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Abstract: In my talk | would like to discuss the present status of Doubly Special Relativity. DSR is an extension of Special Relativity aimed at
describing kinematics of particles and fields in the regime where (quantum) gravity effects might become relevant. | will discuss an interplay
between DSR physics and mathematics of Hopf algebras.
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Apology

 Socrates, one of the
greatest minds in the
history of mankind,
was found guilty of
corvupting the minds
of the youth of Athens
and sentenced to
death.



What is DSR?

* DSR is based on 2+1 postulates:

» Relativity principle: All inertial frames are
totally equivalent for the performance of all
ph?s:ca( experiments. The difference of

utcomes of the experiments made by two
observers depend only on their relative,
uniform motion.

“* Observer independent scales: There are two
observer-independent scales: one of velocity,
identified with the speed of &ght,,_ and the
second of mass (or length), identified with
Planck scale.




What is DSR?

» Transformations: There exists
spacetime transformations, which tell
how the observations made by two
inertial observers are related. They are
parametrized by ten parameters (in
4D) corresponding to translations,
rotations, and boosts (generalized
Poincare transformations). It follows
that the two scales must ve present as
parameters in these transformations.




What is DSR — comments

» These postulates are quite vague;
surprisingly it is not easy to satisfy
them.

» These are the postulates of a
fundamental theory and NOT of a
phenomenology-motivated test theory.

v Such fundamental theory should be
DERIVED from a more fundamental
theory of (quantum) gravity
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DSR

- A real challenge is to find a theory
which is both mathematically
consistent and physically sensible
that can be confronted with
experiments.

« [t seems that, except in 3D, such
theory has not been found yet.




Naive DSR

» The simplest possibility is to replace
momenta of SR with

> =]
rF = 0 >CE=sr » 0

» Question: This is just a change of
variables, so isn’t that equivalent to the
original SR?




Naive DSR

» Answer: Depends. Changing variables is
not everything, we still must tell how
the new momenta add up for many
particles and what “minus momentum’
means.

» In other words we must specify what is
the co-product and the antipode in
terms of the new variables.




Naive DSR

+ P and p with primitive co-products
and antipodes describe
theories.

= Zplﬂlu«%{_;:]'ﬂ -f—/;..(p[‘f:]: _H?(f'a:.)
L'= P, X," +A(CEP:0)=m,’)

* The speed of light in the second
theory is energy-dependent.




Phenomenology: Lazy photons

Ellis et. al. arXiv:0912.3428
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GZK cutoff condition

Pty —>pP+7x,

 For protons with E > 1079 eV the
free path is of order of 150 Mpc.

» If we find such protons coming from
movre distant source this would mean
deviation from the standard
relativistic kinematics.
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From gravity to DSR

» DSR cannot be fundamental; if corvect
it must arise as a ““no gravity" limit of
gravity.

» We must therefore:

* Find the formulation of gravity, in
which this limit can be naturally taken.

*Derive the effective deformed dynamics
of particles.




Gravity as a constrained BF
» The action for pure gravity

= _ Gravitational
opological dynamics

L=BY"AF,—~=—B" AB,, —

2
. |
AHﬁH ral o ua? Auab :a)uab
J 2 J J J
» This action leads to vacuum Einstein
egs.
= — |




GR from constrained BF

S =35, + Topological mvarnants
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Particles coupling

» The gauge degrees of freedom of
gravity are promoted to dynamical
degree of freedom.

' Kinetic
Gravity term
coupling
. e —17
L(z,h;A)=—tc(C 4 )—tr(h hD)
D=mlT* +sT" A completely
: ) . describes particle
e = & a: a ki £1

C—hile —fpl is_ 1 nematics
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Particles coupling

» The gauge degrees of freedom of
gravity are promoted to dynamical
degree of freedom.

: Kinetic

Gravity term

coupling
L(z,h; A)=—tr(C A ) —tr(h 'h D)
D=mlT* +sT" A completely

: 3 : describes particle
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Particles + gravity

» From this action one finds correct
Einstein-Cartan equations with masses
and spins as (point) sources for
curvature and torsion and correct
equations of motion for particles
(Mathisson-Papapetrou eq. with
torsion).




The topological limit

» In the limit a — O the theory becomes
topological, with no local gravitational
degrees of freedom.

» [t can be shown that in this limit the
partition function for quantum gravity
becomes the partition function for
Chern-Simons theory, on a spherical
boundary, with punctures
corvesponding to particles’ insertion.




The topological limit — C5 action

S:%J‘dxoJ‘<80A5AAS>—J.dx0i<Df,hf150hf>
R - '

S: I:].

with the constraint

n
~(3)
Fy~» D69 (x—x,)
=

A=Ad"+A., F,=dA +A AA,,

h e SO4,1), D, =m(T* +sT™
e |




The (reduced) phase space

e [t can be shown that:

+The phase space of this theory is finite
dimensional, and can be expressed in
terms of n group elements g;, iI=1,...,n

“»The Poisson brackets on this phase space
are defined with the help of r-matrix
associated withh Chern-Simons action.

*U,(S0(4,1)) should describe the
symmetmes of the system.




The r matrix for C5

» The relevant r-matrix must satisfy:

r=C+r,

>»where C is the Casimir of the gauge
group SO(4,1) corresponding to the
CS action;

> satisties the (classical) Yang-Baxter
eqn. for SO(4,1).




The phase space

» Kinowing r-matrix, one can calculate
Poisson brackets on the phase space.
» Sklyanin Poisson-Lie structure is
defined via the bi-vector
R %r”’g (X=Axs XZAXE)

N ®X,

» Xt are right (left) inv. vector fields on
the group




Sklyanin bracket and x-Poincare
group

« One can compute Sklyanin bracket
for SO(4,1), which after taking the
contraction limit (A—-O) reproduces
the x-Poincare group.




k-Minkowski space

For x-Minkowski space the coordinates
do not commute (have vanishing PB),
but instead they satisfy

i 1 i EF
¢’.q'}=—q'. {q'.q’}=0
= _
These brackets define ans Lie algebra

associated with the lwasawa
decomposition SO(4,1)=SO(3,1) AN




The group AN

+ We can parametrize AN group
element as follows (Cnon-commutative
plane -wave’)

7 —e* pi/x , X Py K

[XO,X‘f] =y [XY] =

» With « being a scale of dimension of
Mass.




x-Poincaré particle

 The Lagrangian for one particle reads

L =<PI%P,Q>—A(C(p,K)—m3)

I

L . 1 ] -~ f ¥y
= py§’ + P4 —— P4 b= A(C(p. %) —m’ )

C(p.x)—x' cosh[&] - p—_ep‘? e

K 2




x-Poincaré particle — comments

»The PB of positions is identical with
the Sklyanin bracket of CS;

{q”,qf}=éqi lg'.q’}=0

» The infinitesimal symmetries form
k -Poincaré algebra;

»The particle is free i.e., it moves
uniformly.




The speed of light

» The speed of light is (formally)
defined to be

o oo}
G

X {.IO,C(p?K‘)}

m—10

i
1
—

m—0

+ and thus it is energy-independent.
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x-Poincaré particle

» The Lagrangian for one particle reads
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The speed of light

« The speed of light is (formally)
defined to be
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Symmetries of positions

» Rotations

é‘pq“:pf{ﬂ/[”g“}:o? 6" q’' =p' [JMHQJ}_PEHM
* Boosts

) =/ ! i 1 i 7 — 1 SR
o4 =¢ {V 1}:_; QG*‘;C] S el
sa -2 )= o L Ep Ea| L ey B
; ) l K- 3 & _2~ 2}{2_




Symmetries of positions

« Translations

|

5q° ={@*p,-q"}=—a’-—p,a".

o i p i) i
oq ={a pP,q9j=—4a

- Notice that (contrary to SR) both
the translation and the boost of
position depend on momentum
carvied by the particle.




The problem

» Take worldlines of two particles [
that cross for one observer, Alice.

» Then for another (translated, boosted)
observer, Bob, the worldlines will miss
each other.

» This IS a

» [t is a divect consequence oF the fact
that transformations of positions

depend on momentum.
e ey




Alice vs Bob

Alice

Bob




Size of the effect

» The effect is small and
phenomenologically not relevant:

» At = 1073 s for the distance of 107 [y,
and for 1GeV photon.

» However it poses a conceptual problem.




Many particles

» In the argument we implicitly assumed
that the action of translation on two
worldlines is independent; i.e., we
assumed implicitly primitive “co -
product’ (Noether charges of particles
are sums of the individual ones).

» Perhaps choosing non-trivial co-
product helps?




Many particles

 In SR we have no real choice:

E=%F

» Here Pis group valued and we have
more possibilities.




Two particles Lagrangian

£(1+:;=< _I_Pn 9(1]>+< _l - (F?m‘z?:])_‘pu di (1)> >

_/‘fl](C(p{ll K) mm *r ) C(p{ 2)> K) m{ ) )

=p:1|{]g{1|- _;_p-'lig'{?il'i _;plljg’.q{l_‘ ptl:i]

. =i i -
-é_plj_{]q;:;- g 3 p:ji_f'g::' _; p::"fg":'-p":'“:'

_;"11 ( C(p{ll‘K)_ﬁ?fl'll )_/"_ (_C(p::l.-f‘:)_m::.: )




Translational invariance

» The lagrangian is invariant under

l_b T e 0 1—2’) k

= & . T
Oq{lj = _p{nar Oqu a € p{:'}
K K

QY

gy, =d, dq,, —d
» With conserved charges being

fot — [ot = — P 0/ K —

Po = Pmyo +p11}0: P =Py e Py
» Which reflects «-Poincaré co-product

Ap, = p, @1+1Q p,, Ap=pRl+e ™ *Qp




k-Poincaré particles

« This is nice, but clearly
solve the worldlines problem.

« What can be done?




The wordlines problem

« pand g form useful fammetrfzation

of the phase space of the particles, but
g is not directly related to position
measurements in the spacetime. One
should construct another variable x
that does the job.

But then the statement concerning the
velocity of light is completely
meaningless, of course.




The worldline problem

» Notice that we considered a universe
consisting just of two particles. This
would be OK. in SR where particles
are really free.

* Here it might be necessary to average
over all the rest of the “spectator’
particles somehow.

+ Perhaps one should consider quantum
fields, not particles.




Summary

» The charges against DSR are very
serious, and the current verdict
seems “quilty’. But perhaps when we
understand physics of DSR better,
the situation will change.

- An important lesson is that algebra
is not enough; to do physics we must
understand physics.




