Title: Some Ideas (not to try!) on Quantum Gravity Phenomenology

Date: Aug 12, 2010 03:00 PM

URL: http://pirsa.org/10080044

Abstract:

Pirsa: 10080044 Page 1/75

ON QUANTUM GRAVITY PHENOMENOLOGY

Karan Pankaj Jani

Penn State University

Adviser: Leonardo Modesto

Pirsa: 10080044

Page 2/75

ON QUANTUM GRAVITY PHENOMENOLOGY

Karan Pankaj Jani

Penn State University

Adviser: Leonardo Modesto

SOME IDEAS

(Not to try!)
ON

QUANTUM GRAVITY PHENOMENOLOGY

Karan Pankaj Jani

Penn State University

Adviser: Leonardo Modesto

Pirsa: 10080044

Page 4/75

OUTLINE

- Quasi-Normal Modes
 - Classical Case
 - WKB method, Continuous fraction
 - Detection, Parameter estimation
 - Self-Dual Blackholes
 - The metric and the quantum correction
 - Connection with surface gravity
 - The present plots & possible phenomenology
- Dark Matter
 - Cosmic Rays, QNMs and structure formation
- Effective Lorentz Invariance Violation
 - GRBs
 - Neutrinos
 - o Gravitons?

- A - 1 - 1 TT - 1 C" - 1 - 1 "

THE LIFE OF A BLACK HOLE

THE LIFE OF A BLACK HOLE

Quasi-Normal Modes

- Exponential decay
- o Perturbation of metric outside event horizon

QNM FOR SCHWARZSCHILD BH

QNM FOR SCHWARZSCHILD BH

$$ds^{2} = g_{\mu\nu}^{0} dx^{\mu} dx^{\nu} = -e^{v(r)} dt^{2} + e^{\lambda(r)} dr^{2} + r^{2} \left(d\theta^{2} + \sin^{2}\theta d\phi^{2} \right)$$

Perturb the metric: $g_{\mu\nu} = g_{\mu\nu}^0 + h_{\mu\nu}$

Leading to variation in Einstein equations: $\delta G_{\mu\nu} = 4\pi \delta T_{\mu\nu}$

Page 9/75

QNM FOR SCHWARZSCHILD BH

$$ds^{2} = g_{\mu\nu}^{0} dx^{\mu} dx^{\nu} = -e^{v(r)} dt^{2} + e^{\lambda(r)} dr^{2} + r^{2} \left(d\theta^{2} + \sin^{2}\theta d\phi^{2} \right)$$

Perturb the metric: $g_{\mu\nu} = g_{\mu\nu}^0 + h_{\mu\nu}$

Leading to variation in Einstein equations: $\delta G_{\mu\nu} = 4\pi \delta T_{\mu\nu}$

Assuming scalar decomposition of
$$\boldsymbol{h}: \chi(t, r, \theta, \phi) = \sum_{\ell m} \frac{\chi_{\ell m}(r, t)}{r} Y_{\ell m}(\theta, \phi)$$

For radial component of perturbation outside event horizon,
$$\frac{\partial^2 \chi_l}{\partial r_*^2} + \left(\omega^2 - V_l(r)\right) \chi_l = 0$$

where
$$\frac{\partial^2 \chi_l}{\partial t^2} = -\omega^2 \chi_l$$
, Tortoise radius: $r_* = r + 2M \log(r/2M - 1)$

& Regge-Wheeler Potential:
$$V_\ell(r) = \left(1 - \frac{2M}{r}\right) \left[\frac{\ell(\ell+1)}{r^2} + \frac{2\sigma M}{r^3}\right]_{\text{Page 10/75}}$$

A CLOSER LOOK AT THE POTENTIAL

 $M = 1 \text{ M}_{\text{Solar}}, l = 2 \& \sigma = 1 - s^2 = 1 \text{ (for Scalar perturbation)}$

A CLOSER LOOK AT THE POTENTIAL

 $M = 1 \text{ M}_{Solar}, l = 2 \& \sigma = 1 - s^2 = 1 \text{ (for Scalar perturbation)}$

WKB APPROXIMATION METHOD

Parabola to first order

Condition for normal modes: $\frac{Q_0}{\sqrt{2Q_0''}} = i\left(n + \frac{1}{2}\right)$

$$(M\omega_n)^2 = V_\ell(r_0) - i\left(n + \frac{1}{2}\right)\left[-2\frac{d^2V_\ell(r_0)}{dr_*^2}\right]^{1/2}$$

METHOD OF CONTINUED FRACTIONS

Page 14/75

METHOD OF CONTINUED FRACTIONS

Radial Equation: $r(r-1)\frac{d^2\chi_l}{dr^2} + \frac{d\chi_l}{dr} - \left(l(l+1) - \frac{\rho^2 r^3}{r-1} - \frac{\sigma}{r}\right)\chi_l = 0$ where 2M = 1 & $\rho = i\omega$

Assume the following solution from boundary condition:

$$\chi_l(r) = (r-1)^{\rho} r^{-2\rho} e^{-\rho(r-1)} \sum_{n=0}^{\infty} a_n \left(\frac{r-1}{r}\right)^n$$

METHOD OF CONTINUED FRACTIONS

Radial Equation:
$$r(r-1)\frac{d^2\chi_l}{dr^2} + \frac{d\chi_l}{dr} - \left(l(l+1) - \frac{\rho^2 r^3}{r-1} - \frac{\sigma}{r}\right)\chi_l = 0$$
 where $2M = 1 \& \rho = i\omega$

Assume the following solution from boundary condition:

$$\chi_l(r) = (r-1)^{\rho} r^{-2\rho} e^{-\rho(r-1)} \sum_{n=0}^{\infty} a_n \left(\frac{r-1}{r}\right)^n$$

Then we get the following relations:

$$\alpha_0 a_1 + \beta_0 a_0 = 0, \quad \alpha_n a_{n+1} + \beta_n a_n + \gamma_n a_{n-1} = 0,$$
where : $\alpha_n = n^2 + (2\rho + 2) n + 2\rho + 1, \quad \gamma_n = n^2 + 4\rho n + 4\rho^2 - \sigma - 1$

$$\beta_n = -(2n^2 + (8\rho + 2) n + 8\rho^2 + 4\rho + l(l+1) - \sigma)$$

DETECTION OF QNMs

- o In physical units: $\omega = (\omega M) 2\pi (5142 \text{ Hz}) \frac{M_{\text{solar}}}{M}$
 - \circ For LIGO ($\sim 10 10000 \text{ Hz}$): stellar BHs
 - o For LISA (~0.1 − 0.00001 Hz) : Super- Massive BHs
- Only first couple of modes 'n' observable (exponential damping)
- If QNM spectrums inconsistent with isolated BH then:
 - We are not observing isolated BH approaching equilibrium
 - It might be neutron star or some exotic Boson star
 (?) Thus, it could be used as a test for "no-hair" theorem

Pirsa: 1008004GR is not true in strong field regime

DETECTION OF QNMs

- o In physical units: $\omega = (\omega M) 2\pi (5142 \text{ Hz}) \frac{M_{\text{solar}}}{M}$
 - \circ For LIGO ($\sim 10 10000 \text{ Hz}$): stellar BHs
 - o For LISA (~0.1 − 0.00001 Hz) : Super- Massive BHs
- Only first couple of modes 'n' observable (exponential damping)
- If QNM spectrums inconsistent with isolated BH then:
 - We are not observing isolated BH approaching equilibrium
 - It might be neutron star or some exotic Boson star
 (?) Thus, it could be used as a test for "no-hair" theorem

DETERMINING PARAMETERS

Parameters (Kerr BH): n, l , m , Mass (M) , Spin (a)

SELF-DUAL BHS

 Semi classical metric obtained from a classical analysis of the Loop Quantum BH

$$\begin{split} ds^2 &= -G(r)dt^2 + \frac{dr^2}{F(r)} + H(r)d\Omega^{(2)} \\ d\Omega^{(2)} &= d\theta^2 + \sin^2\theta d\phi^2 \\ G(r) &= \frac{(r-r_+)(r-r_-)(r+r_*)^2}{r^4 + a_o^2} \\ F(r) &= \frac{(r-r_+)(r-r_-)r^4}{(r+r_*)^2(r^4 + a_o^2)} \,, \\ H(r) &= r^2 + \frac{a_o^2}{r^2} \,. \end{split} \qquad \begin{aligned} r_+ &= 2m, \, r_- = 2mP^2 \\ r_* &= \sqrt{r_+ r_-} = 2mP \,. \\ P &= (\sqrt{1+\epsilon^2} - 1)/(\sqrt{1+\epsilon^2} + 1) \\ a_0 &\propto A_{\min}(Minimum \ Area \ in \ LQG) \\ \varepsilon &\propto \gamma \ (Immirzi \ Parameter) \end{aligned}$$

- Free from singularity & invariant under: $r \rightarrow a_0 / r$
- Area of event horizon (X^2) > Compton wavelength:

$$V = (2M)^2 + (a_0)^2 > h/2M$$

QNM FOR SELF-DUAL BHS

Mass of scalar field

Wave-equation for a scalar field in a general spherical surface: $\frac{1}{\sqrt{-g}}\partial_{\mu}\left(g^{\mu\nu}\sqrt{-g}\partial_{\nu}\Phi\right) - m_{\Phi}^{2}\Phi = 0,$

As LQG is not developed to involve perturbation we assume this classical result)

Assuming the scalar field: $\Phi(r, \theta, \phi, t) := T(t) \varphi(r) Y(\theta, \phi)$

$$\text{Radial Equation:} \quad \left[\frac{\partial^2}{\partial r^{*2}} + \omega^2 - V(r(r^*)) \right] \psi(r) = 0,$$

where,
$$r^* = \int \frac{1}{\sqrt{GF}} dr$$
 $K^2 = l(l+1)$

$$V(r) = G\left(m_{\Phi}^2 + \frac{K^2}{H}\right) + \frac{1}{2}\sqrt{\frac{GF}{H}}\left[\frac{\partial}{\partial r}\left(\sqrt{\frac{GF}{H}}\frac{\partial H}{\partial r}\right)\right]_{\text{Page 23/75}}$$

POTENTIAL OF SELF-DUAL BH

SURFACE GRAVITY AND QNMs

SURFACE GRAVITY AND QNMs

Always TRUE!

$$\boldsymbol{\omega_n} = i\kappa \left(n + \frac{1}{2}\right) + \frac{\ln 3}{2\pi} \kappa + O[n^{-1/2}]$$

as
$$n \to \infty$$

Nollert (1993)

Medved et al. (2003)

SURFACE GRAVITY AND QNMs

Always TRUE!

$$\boldsymbol{\omega_n} = i\kappa \left(n + \frac{1}{2}\right) + \frac{\ln 3}{2\pi} \kappa + O[n^{-1/2}]$$

as $n \to \infty$

Nollert (1993)

Medved et al. (2003)

8

10

COMPUTING QNMs (FOR SMALL 'n')

- Small 'n' is what we observe
 - In principle, easier to compute!
 - In the case of self-dual BHs slightly non-trivial!
- WKB method might fail at M < M_{planck}
 - More than one turning points in the potential (doesn't have a peak at r = 3M!
 - It might work at $M > M_{planck}$ as only r = 3M dominates
 - As consistency check, $a_0 = 0 = P$ should match with Schwarzschild case
- Continuous fraction most reliable but extremely difficult to compute the expressions!
 - Should work for all M

Evolving the time dependent wave equation

COMPUTING QNMs (FOR SMALL 'n')

- Small 'n' is what we observe
 - In principle, easier to compute!
 - In the case of self-dual BHs slightly non-trivial!
- WKB method might fail at M < M_{planck}
 - More than one turning points in the potential (doesn't have a peak at r = 3M!)
 - It might work at $M > M_{planck}$ as only r = 3M dominates
 - As consistency check, $a_0 = 0 = P$ should match with Schwarzschild case
- Continuous fraction most reliable but extremely difficult to compute the expressions!
 - Should work for all M
- Evolving the time dependent wave equation

Pirsa: 10080044

Works only for n=1

PLOTS OF QNM (FOR n = 1)

PLOTS OF QNM (FOR n = 1)

OSSIBLE PHENOMENOLOGY FOR ASTROPHYSICAL BHS

OSSIBLE PHENOMENOLOGY FOR ASTROPHYSICAL BHS

QUANTUM BH AS DARK MATTER

OSSIBLE PHENOMENOLOGY FOR ASTROPHYSICAL BHS

QUANTUM BH AS DARK MATTER

- Micro self-dual BHs: "neo MACHOs"
 - Primordial formed due to statistical thermal fluctuations at the end (during?) of inflation
 - 10-5 M_{Planck} now

Page 37/75

- o Micro self-dual BHs : "neo − MACHOs"
 - Primordial formed due to statistical thermal fluctuations at the end (during?) of inflation
 - 10-5 M_{Planck} now
 - Assuming they were created at the Teq ~ 10¹⁴ GeV
 - Assuming they constitute ALL the observed DM

$$\int_0^\infty \frac{(a(t_i))^3 m_0(m_i) \rho_{max}(m_i)}{(a(t_0))^3} dm_i = 0.22 \rho_{crit}$$

- o Micro self-dual BHs : "neo − MACHOs"
 - Primordial formed due to statistical thermal fluctuations at the end (during?) of inflation
 - 10-5 M_{Planck} now
 - Assuming they were created at the Teq $\sim 10^{14}~{
 m GeV}$
 - Assuming they constitute ALL the observed DM

$$\int_0^\infty \frac{(a(t_i))^3 m_0(m_i) \rho_{max}(m_i)}{(a(t_0))^3} dm_i = 0.22 \rho_{crit}$$

- Micro self-dual BHs: "neo MACHOs"
 - Primordial formed due to statistical thermal fluctuations at the end (during?) of inflation
 - 10-5 M_{Planck} now
 - Assuming they were created at the Teq $\sim 10^{14}~{
 m GeV}$
 - Assuming they constitute ALL the observed DM

$$\int_0^\infty \frac{(a(t_i))^3 m_0(m_i) \rho_{max}(m_i)}{(a(t_0))^3} dm_i = 0.22 \rho_{crit}$$

Page 40/75

DM PHENOMENOLOGY

- Micro self-dual BHs: "neo MACHOs"
 - Primordial formed due to statistical thermal fluctuations at the end (during?) of inflation
 - 10-5 M_{Planck} now
 - Assuming they were created at the Teq $\sim 10^{14}~{
 m GeV}$
 - Assuming they constitute ALL the observed DM

$$\int_0^\infty \frac{(a(t_i))^3 m_0(m_i) \rho_{max}(m_i)}{(a(t_0))^3} dm_i = 0.22 \rho_{crit}$$

Page 42/75

DM PHENOMENOLOGY

DM Phenomenology

- Ultra High Energy Cosmic Rays
 - The issue of GZK cutoff $\sigma_{obs} \approx 10^{-37} \, \frac{\text{UHECR particles}}{\text{s m}^3}$
 - Invisible matter within 50 Mpc (?)

DM PHENOMENOLOGY

- Ultra High Energy Cosmic Rays
 - The issue of GZK cutoff $\sigma_{obs} \approx 10^{-37} \frac{\text{UHECR particles}}{\text{s m}^3}$
 - Invisible matter within 50 Mpc (?)
- Self-Dual BHs to rescue!

$$\sigma_{th} = \int_{m_0=0}^{\infty} \int_{6\times 10^{19} \text{ eV}}^{m_0} \frac{2A_{min} \rho_{MWBH}(m_0) \nu^2}{\pi (e^{\frac{\nu}{T_{BH}(m_0)}} - 1)} d\nu$$

DM PHENOMENOLOGY

- Ultra High Energy Cosmic Rays
 - The issue of GZK cutoff

$$\sigma_{obs} \approx 10^{-37} \frac{\text{UHECR particles}}{\text{s m}^3}$$

Invisible matter within 50 Mpc (?)

Energy of Emitted Cosmic Rays (eV)

- Compute QNMs of micro quantum BHs
 - Finding where the mass range where distribution peaks
 - Assuming they represent 'all' DM

• As surface gravity goes to zero with m = 0

DM PHENOMENOLOGY (WILD IDEA No. 1)

- Compute QNMs of micro quantum BHs
 - Finding where the mass range where distribution peaks
 - Assuming they represent 'all' DM
- As surface gravity goes to zero with m = 0
 - Exists a "conjugate" mass pair (model dependent)
 - Asymptotic safety gravity BHs, Non-commutative BHs
 - If the frequency of GWs feasible then we know where to look (LIGO or LISA)
- Assuming all of the DM BHs haven't reached equilibrium (WHY?)
 - And also assuming their distribution is homogenous & isotropic & we assume a neat fraction of them in phase
- Then, in principle, within solar system one could tune enough BHs to have a stochastic background noise in GW detectors

Page 49/75

Page 50/75

DM PHENOMENOLOGY (WILD IDEA No. 1)

- Compute QNMs of micro quantum BHs
 - Finding where the mass range where distribution peaks
 - Assuming they represent 'all' DM
- As surface gravity goes to zero with m = 0
 - Exists a "conjugate" mass pair (model dependent)
 - Asymptotic safety gravity BHs, Non-commutative BHs
 - If the frequency of GWs feasible then we know where to look (LIGO or LISA)
- Assuming all of the DM BHs haven't reached equilibrium (WHY?)
 - And also assuming their distribution is homogenous & isotropic & we assume a neat fraction of them in phase
- Then, in principle, within solar system one could tune enough BHs to have a stochastic background noise in GW detectors

- Quantum BH (or any DM candidate)
- Dominant potential in early structure formation
- Evolution of the SMBH would depend on the propertied of DM halo

 Provided the clustering properties are different than standard one

- Quantum BH (or any DM candidate)
- Dominant potential in early structure formation
- Evolution of the SMBH would depend on the propertied of DM halo
 - Provided the clustering properties are different than standard one
- Assuming this has an effect on galaxy merger
- Different properties would predict different merger rate
- LISA could listen SMBH merger
 - Could test cosmological models

- Quantum BH (or any DM candidate)
- Dominant potential in early structure formation
- Evolution of the SMBH would depend on the propertied of DM halo
 - Provided the clustering properties are different than standard one
- Assuming this has an effect on galaxy merger
- Different properties would predict different merger rate
- LISA could listen SMBH merger
 - Could test cosmological models
 - And thus could tell us something new about DM

LORENTZ INVARIANCE VIOLATION

Deformed Special Relativity:

$$m^2 = E^2 - p^2 + \Delta_{qg}(E, p^2; M_{QG})$$

- Vacuum has an energy dependent refractive index (?)
- No longer invariant:

$$c(\varepsilon) = 1 - \zeta \frac{E}{E_{OG}} = 1 - \varepsilon$$
 $ds^2(\varepsilon) \neq ds^2(\varepsilon')$

- Where is the relativity?
 - Observers agree on E_{QG}

PHENOMENON OF TIME DELAY

PHENOMENON OF TIME DELAY

Page 57/75

Flat FRW Metric: $ds^2 = -dt^2 + a(t)^2 [d\chi^2 + \chi^2 (d\theta^2 + \sin^2\theta d\phi^2)]$

Page 59/75

Flat FRW Metric:
$$ds^2 = -dt^2 + a(t)^2 [d\chi^2 + \chi^2 (d\theta^2 + \sin^2\theta d\phi^2)]$$

Assume first order QG effect:
$$E \equiv \sqrt{m^2 + \frac{p_\chi^2}{a^2(t)} \left(1 - \zeta \frac{p_\chi}{a(t) E_{QG}}\right)}$$

Page 60/75

Flat FRW Metric: $ds^2 = -dt^2 + a(t)^2 [d\chi^2 + \chi^2 (d\theta^2 + \sin^2\theta d\phi^2)]$

Assume first order QG effect:
$$E \equiv \sqrt{m^2 + \frac{p_\chi^2}{a^2(t)} \left(1 - \zeta \frac{p_\chi}{a(t) E_{QG}}\right)}$$

Then,
$$\frac{d\chi}{dt} \equiv \frac{p^{\chi}}{p^{0}} \approx \frac{1}{a(t)} - \frac{m^{2}a(t)}{2a^{2}(t_{e})f_{e}^{2}} + \frac{\zeta a(t_{e})f_{e}}{2E_{QG}a^{2}(t)}$$

Flat FRW Metric:
$$ds^2 = -dt^2 + a(t)^2 [d\chi^2 + \chi^2 (d\theta^2 + \sin^2\theta d\phi^2)]$$

Assume first order QG effect:
$$E \equiv \sqrt{m^2 + \frac{p_\chi^2}{a^2(t)}} \left(1 - \zeta \frac{p_\chi}{a(t) E_{QG}}\right)$$

Then,
$$\frac{d\chi}{dt} \equiv \frac{p^{\chi}}{p^{0}} \approx \frac{1}{a(t)} - \frac{m^{2}a(t)}{2a^{2}(t_{e})f_{e}^{2}} + \frac{\zeta a(t_{e})f_{e}}{2E_{QG}a^{2}(t)}$$

For m = 0 (QG phenomenology)

$$\Delta t = \frac{\zeta}{E_{QG}} D(f_e' - f_e)$$

$$D \equiv \frac{1}{H} \int_0^z dz \frac{1+z}{\sqrt{\Omega_{\Lambda} + (1+z^3)\Omega_{Matter}}}$$

For $\zeta = 0$ (Bounding graviton mass)

$$\Delta t = \frac{m^2}{2} D \left(\frac{1}{f_e^2} - \frac{1}{f_{e'}^2} \right)$$

$$D \equiv (1+Z)^2 \int_{t_a}^{t_a} \frac{a(t)}{a(t_a)} dt$$

Sources for Phenomenology of LIV

o Gamma Ray Bursts

- Distance ~Gpc, energy ~ GeV
 - \circ <u>GRB 080916</u>: z = 4.35, E_{max} = 13.2 GeV, E_{QG} ~ 0.1 E_{Planck}
 - \circ <u>GRB 090510</u>: z = 0.903, E_{max} = 31 GeV, E_{QG} ~ 10 E_{Planck}

Active Galactic Nuclei

- Distance ~0.1 z, total energy TeV
 - \circ <u>PKS 2155-304</u>: E_{QG} ~ 0.1 E_{Planck}

Pulsars

Distance ~kpc, energy ~ 100 MeV but nano –second

Multi-Messenger Phenomenology for LIV

Multi-Messenger Phenomenology for LIV

Neutrinos

- GRB: $E > 10^2 \text{ TeV}$
- Detection probability for a short burst ~ 10⁻², so unlikely to have two neutrinos detected from same source
- Comparison with low energy photon could be used (even if there is an intrinsic delay!)
 U. Jacob & T. Piran (2007)

Page 65/75

Multi-Messenger Phenomenology for LIV

Neutrinos

- GRB: $E > 10^2 \, \text{TeV}$
- Detection probability for a short burst ~ 10⁻², so unlikely to have two neutrinos detected from same source
- Comparison with low energy photon could be used (even if there is an intrinsic delay!)

 U. Jacob & T. Piran (2007)

Gravitons

- Easier to model merging of SMBH + cosmological scale (entire universe) - energy to low (~10⁻³ Hz) = Almost unaffected by QG!
- EM signal during coalescence (accretion & transients of relativistic gas)

 B. Kocsis et al. (2008)
 - Similar as keeping bound on mass of graviton, but here one favors graviton to have no delay (massless)!

SUMMARIZING THE BOUNDS

SUMMARIZING THE BOUNDS

"THOUGH THE SOURCE BE OBSCURE, STILL THE STREAM FLOWS ON..."

- Taken from NUMBER - THE LANGUAGE OF SCIENE by Tobias Dantzig

