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1. Beitrdge zwur Optik triiber Medien, speziell
kolloidaler Metallésungen;
von Gustav Mie.

Gustav Mie (1868-1957) tried to explain the optical
properties of colloidal gold suspensions.
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The medium has refractive index n_and the particle
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Mie's approach

Starting point: Maxwell's equations
Spherical coordinates
Harmonic time dependance

Continuity conditions on the surface of the sphere for
the electrical and magnetic strenght fields

Separation of variables

Solution Is given as series of Bessel functionS
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Mie's approach

Not the first to solve this problem:

Thomson — perfectly conducting sphere

Hasenaorl — finite conductance

Ehrenhaft

Debeye

Lorenz — ether theory

[Horvath H. , J Quant Spectrosc Radiat Transfer, 110 (2009)]

Mie deduced recursions relations for the solutions
more suited for numerical computations
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Mie Scattering

Point like particles

1/A* Rayleigh law Sk

Particles greater than wavelenght: scattering
depends only weakly on A

Sun light is white, so clouds scatter white light!

Particle size increases —> forward scattering
INncreases _
: - Polar diagrams:
/= | NS > Incident light: A=550 nm
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S\ N A Particle size:
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Conclusions

White colour of clouds i1s due to Mie Scattering

Mie theory treats scattering by spherical
particles of any size

Mie scattering depends weakly on wavelength,
when the particle size is larger than wavelength

For water droplets all light is scattered almost in
the same

Clouds are white
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Invented by Dan Cudzik in
1975
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Pirsa: 10080031 Page 225/662




Pirsa: 10080031

Invented by Dan Cudzik in
1975

Designed to replace the old
pull tab which was an
environmental problem

The pull-tab (Wikipedia)
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Invented by Dan Cudzik in
1975

Designed to replace the old
pull tab which was an
environmental problem

Easy and safe to use - no
sharp edges

Simple desing - cheap and
easy to fabricate

The stay-on-tab
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"Give me a lever long enough and a fulcrum on which to
place it, and | shall move the world"
- Archimedes

=k (1)

where 7 is the torque vector, r is the displacement vector and F is
the force vector

Lever amplifies the force you excert on the can
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Classes of levers

Figure:
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Class 1: The fulcrum is
located between the applied
force and the load

Class 2: The load is situated
between the fulcrum and the
force

Wheelbarrow (Wikipedia)
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Classes of levers

Figure:
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The stay-on-tab is a class 1
lever

The stay-on-tab
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The stay-on-tab is a class 1
lever

Lets assume that the force is
perpendicular to the ring pull

The stay-on-tab
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The stay-on-tab is a class 1
lever

Lets assume that the force is
perpendicular to the ring pull

n =~ 20 mmand n ~5 mm
= force is quadrupled

But wait! There's more!

The stay-on-tab
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The lid is scored to make
things easier

The scored lid (Wikipedia)
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things easier

The score has to be precise;
not too deep and not too
shallow

The scored lid (Wikipedia)

Pirsa: 10080031 Page 237/662




The lid is scored to make
things easier

The score has to be precise;
not too deep and not too
shallow

The lid and the tab are
manufactured separately

The scored lid (Wikipedia)

Pirsa: 10080031 Page 238/662
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The score has to be precise;
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The lid and the tab are
manufactured separately

The lid is made of a different

alloy and is much thicker : .
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The stay-on-tab has taken
us through:

Archimedes (lever)

The stay-on-tab

Pirsa: 10080031 Page 240/662




The stay-on-tab has taken
us through:

Archimedes (lever)
Clapeyron (ideal gas law)
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The stay-on-tab has taken
us through:

Archimedes (lever)
Clapeyron (ideal gas law)
Modern engineering
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The stay-on-tab has taken

us through: ,ﬂ
Archimedes (lever) "' ‘\'
Clapeyron (ideal gas law) =4 A==
Modern engineering .

Above all: human curiosity —
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The stay-on-tab has taken
us through:

Archimedes (lever)
Clapeyron (ideal gas law)
Modern engineering
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The lid is scored to make
things easier

The score has to be precise;
not too deep and not too
shallow

The lid and the tab are
manufactured separately

The lid i1s made of a different
alloy and is much thicker
than the rest of the can

The scored lid (Wikipedia)
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The lid and the tab are
manufactured separately

The lid is made of a different
alloy and is much thicker
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How Bicycles Stay Upright

Maeve Manion-Fischer
Perimeter Scholars International




Outline

* Can you explain how a bicycle works?
» Possible Explanations
» Experimental Tests

« Unexpected Effects







Possible Explanations

» Centrifugal force
» Gyroscopic Motion

» A rolling hoop stays
upright because of
gyroscopic forces,
shouldn't a bicycle
wheel be similar?

Image:



Testing the Hypothesis

* Riderless normal
bicycle will stay upright
for awhile (centrifugal
forces not enough to
explain this)

* WWhen riderless, this
bicycle will fall over
immediately.




*_ The Effect of the Steering
Mechanism

Normal bicycle URB 111




The Effect of the Steering
Mechanism




‘_ The Effect of the Steering
Mechanism

URB Il




Conclusions

* Explanations that immediately come to mind do
not explain the motion of a bicycle

» The stability of bicycles is best explained by
both the structure of the steering mechanism
and castoring forces.
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Air resistance

A thrown disc travels farther than a thrown ball

* The frisbee has high resistance to vertical
velocity
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Lift: Complications

* But why does the air above the frisbee move

faster? Not trivial. >
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* Where I, the circulation, is the line integral
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Lift: Alternative view

* Newton supposed that air molecules
bouncing off the bottom of a wing cause lift

* The wing (disc) must exert a force to deflect
the molecules

* By Newton'’s 3™ Law, the air must supply an
equal and opposite force against the wing
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Lift -> instability?

* Disc spinning clockwise, moving forward:
left side moves faster than right side

* The resulting pressure difference delivers a
torque tending the disc to skew from its
straight path

* Poorly thrown
discs list clockwise
* Isthe flight
unstable?
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Gyroscope
* With sufficient angular
—\ momentum, the disc
N will precess like a
o=y gyroscope
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* Distance flown depends most on initial
velocity, angle of attack, and angular
momentum.
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smooth, but irregularities at a smaller scale.
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Huge white things on the sky

Can also appear as greyish

Consist of a vast collection of

« tiny droplets of liquid water
(" warm clouds”)
« small crystals of ice

( " cold clouds”)
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Why do we have clouds?

sun warms water
water vaporizes into the air
sun warms the humid air

warm, humid air is lighter
than cold air

warm, humid air rises high
and spreads

air cools and the vaporized
water forms into dropplets

we have a cloud!
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« They actually do
« Airflow that creates clouds, same time pushes them up
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Noctilucent clouds

» Tenuous, icy clouds

« Highest clouds in
Earth's atmosphere

« 76 to 85 kilometers

high (47 to 53 mi)

« Visible only when
illuminated by
sunlight from below
the horizon while the
lower layers of the
atmosphere are in
Earth's shadow
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Venus

Sulfur Dioxide and drops
of sulfuric acid
Completely opaque

Mars

Atmosphere has only a
trace of water vapor

Saturn

Ammonia, Ammonia
hydrosulfide, water clouds

Uranus
Methane crystals

Neptune

Mainly frozen methane
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Conclusion

Clouds are not vaporized water

There are clouds in different altitudes

Clouds can consist of different kind of particles
There are "clouds” on other planets

You can't jump on a cloud and stay on it!
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Photograph from Ohio University's Fluid Mechanics Laboratory. Athens, Ohio USA
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where do we see Hydraulic
Jumps in nature?

Photograph from Wiki
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Jump Radius Vs Flow Rate
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Using Navier-Stockes and the no
slip condition at stagnation

dh Smv

= r.

dr QO

Integration gives

Smv r*
= o 2

Fig. 6.
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Rainbows
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Qverview

Where do rainbows come from?

Why Roy G. Biv?

Why Is it an arc?

Where do double rainbows come from?
Pretty Pictures
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Index of refraction of water is a function of the light
wavelength:

n(red) = 1.3312
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Inside a rain drop

B e e e e —
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Snell's Law — A review

n,sin(x)=n,sin(p)

Index of refraction of water is a function of the light
wavelength:

n(red) = 1.3312
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Inside a rain drop
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An observer sees different colors

reflected from distinct raindrops,
so that red appears on top.  cueses

-
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An observer will see red light from all
raindrops in a 42 degree cone around
them, producing and arc above the
horizon.

The sun - i o
must be T < "
less than
42 degrees
above the
horizon for
a rainbow
to be
visible at
sea level.
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Inside a rain drop
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An observer sees different colors
reflected from distinct raindrops,
- A SO that red appears on top.  ruweese
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An observer will see red light from all
raindrops in a 42 degree cone around
them, producing and arc above the
horizon.

The sun -2 o o
must be ol <
less than

42 degrees

above the

horizon for

a rainbow P
to be TN
visible at -~
sea level.
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The double rainbow

Secondary Em{_.,ﬁj'

' 74 e '[‘:‘tm ary Bow
| A == bl - - ."_ ; k'
4 /\ 545

J e The dark space between the

' rainbows Is called Alexander's band
' and is caused by light reflected
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Inside a rain drop
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An observer will see red light from all
raindrops In a 42 degree cone around
them, producing and arc above the
horizon.

The sun T B A
must be P s .
less than '
| 42 degrees
above the
horizon for
| a rainbow
to be
visible at
sea level.
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The double rainbow

: T
Secondary Bow &)

7" Primary Bow

o 545
f e The dark space between the
-‘ rainbows is called Alexander's band
' \ and is caused by light reflected
e o0 e+~ i 9% oo through larger angles than the  eueenes
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Higher Order Rainbows

A fifth order F‘"
rainbow '

(right) falls
within
Alexander's
band.

Using extremely strong laser light and

suspended droplets, rainbows of order over 200
" i have been created in labs
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The double rainbow

. - By
Secondary Bow &)

7" Pnmary Bow

Va 45
;;f/fnfs:- .| The dark space between the
’ rainbows is called Alexander's band
and is caused by light reflected
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The double rainbow

f
Secondary Bow &)
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' /X <" Primary Bow
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rainbows Is called Alexander's band

' and is caused by light reflected
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Inside a rain drop
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The double rainbow
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Secondary Bow__ &)

<" Primary Bow
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P al 54.5
J e The dark space between the
' rainbows is called Alexander's band
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Inside a rain drop
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The double rainbow
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