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Conclusion

» Important application of solid state physics
» Allows amplification of signals
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» Important application of solid state physics
 Allows amplification of signals 3
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Concluding Remarks

* Optimizes damping
* Reduces danger

* Further experiments
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Flow dynamics is described by the Navier-Stokes equations, together
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Principle: In low-viscosity fluids, internal friction is only appreciable in
a thin region surrounding the boundaries, the boundary layer.

This results in two different sources of drag:
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Principle: In low-viscosity fluids, internal friction is only appreciable in
a thin region surrounding the boundaries, the boundary layer.

This results in two different sources of drag:
- Skin friction;
- Pressure drag.

skin friction pressure drag (separation)
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Conclusions

While skin friction can only be reduced with skin surface smoothening
body shape plays an important role in separation and pressure drag:

minimizing the angle gradients in the surface leads to less
separation;

the less separation there is, the more pressure is recovered at the
body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming
than, say, squares or circles.

Open question - rigorous treatment!
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. Qualitative Description of Drag-

Separation Explained
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» Consider the flow of a viscous fluid past an obstacle (equivalent to
the swim of a body in a previously static fluid):

Image: Coilgun Systems website

» For simplicity, consider a 2D flow

« \elocity is constant far from the body, v =v¢.

« In the surface, the normal component of velocity vanishes, v -7=0
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» Consider the flow of a viscous fluid past an obstacle (equivalent to
the swim of a body in a previously static fluid):

Image: Coilgun Systems website
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For simplicity, consider a 2D flow

« V\elocity is constant far from the body, v=v¢,

« In the surface, the normal component of velocity vanishes, v -/7=0




The Ideal Body for Swimming

(a Physics swan song)

Joseée Ricardo Oliveira
Perimeter Scholars International 2010/11
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- « Streamlined body shapes are seen in most waterbound and flying
— animals; do they serve a purpose in swimming?

mage flyfishingnature com Image 123 com




i Prevous
30 to Shde » |

== -)lined body shapes are seen in most waterbound and flying
armrens, O they serve a purpose in swimming?

mage: flyfishingnature com




b T

. oeee @amlined body shapes are seen in most waterbound and flying
~~~’hals; do they serve a purpose in swimming?

mage: fiynsningnatune.com




» Streamlined body shapes are seen in most waterbound and flying
animals; do they serve a purpose in swimming?

Image: Coilgun Systems website

» Clearly, if there is a point to the animals’ body shapes, it is to reduce
drag (as it slows you down, and requires a bigger effort to swim)
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Propagation of vibration
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= Cohesion and Adhesion
+ Height of Liquid in a Tube
1 Rest of the Story
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= Lighting the wick melts wax
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= Lighting the wick melts wax

= Candle burns until wax is gone
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= Lighting the wick melts wax

= Candle burns until wax is gone
= But where does the wax go?
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= Tendency of lquIdS to rise against gravity
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= Tendency of liquids to rise against gravity
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= Tendency of liquids to rise against gravity

= Common phenomenon
= Paper Towels
= Sponges




= Intermolecular forces between like molecules
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= Intermolecular forces between like molecules
m Cause of Surface Tension
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= Intermolecular forces between unlike
molecules
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= Intermolecular forces between unlike
molecules

& Why you need to dry your dishes
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= Intermolecular forces between unlike
molecules
& Why you need to dry your dishes
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= Consider a small tube immersed in liquid

= Interplay between cohesive and adhesive forces
cancee lhiamnd to rice and form a menicciicg
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= Consider a small tube immersed in liquid

= Interplay between cohesive and adhesive forces
canecee liamnid to rice and form a menicciic
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= Once wax is melted, capillary action draws
wax up the wick
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= Heat from flame then evaporates the wax




= Once wax is melted, capillary action draws
wax up the wick

= Heat from flame then evaporates the wax
= Process continues until wax runs out




C onelusion

s on capillary action
initially melting wax, adhesive forces

etween wax and wick draw wax up wick
eat from flame then evaporates the wax




