature
 - Jeans instability → low energy scale 100Gev
- We realize matter bounce by means of ghost condensation Advantages:
 - No ghost;
 - Background is stable against radiation and anisotropic stress;
 - We have a high energy scale bounce>>100Gev

Preserve scale invariant spectrum:

- Grows slower than matter perturbation;
- Blue spectrum;
- No large amplification during bounce phase;

- Ghost condensation theory
 - Stablize vacuum
 - Interesting feature
 - Jeans instability → low energy scale 100Gev
- We realize matter bounce by means of ghost condensation Advantages:
 - No ghost;
 - Background is stable against radiation and anisotropic stress;
 - We have a high energy scale bounce>>100Gev

Preserve scale invariant spectrum:

- Grows slower than matter perturbation;
- Blue spectrum;
- No large amplification during bounce phase;

- Ghost condensation theory
 - Stablize vacuum
 - Interesting feature
 - Jeans instability → low energy scale 100Gev
- We realize matter bounce by means of ghost condensation Advantages:
 - No ghost;
 - Background is stable against radiation and anisotropic stress;
 - We have a high energy scale bounce>>100Gev

Preserve scale invariant spectrum:

- Grows slower than matter perturbation;
- Blue spectrum;
- No large amplification during bounce phase;

- Ghost condensation theory
 - Stablize vacuum
 - Interesting feature
 - Jeans instability → low energy scale 100Gev
- We realize matter bounce by means of ghost condensation Advantages:
 - No ghost;
 - Background is stable against radiation and anisotropic stress;
 - We have a high energy scale bounce>>100Gev

Preserve scale invariant spectrum:

- Grows slower than matter perturbation;
- Blue spectrum;
- No large amplification during bounce phase;

- Ghost condensation theory
 - Stablize vacuum
 - Interesting feature
 - Jeans instability → low energy scale 100Gev
- We realize matter bounce by means of ghost condensation Advantages:
 - No ghost;
 - Background is stable against radiation and anisotropic stress;
 - We have a high energy scale bounce>>100Gev

Preserve scale invariant spectrum:

- Grows slower than matter perturbation;
- Blue spectrum;
- No large amplification during bounce phase;

- Ghost condensation theory
 - Stablize vacuum
 - Interesting feature
 - Jeans instability → low energy scale 100Gev
- We realize matter bounce by means of ghost condensation Advantages:
 - No ghost;
 - Background is stable against radiation and anisotropic stress;
 - We have a high energy scale bounce>>100Gev

Preserve scale invariant spectrum:

- Grows slower than matter perturbation;
- Blue spectrum;
- No large amplification during bounce phase;

- Ghost condensation theory
 - Stablize vacuum
 - Interesting feature
 - Jeans instability → low energy scale 100Gev
- We realize matter bounce by means of ghost condensation Advantages:
 - No ghost;
 - Background is stable against radiation and anisotropic stress;
 - We have a high energy scale bounce>>100Gev

Preserve scale invariant spectrum:

- Grows slower than matter perturbation;
- Blue spectrum;
- No large amplification during bounce phase;

- Ghost condensation theory
 - Stablize vacuum
 - Interesting feature
 - Jeans instability → low energy scale 100Gev
- We realize matter bounce by means of ghost condensation Advantages:
 - No ghost;
 - Background is stable against radiation and anisotropic stress;
 - We have a high energy scale bounce>>100Gev

Preserve scale invariant spectrum:

- Grows slower than matter perturbation;
- Blue spectrum;
- No large amplification during bounce phase;

- Ghost condensation theory
 - Stablize vacuum
 - Interesting feature
 - Jeans instability → low energy scale 100Gev
- We realize matter bounce by means of ghost condensation Advantages:
 - No ghost;
 - Background is stable against radiation and anisotropic stress;
 - We have a high energy scale bounce>>100Gev

Preserve scale invariant spectrum:

- Grows slower than matter perturbation;
- Blue spectrum;
- No large amplification during bounce phase;

- Ghost condensation theory
 - Stablize vacuum
 - Interesting feature
 - Jeans instability → low energy scale 100Gev
- We realize matter bounce by means of ghost condensation Advantages:
 - No ghost;
 - Background is stable against radiation and anisotropic stress;
 - We have a high energy scale bounce>>100Gev

Preserve scale invariant spectrum:

- Grows slower than matter perturbation;
- Blue spectrum;
- No large amplification during bounce phase;

- Ghost condensation theory
 - Stablize vacuum
 - Interesting feature
 - Jeans instability → low energy scale 100Gev
- We realize matter bounce by means of ghost condensation Advantages:
 - No ghost;
 - Background is stable against radiation and anisotropic stress;
 - We have a high energy scale bounce>>100Gev

Preserve scale invariant spectrum:

- Grows slower than matter perturbation;
- Blue spectrum;
- No large amplification during bounce phase;

The gradient instability during bounce phase has no enough time develop.

ONE WORLD, ONE GHOST!

ONE WORLD, ONE GHOST!

ONE WORLD, ONE GHOST!

ONE WORLD, ONE GHOST!

ONE WORLD, ONE GHOST!

ONE WORLD, ONE GHOST!

Pirsa: 10090090 Page 771/901

ONE WORLD, ONE GHOST!

Pirsa: 10090090 Page 772/901

ONE WORLD, ONE GHOST!

ONE WORLD, ONE GHOST!

ONE WORLD, ONE GHOST!

Pirsa: 10090090 Page 775/901

ONE WORLD, ONE GHOST!

ONE WORLD, ONE GHOST!

ONE WORLD, ONE GHOST!

Pirsa: 10090090 Page 778/901

ONE WORLD, ONE GHOST!

ONE WORLD, ONE GHOST!

Pirsa: 10090090 Page 780/901

Stability during bounce

the dispersion relation

$$\omega^2 \, = \, \frac{-(\tilde{M}^2 M^4 + 4 M_{pl}^4 \dot{H}) k^2 + 2 M_{pl}^2 \tilde{M}^2 k^4}{2 M_{pl}^2 M^4}$$

the typical instability rate

$$\omega_c = \frac{1}{4} \frac{\tilde{M} M^2}{M_{pl}^2} + \dot{H} \frac{M_{pl}^2}{M^2 \tilde{M}}$$

Its growing rate during bounce phase

$$\Delta t \omega_c \sim \left(\frac{V_0}{M^4}\right)^{1/\alpha} \left[\frac{1}{4} \frac{\tilde{M} M}{M_{pl}^2} + \dot{H} \frac{M_{pl}^2}{M^3 \tilde{M}}\right]$$

Since
$$\dot{H} \sim \frac{M^4 \dot{\pi}}{M_{pl}^2}$$
 if $V_0 \ll M^4$ We get

$$\Delta t \omega_c \ll 1$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_g + \theta \Phi_g = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_q(t) \simeq \Phi_q^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_g + \theta \Phi_g = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_g + \theta \Phi_g = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_g + \theta \Phi_g = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_g + \theta \Phi_g = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_q(t) \simeq \Phi_q^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_g + \theta \Phi_g = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_q(t) \simeq \Phi_q^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_g = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

Since the duration of bounce phase is short

$$H = \theta \cdot (t - t_B)$$

Where $\theta \gg H_c^2$ we interested in large scale perturbation

$$\partial_t^2 \Phi_q + \theta \Phi_q = 0$$

the solution is

$$\Phi_q = d_1 e^{i\sqrt{\theta}t} + d_2 e^{-i\sqrt{\theta}t}$$

Since the bounce phase is very short

$$\Phi_g(t) \simeq \Phi_g^c$$

"Particle physics" energy density

$$\mathcal{E}_{pp} = \int d^3x \, T_{00} - c_* Q \sim \frac{1}{2} \dot{\pi}^2 + \frac{(\nabla^2 \pi)^2}{2M^2} + \cdots$$
 Inertial Mass!

Gravitational energy density

 $\mathcal{E}_{\text{grav}} = T_{00} \sim M^2 \dot{\pi} + \cdots$

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}$$
.

 $v^2 \sim k^2/M^2$.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

 $v^2 \sim k^2/M^2$.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

$$v^2 \sim k^2/M^2$$
.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

$$v^2 \sim k^2/M^2$$
.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = ct + \pi$$

Low energy effective action for π is

$$S \sim \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

 $v^2 \sim k^2/M^2$.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int \!\! d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

 $v^2 \sim k^2/M^2$.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = ct + \pi$$

Low energy effective action for π is

$$S \sim \int \!\! d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

Pirsa: 10090090

$$\omega^2 \sim \frac{k^4}{M^2}.$$

 $v^2 \sim k^2/M^2$.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

 $v^2 \sim k^2/M^2$.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = ct + \pi$$

Low energy effective action for π is

$$S \sim \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

 $v^2 \sim k^2/M^2$.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int \!\! d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

Pirsa: 10090090

$$\omega^2 \sim \frac{k^4}{M^2}.$$

 $v^2 \sim k^2/M^2$.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int \!\! d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

 $v^2 \sim k^2/M^2$.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int \!\! d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

$$v^2 \sim k^2/M^2$$
.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = ct + \pi$$

Low energy effective action for π is

$$S \sim \int \!\! d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation Group velocity

Pirsa: 10090090

$$\omega^2 \sim \frac{k^4}{M^2}.$$

 $v^2 \sim k^2/M^2$.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$. Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

$$v^2 \sim k^2/M^2$$
.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

 $v^2 \sim k^2/M^2$.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = ct + \pi$$

Low energy effective action for π is

$$S \sim \int \!\! d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

$$\omega^2 \sim \frac{k^4}{M^2}.$$

$$v^2 \sim k^2/M^2$$
.

More generally,

$$\mathcal{L} = M^4 P(X) + M^2 S_1(X) (\Box \phi)^2 + M^2 S_2(X) \partial^{\mu} \partial^{\nu} \phi \partial_{\mu} \partial_{\nu} \phi + \cdots$$

Ghost field locate at the minima, with scalar excitation

$$\phi = c t + \pi$$

Low energy effective action for π is

$$S \sim \int \!\! d^4x \left[\frac{1}{2} \dot{\pi}^2 - \frac{1}{2M^2} (\nabla^2 \pi)^2 + \cdots \right],$$

The dispersion relation $\omega^2 \sim \frac{k^4}{M^2}$ Group velocity

Pirsa: 10090090

$$\omega^2 \sim \frac{k^4}{M^2}.$$

$$v^2 \sim k^2/M^2.$$

Page 901/901