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Observation...
































































what's the equation

describing this curve?







Iknvelopes,

Example 1:

ink drops thrown with constant
velocity and different angles
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The original problem

This parameter v 8 for thus problem
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The original problem
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This parameter s 8 for this problem

r tan# + L sin#H




The original problem

This parameter v 8 for thes problem

r tan# 4+ L sin#
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folj attention -

You may now wake up ;)










red sky in morning

an exploration of the colours of the sky
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red sky in morning

an exploration of the colours of the sky
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Qutline

1. Why is the sky coloured?

2. Why does the colour change af sunrise and

sunsef?

3. What can affect the colour of the sky?
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Why isn't the sky white?

1
*Rayleigh scatftering: IIF

«Given A __ = /00 nm arﬁ A, =490 nm, |

— o | —

s approximarely 1:38
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Why isn't the sky violet?

e Violef light has a
shorter wavelengrh
fhan blue light, so
why isn't the sky
violet?

= eye sensifivity
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fhan blue light, so

Spectral Sensitivity
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why isn't the sky
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=

violet?

= eye sensifiviry
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Why isn't the sky violef?
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Why isn't the sky wolet’?
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Looking at the sun

e Longer wavelengths
are present in the

area close to the sun

*SKy appears brightfer because all wavelengrhs
of light are present

elhe sun ifself appears white or yellowish
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What happens at sunrise/sunset?

oLight scatters off different sizes of molecules
differently (eg. Mie scattering and clouds)
*Parficulates in the air can affect the colour of the
sunrise or sunsef:

e Salf from the ocean
e Dust in the air from passing storms

e | ow-lying clouds/fog

* Haze and smog
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Particulates
e Dust can create a redder sky
*[he main pollutants over eastern North America
are sulphates (Husar and Wilson, Env. Sci. and
Tech., 1993)
e Sulphates are hygroscopic, and aerosols are
formed fo approximately the same diameter as
fhe wavelength of light

e Unless all aerosols are of the same diameter.
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Clouds af sunset

e During the day, clouds appear white because of
Mie scaftering

» Only clouds above the armospheric boundary
layer will reflect much coloured light

e Short wavelengrhs are so successfully scaffered
that they do not reach the clouds
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Clouds at sunset

e During the day, clouds appear white because of
Mie scaftering

e Only clouds above the armospheric boundary
layer will reflect much coloured light
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Clouds at sunseft

e During the day, clouds appear white because of
Mie scattering

» Only clouds above the armospheric boundary
layer will reflect much coloured light

e Short wavelengths are so successfully scatftered
that they do nor reach the clouds
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Clouds atf sunset

e During the day, clouds appear white because of
Mie scaffering

e Only clouds above the atrmospheric boundary
layer will reflect much coloured light

e Short wavelengfrhs are so successfully scaffered
that they do not reach the clouds



Conclusions

e The day sky appears blue because of Rayleigh
scaffering

 When the sun is low on the horizon, longer
wavelengfths are scattered

» Parficulares in the sky. can eifiig
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Angstrom's Explanation

* Rough surfaces retlect ditfusely.

* Lambertian surfaces model this with equal retflection
in all directions:

4
Diftuse retlection
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Angstrom's Explanation, continued

» Some of the retlected light hits the water-air
interface at such an angle that 1t 1s all reflected back
towards the rough surtace.

* Less radiation escapes to the air

Rough surtace covered with liquid Page s3011202
[Lekner and Dorf. 1988
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» Angstrom underestimated how much light gets
trapped 1n by the water.

» Also, Angstrom did not consider that more light
will probably be absorbed at water-solid interface
than at air-solid interface

* Even less light will ever escape to the air.
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Motivation: No AC

» Put on wet cloths
» Trv minty products

» Eat spicy food
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Motivation: No AC

» Put on wet cloths
» Try minty products

» Eat spicy food

» Use afan

» Pucker your lips and blow
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Fans

Blowing cool air
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What 1s a fan’
Any flat. broad and lightweight surface can be used as a fan. Just wave it
back-and-forth!
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Fans

How does the tan work?

» A fan doesn't actually cool the air!
» [t increases the airflow over the skin

|. Helps natural evaporation
2. Convection
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Fans: Evaporation
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Fans: Evaporation

. Vapor Phas .

l,iquld

Surface

L — toms from (ke bulk haud

| Iguid Phas

(J. Garai (2009) Physical model for vaporization. Fluid Phase Equilibria. 283, 89-92 (IF: 1.506))
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Fans

Fans: Evaporation

Relative
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Molecules
ina

Interval

The faster molecules leave before equilibrium. The average molecular
velocity decreases, reducing the temperature.

Pirsa: 10080032 : % S = . e Page 504/1202 .
{:-."n;'a.‘.pr'_:s;-:s .ONl10—State.eqaus/~wilkins energy/Lompanion/nu/.s .f_:-:l: .Z-Z}_:C.:]



Fans

Fans: Evaporation
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The faster molecules leave before equilibrium. The average molecular
velocity decreases, reducing the temperature.
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Fans

Fans: Evaporation

Ralatve
Number
of Liquid
Molecules
ina

Interval

The faster molecules leave before equilibrium. The average molecular
velocity decreases, reducing the temperature.
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Fans: Evaporation
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Interval

The faster molecules leave before equilibrium. The average molecular
velocity decreases, reducing the temperature.
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Fans: Evaporation
The airflow produced by fans reduces the concentration of water in the air

surrounding the skin. In this way, sweat evaporates much faster and
temperature drops.

Sweat has a large heat capacity. Therefore these temperature changes cool the
body rapidly.
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Fans: Evaporation

The airflow produced by fans reduces the concentration of water in the air
surrounding the skin. In this way, sweat evaporates much faster and
temperature drops.

Sweat has a large heat capacity. Therefore these temperature changes cool the
body rapidly.
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Blowing cool air
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Blowing cool air
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Blow cold: misleading (false) explanation

When you pucker your lips and blow hard. air expands adiabatically and cools
down.
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Blow cold: misleading (false) explanation

When you pucker your lips and blow hard. air expands adiabatically and cools
down.

Problem

Human beings usually don’t blow that hard. You would need a pressure
greater than | atm.
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Blow cold: misleading (false) explanation
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Blow cold

» Key word: forced convection

» Faster moving air entrains (moves) room air in its flow, thus providing a
drier air stream

» The airflow increases the liquid’s rate of evaporation

» Air stream: 40 % body warmth. 60 % ambient

» Distance from the mouth
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» Key word: forced convection
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Blow cold

» Key word: forced convection
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» Key word: forced convection
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Conclusions

There are simple and handy solutions when you need to cool yourseltf.
Induced airflows can create an effective cooling sensation by reducing the rate

of evaporation of your swealt.
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Conclusions

There are simple and handy solutions when you need to cool yourself.
Induced airflows can create an etfective cooling sensation by reducing the rate
of evaporation of your sweat.
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Gracias.

(Thank vou)
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Fibonacci sequence:

L2 3,5 8r 13, 21, 34, 55, 897 144...
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Fibonacci sequence:
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Connection

Number of LH to RH (or vise versa)
spirals is pair of consecutive Fibonacci

numbers (ex: (8, 13), (34,55))
Name: Phyllotaxis

Question: Why does this happen?
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Lattice on Cylinder

(mod2~)

Cayley Tree




Cayley tree for lattices




Change lattice

fmn = ((M+nz)//y, nvy), m, ne’Z.

Detine energy function:

E(z,y) = )_ U(lrmnl).

-For calculations:  U(A) = exp( — A4 #)=
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Energy minima

Varyy from Y
+ o0 to O |

QQuasi bifurcations lead
to single visible path
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Energy minima

Varyy from
+ o0 to O

(Quasi bifurcations lead
to single visible path
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Equivalence of graphs

Both graphs are equivalent to Farey graph

Farey construction: m/n®p/q= (m+p)/(n+q)

0/1e1/1=1/2
0/1, 1/2, 1/1

. o/1v. /3. 1/2.2/3. 1/1 ™~



Heavy lines: “young
ancestors

Dotted lines: “old
ancestors’

Note that it is already
topologically
equivalent to first
(would be, if not for the
quasi bifurcations)
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Construct circles

m/n, (m+p)/(n+4q), p/q

mq — np = + 1|
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Decreasing y is model for growth

Pine cone starts out as long thin chain of seed
embryos

[t grows faster in horizontal direction, so length to
thickness ratio is decreased

Decrease in parameter fY — corresponds to
|

horizontal spreading of lattice — same thing as in
cones:

P = (M +12)/ 5, nvG), m, nez.
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Outline

Odd eftects in my photos

Zoom lens optics and lens flares

» Tracking down the points of my stars — Fraunhofer
diffraction 1n polygonal apertures

* Other ways to achieve this effect

What I learned from this project
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What I found my camera could do




What I found my camera could do
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A closer look
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Zoom lens
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[ens flare
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Lens flare
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But this 1s not what we were looking
for!
e Qur flares are right on bright objects.

» They are anisotropic, with six spikes.
Another clue:

e The star shapes are always in the same orientation
relative to the camera given the same aperture
~_settings.
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Camera diaphragm

Large aperture Small aperture
~Cm : ~mm
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Hexagonal apertures




Hexagonal apertures
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e
What 1s going on?

e Fraunhofer or Fresnel diffraction?

e Flares out from actual image point: can happen only
in far field — Fraunhofer regime (does this make

»
a

sense? F = <1 7)
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Fraunhoter diffraction at polygonal apertures
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Fraunhofer diffraction at polygonal apertures
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Fraunhoter diffraction at polygonal apertures
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Fraunhoter diffraction at polygonal apertures
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Fraunhofer diffraction at polygonal apertures
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Fraunhofer diffraction at polygonal apertures

irsa: 10080032 . T Page 779/1202



Fraunhoter diffraction at polygonal apertures

irsa: 10080032 - ¥ .Page 780/1202



Fraunhofer diffraction at polygonal apertures

irsa: 10080032 . oI . Page 781/1202



irsa: 10080032 - - Page 782/1202



Fraunhofter diffraction at polygonal apertures
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Fraunhofer diffraction at polygonal apertures
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Fraunhoter diffraction at polygonal apertures
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Fraunhofer diffraction at polygonal apertures
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Fraunhoter diffraction at polygonal apertures
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Fraunhoter diffraction at polygonal apertures
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Fraunhofer diffraction at polygonal apertures

irsa: 10080032 . R Page 789/1202



Fraunhofer diffraction at polygonal apertures
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Fraunhofer diffraction at polygonal apertures
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Fraunhofer diffraction at polygonal apertures
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Fraunhofer diffraction at polygonal apertures
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Fraunhoter diffraction at polygonal apertures

EFRLAT DO
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Fraunhoter diffraction at polygonal apertures
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Fraunhofer diffraction at polygonal apertures
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Fraunhoter diffraction at polygonal apertures
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Fraunhofer diffraction at polygonal apertures
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Fraunhoter diffraction at polygonal apertures
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Star filters
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Star filters



Star filters



Star filters
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Difference: points of star are actually pointy, not flared



Combination effects




Conclusion

 Internal reflections can lead to other odd. “ghost™ images in
the final picture.

« The non-circular nature of camera apertures can cause
interesting diffraction effects. such as starburst.

e Must be Fraunhofer, but don't understand the interior of my
camera well enough to see why.

« Diffraction gratings can act as filters to fake such effects.

2ol Y Camera has either a hexagonal or triangular diaphragaad...
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