Title: Research Skills - Lecture 3A

Date: Aug 20, 2010 09:00 AM

URL: http://pirsa.org/10080005

Abstract:

Pirsa: 10080005

Transistors

Joel Lamy-Poirier

Page 2/896

Transistors

Joel Lamy-Poirier

Page 3/896

Outline

- What is a transistor?
- How does it work?

Pirsa: 10080005

What do we use them for?

Page 4/896

What is a transistor?

Pirsa: 10080005

Page 5/896

Pirsa: 10080005

Page 6/896

Pirsa: 10080005

Page 7/896

Pirsa: 10080005

Page 8/896

Pirsa: 10080005

Page 9/896

Pirsa: 10080005

Page 10/896

Pirsa: 10080005

Page 11/896

Pirsa: 10080005

Page 12/896

Pirsa: 10080005

Page 13/896

Pirsa: 10080005

Page 14/896

Pirsa: 10080005

Page 15/896

Pirsa: 10080005

Page 16/896

Pirsa: 10080005

Page 17/896

Pirsa: 10080005

Page 18/896

Pirsa: 10080005

Page 19/896

Pirsa: 10080005

Page 20/896

Pirsa: 10080005

Page 21/896

Pirsa: 10080005

Page 22/896

Pirsa: 10080005

Page 23/896

Pirsa: 10080005

Page 24/896

Pirsa: 10080005

Page 25/896

Pirsa: 10080005

Page 26/896

Pirsa: 10080005

Page 27/896

Pirsa: 10080005

Page 28/896

Pirsa: 10080005

Page 29/896

Pirsa: 10080005

Page 30/896

How does it work Field effect transistor (MOSFET)

Pirsa: 10080005

Page 31/896

How does it work Field effect transistor (MOSFET)

Pirsa: 10080005

Page 32/896

How to use them

Amplification

On/Off switch

Power source

Amplified signal

Pirsa: 10080005

Page 33/896

How does it work Field effect transistor (MOSFET)

Pirsa: 10080005

Page 34/896

How to use them

Amplification

On/Off switch

Power source

Small signal

Amplified signal

Pirsa: 10080005

Page 35/896

How to use them Logic gates

Conclusion

- Important application of solid state physics
- Allows amplification of signals
- Useful device for logic and computation

Pirsa: 10080005

Page 37/896

Conclusion

- Important application of solid state physics
- Allows amplification of signals
- Useful device for logic and computation

Pirsa: 10080005

Page 44/896

Conclusion

- Important application of solid state physics
- Allows amplification of signals
- Useful device for logic and computation

Pirsa: 10080005

Page 45/896

How to use them

Amplification

On/Off switch

Power source

Small signal

Amplified signal

Pirsa: 10080005

Page 46/896

Conclusion

- Important application of solid state physics
- Allows amplification of signals
- Useful device for logic and computation

Pirsa: 10080005

Page 47/896

Click to exit presentation...

Pirsa: 10080005

What is a transistor?

Pirsa: 10080005

Page 51/896

How to use them

Amplification

On/Off switch

Power source

Amplified signal

Page 52/896

How does it work Field effect transistor (MOSFET)

Pirsa: 10080005

Page 53/896

How does it work Field effect transistor (MOSFET)

Pirsa: 10080005

Page 54/896

How to use them

Amplification

On/Off switch

Power source

Amplified signal

Pirsa: 10080005

Page 55/896

How does it work Field effect transistor (MOSFET)

Pirsa: 10080005

Page 56/896

Field Exten v does it work So to Slide v t transistor (MOSFET) End Show

How to use them

D

Amplification

On/Off switch

Power source

Amplified signal

Pirsa: 10080005

Page 58/896

- Colorful Nature
 - Amazing Colors in Nature
 - Microstructure of Opal
- 2 Creative Human
 - Concept of Photonic Crystal
 - Design Your Photonic Crystal
 - Unexpected New Phenomena

Pirsa: 10080005 Page 62/896

Photonic Crystal, More Than Amazing Colors

Tianheng Wang

August 20, 2010

Pirsa: 10080005 Page 63/896

Photonic Crystal, More Than Amazing Colors

Tianheng Wang

August 20, 2010

Pirsa: 10080005 Page 64/896

- Colorful Nature
 - Amazing Colors in Nature
 - Microstructure of Opal
- 2 Creative Human
 - Concept of Photonic Crystal
 - Design Your Photonic Crystal
 - Unexpected New Phenomena

Pirsa: 10080005 Page 65/896

Amazing Colors in Nature Microstructure of Opal

Amazing Colors in Nature

Opal

Taken by me Not attractive at all

Pirsa: 10080005 Page 66/896

Opal

Taken by me Not attractive at all

Precious Opal

Shining stone

Pirsa: 10080005

Opal

Taken by me Not attractive at all

Precious Opal

Shining stone

Cute creature

Opal

Taken by me Not attractive at all

Precious Opal

Cute creature

Opal

Taken by me Not attractive at all

Precious Opal

Shining stone

Cute creature

Opal

Taken by me Not attractive at all

Precious Opal

Shining stone

Cute creature

Opal

Taken by me Not attractive at all

Precious Opal

Shining stone

Cute creature

Opal

Taken by me Not attractive at all

Precious Opal

Shining stone

Cute creature

Opal

Taken by me Not attractive at all

Precious Opal

Shining stone

Cute creature

Opal

Taken by me Not attractive at all

Precious Opal

Shining stone

Cute creature

Opal

Taken by me Not attractive at all

Precious Opal

Shining stone

Cute creature

Opal

Taken by me Not attractive at all

Precious Opal

Shining stone

Cute creature

Opal

Taken by me Not attractive at all

Precious Opal

Shining stone

Cute creature

Opal

Taken by me Not attractive at all

Precious Opal

Shining stone

Cute creature

Microstructure of Precious Opal

Spheres of sillica of fairly regular size

Hexagonal or cubic close-packed lattice

Variable interplay of internal colors

Microstructure of Precious Opal

Spheres of sillica of fairly regular size

Hexagonal or cubic close-packed lattice

Variable interplay of internal colors

Pirsa: 10080005 Page 81/896

Microstructure of Precious Opal

Spheres of sillica of fairly regular size

Hexagonal or cubic close-packed lattice

Variable interplay of internal colors

Microstructure of Precious Opal

Spheres of sillica of fairly regular size

Hexagonal or cubic close-packed lattice

Variable interplay of internal colors

Microstructure of Precious Opal

Spheres of sillica of fairly regular size

Hexagonal or cubic close-packed lattice

Variable interplay of internal colors

Microstructure of Precious Opal

Spheres of sillica of fairly regular size

Hexagonal or cubic close-packed lattice

Variable interplay of internal colors

Microstructure of Precious Opal

Spheres of sillica of fairly regular size

Hexagonal or cubic close-packed lattice

Variable interplay of internal colors

Microstructure of Precious Opal

Spheres of sillica of fairly regular size

Hexagonal or cubic close-packed lattice

Variable interplay of internal colors

Microstructure of Precious Opal

Spheres of sillica of fairly regular size

Hexagonal or cubic close-packed lattice

Variable interplay of internal colors

Microstructure of Precious Opal

Spheres of sillica of fairly regular size

Hexagonal or cubic close-packed lattice

Variable interplay of internal colors

Microstructure of Precious Opal

Spheres of sillica of fairly regular size

Hexagonal or cubic close-packed lattice

Variable interplay of internal colors

Microstructure of Precious Opal

Spheres of sillica of fairly regular size

Hexagonal or cubic close-packed lattice

Variable interplay of internal colors

Pirsa: 10080005 Page 91/896

Microstructure of Precious Opal

Spheres of sillica of fairly regular size

Hexagonal or cubic close-packed lattice

Variable interplay of internal colors

Pirsa: 10080005 Page 92/896

Microstructure of Precious Opal

Spheres of sillica of fairly regular size

Hexagonal or cubic close-packed lattice

Variable interplay of internal colors

Microstructure of Precious Opal

Spheres of sillica of fairly regular size

Hexagonal or cubic close-packed lattice

Variable interplay of internal colors

Microstructure of Precious Opal

Spheres of sillica of fairly regular size

Hexagonal or cubic close-packed lattice

Variable interplay of internal colors

Microstructure of Precious Opal

Spheres of sillica of fairly regular size

Hexagonal or cubic close-packed lattice

Variable interplay of internal colors

Microstructure of Precious Opal

Spheres of sillica of fairly regular size

Hexagonal or cubic close-packed lattice

Variable interplay of internal colors

Microstructure of Precious Opal

Spheres of sillica of fairly regular size

Hexagonal or cubic close-packed lattice

Variable interplay of internal colors

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

Pirsa: 10080005 Page 99/896

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

Pirsa: 10080005 Page 100/896

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

Pirsa: 10080005 Page 101/896

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

Pirsa: 10080005 Page 102/896

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

Pirsa: 10080005 Page 103/896

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

Pirsa: 10080005 Page 104/896

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

Pirsa: 10080005 Page 105/896

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

Pirsa: 10080005 Page 106/896

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

Pirsa: 10080005 Page 107/896

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

Pirsa: 10080005 Page 108/896

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

Pirsa: 10080005 Page 109/896

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

Pirsa: 10080005 Page 110/896

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

Pirsa: 10080005 Page 111/896

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

Pirsa: 10080005 Page 112/896

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

Pirsa: 10080005 Page 113/896

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

Pirsa: 10080005 Page 114/896

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

Pirsa: 10080005 Page 115/896

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

Pirsa: 10080005 Page 116/896

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

Pirsa: 10080005 Page 117/896

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

Pirsa: 10080005 Page 118/896

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

Pirsa: 10080005 Page 119/896

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

Pirsa: 10080005 Page 120/896

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

similar to semiconductors

Pirsa: 10080005 Page 121/896

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

similar to semiconductors

Pirsa: 10080005 Page 122/896

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

similar to semiconductors

Pirsa: 10080005 Page 123/896

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

similar to semiconductors

Pirsa: 10080005 Page 124/896

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

similar to semiconductors

Pirsa: 10080005 Page 125/896

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

similar to semiconductors

Pirsa: 10080005 Page 126/896

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

similar to semiconductors

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

similar to semiconductors

Pirsa: 10080005 Page 128/896

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

similar to semiconductors

Pirsa: 10080005 Page 129/896

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

similar to semiconductors

Pirsa: 10080005 Page 130/896

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

similar to semiconductors

Pirsa: 10080005 Page 131/896

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

similar to semiconductors

Pirsa: 10080005 Page 132/896

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

similar to semiconductors

Pirsa: 10080005 Page 133/896

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

similar to semiconductors

Pirsa: 10080005 Page 134/896

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

similar to semiconductors

able to provide complete tunability

Pirsa: 10080005 Page 135/896

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

similar to semiconductors

able to provide complete tunability

Essential Property

Regularly repeating internal regions 136/896

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

similar to semiconductors

able to provide complete tunability

Essential Property

Regularly repeating internal regions 137/896

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

similar to semiconductors

able to provide complete tunability

Essential Property

Regularly repeating internal regions 138/896

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

similar to semiconductors

able to provide complete tunability

Essential Property

Regularly repeating internal regions 139/896

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

similar to semiconductors

able to provide complete tunability

Essential Property

Regularly repeating internal regions 140/896

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

similar to semiconductors

able to provide complete tunability

Essential Property

Regularly repeating internal regions 141/896

Microstructure

Concept of Photonic Crystal

crystals which are composed of periodic dielectric or metallo-dielectric nanostructures that affect the propagation of photons

similar to semiconductors

able to provide complete tunability

Essential Property

Regularly repeating internal regions 142/896

Design Your Photonic Crystal

Design Your Photonic Crystal

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Location and Size of PBG

Computational Methods

Plane Wave Expansion

Methods

Finite Difference Time Domain

Order-N Spectral Method

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Keypoint:PBG

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Pirsa: 10080005

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Pirsa: 10080005

Location and Size of PBG

Computational Methods

Plane Wave Expansion

Methods

Finite Difference Time Domain

Order-N Spectral Method

Pirsa: 10080005

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Pirsa: 10080005

Keypoint:PBG

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Keypoint:PBG

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Applications

Photonic-crystal Fibre—Commercial

3-D Photonic Crystal—Research, Optical computer

Keypoint:PBG

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Applications

Photonic-crystal Fibre—Commercial

3-D Photonic Crystal—Research, Optical computer

Keypoint:PBG

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Applications

Photonic-crystal Fibre—Commercial

3-D Photonic Crystal—Research, Optical computer

Keypoint:PBG

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Applications

Photonic-crystal Fibre—Commercial

3-D Photonic Crystal—Research, Optical computer

Keypoint:PBG

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Applications

Photonic-crystal Fibre—Commercial

3-D Photonic Crystal—Research, Optical computer

Keypoint:PBG

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Applications

Photonic-crystal Fibre—Commercial

3-D Photonic Crystal—Research, Optical computer

Keypoint:PBG

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Applications

Photonic-crystal Fibre—Commercial

3-D Photonic Crystal—Research, Optical computer

Keypoint:PBG

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Applications

Photonic-crystal Fibre—Commercial

3-D Photonic Crystal—Research, Optical computer

Keypoint:PBG

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Applications

Photonic-crystal Fibre—Commercial

3-D Photonic Crystal—Research, Optical computer

Keypoint:PBG

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Applications

Photonic-crystal Fibre—Commercial

3-D Photonic Crystal—Research, Optical computer

Keypoint:PBG

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Applications

Photonic-crystal Fibre—Commercial

3-D Photonic Crystal—Research, Optical computer

Keypoint:PBG

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Applications

Photonic-crystal Fibre—Commercial

3-D Photonic Crystal—Research, Optical computer

Keypoint:PBG

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Applications

Photonic-crystal Fibre—Commercial

3-D Photonic Crystal—Research, Optical computer

Keypoint:PBG

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Applications

Photonic-crystal Fibre—Commercial

3-D Photonic Crystal—Research, Optical computer

Keypoint:PBG

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Applications

Photonic-crystal Fibre—Commercial

3-D Photonic Crystal—Research, Optical computer

Keypoint:PBG

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Applications

Photonic-crystal Fibre—Commercial

3-D Photonic Crystal—Research, Optical computer

Keypoint:PBG

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Applications

Photonic-crystal Fibre—Commercial

3-D Photonic Crystal—Research, Optical computer

Keypoint:PBG

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Applications

Photonic-crystal Fibre—Commercial

3-D Photonic Crystal—Research, Optical computer

Keypoint:PBG

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Applications

Photonic-crystal Fibre—Commercial

3-D Photonic Crystal—Research, Optical computer

Keypoint:PBG

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Applications

Photonic-crystal Fibre—Commercial

3-D Photonic Crystal—Research, Optical computer

Keypoint:PBG

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Applications

Photonic-crystal Fibre—Commercial

3-D Photonic Crystal—Research, Optical computer

Keypoint:PBG

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Applications

Photonic-crystal Fibre—Commercial

3-D Photonic Crystal—Research, Optical computer

Keypoint:PBG

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Applications

Photonic-crystal Fibre—Commercial

3-D Photonic Crystal—Research, Optical computer

Keypoint:PBG

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Applications

Photonic-crystal Fibre—Commercial

3-D Photonic Crystal—Research, Optical computer

Keypoint:PBG

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Applications

Photonic-crystal Fibre—Commercial

3-D Photonic Crystal—Research, Optical computer

Keypoint:PBG

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Applications

Photonic-crystal Fibre—Commercial

3-D Photonic Crystal—Research, Optical computer

Keypoint:PBG

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Applications

Photonic-crystal Fibre—Commercial

3-D Photonic Crystal—Research, Optical computer

Keypoint:PBG

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Applications

Photonic-crystal Fibre—Commercial

3-D Photonic Crystal—Research, Optical computer

Keypoint:PBG

Location and Size of PBG

Computational Methods

Plane Wave Expansion Methods

Finite Difference Time Domain

Order-N Spectral Method

Applications

Photonic-crystal Fibre—Commercial

3-D Photonic Crystal—Research, Optical computer

Concept of Photonic Crystal Design Your Photonic Crystal Unexpected New Phenomena

Shock Wave in a Photonic Crystal

Computational experiment performed by Evan J.Reed, Marin Soljacic and John D.Joannopoulos.

Shock Wave

A type of propagation of disturbance

Carries energy through a medium

Pirsa: 10080005 Page 192/896

Concept of Photonic Crystal Design Your Photonic Crystal Unexpected New Phenomena

Shock Wave in a Photonic Crystal

Computational experiment performed by Evan J.Reed, Marin Soljacic and John D.Joannopoulos.

Shock Wave

A type of propagation of disturbance

Carries energy through a medium

Pirsa: 10080005 Page 193/896

Concept of Photonic Crystal Design Your Photonic Crystal Unexpected New Phenomena

Shock Wave in a Photonic Crystal

Computational experiment performed by Evan J.Reed, Marin Soljacic and John D.Joannopoulos.

Shock Wave

A type of propagation of disturbance

Carries energy through a medium

Pirsa: 10080005 Page 194/896

Concept of Photonic Crystal Design Your Photonic Crystal Unexpected New Phenomena

Shock Wave in a Photonic Crystal

Computational experiment performed by Evan J.Reed, Marin Soljacic and John D.Joannopoulos.

Shock Wave

A type of propagation of disturbance

Carries energy through a medium

Pirsa: 10080005 Page 195/896

Concept of Photonic Crystal Design Your Photonic Crystal Unexpected New Phenomena

Shock Wave in a Photonic Crystal

Computational experiment performed by Evan J.Reed, Marin Soljacic and John D.Joannopoulos.

Shock Wave

A type of propagation of disturbance

Carries energy through a medium

Pirsa: 10080005 Page 196/896

Concept of Photonic Crystal Design Your Photonic Crystal Unexpected New Phenomena

Shock Wave in a Photonic Crystal

Computational experiment performed by Evan J.Reed, Marin Soljacic and John D.Joannopoulos.

Shock Wave

A type of propagation of disturbance

Carries energy through a medium

Pirsa: 10080005 Page 197/896

Concept of Photonic Crystal Design Your Photonic Crystal Unexpected New Phenomena

Shock Wave in a Photonic Crystal

Computational experiment performed by Evan J.Reed, Marin Soljacic and John D.Joannopoulos.

Shock Wave

A type of propagation of disturbance

Carries energy through a medium

Pirsa: 10080005 Page 198/896

Concept of Photonic Crystal Design Your Photonic Crystal Unexpected New Phenomena

Shock Wave in a Photonic Crystal

Computational experiment performed by Evan J.Reed, Marin Soljacic and John D.Joannopoulos.

Shock Wave

A type of propagation of disturbance

Carries energy through a medium

Pirsa: 10080005 Page 199/896

Page 200/896

Shock Wave in a Photonic Crystal

Computational experiment performed by Evan J.Reed, Marin Soljacic and John D.Joannopoulos.

Shock Wave

A type of propagation of disturbance

Carries energy through a medium

Shock Wave Model

$$\epsilon(\hat{x} = \frac{x}{a}, \hat{t} = \frac{ct}{a}) = 7 + 6\sin[\pi(3\hat{x} - \frac{v}{c}\hat{t} - \frac{\pi}{\gamma}\log(2\cosh(\gamma(\hat{x} - \frac{v}{c}\hat{t})))]$$

Computational experiment performed by Evan J.Reed, Marin Soljacic and John D.Joannopoulos.

Shock Wave

A type of propagation of disturbance

Carries energy through a medium

Shock Wave Model

$$\epsilon(\hat{x} = \frac{x}{a}, \hat{t} = \frac{ct}{a}) = 7 + 6\sin[\pi(3\hat{x} - \frac{v}{c}\hat{t} - \frac{\pi}{\gamma}\log(2\cosh(\gamma(\hat{x} - \frac{v}{c}\hat{t})))]$$

Computational experiment performed by Evan J.Reed, Marin Soljacic and John D.Joannopoulos.

Shock Wave

A type of propagation of disturbance

Carries energy through a medium

Shock Wave Model

$$\epsilon(\hat{x} = \frac{x}{a}, \hat{t} = \frac{ct}{a}) = 7 + 6\sin[\pi(3\hat{x} - \frac{v}{c}\hat{t} - \frac{\pi}{\gamma}\log(2\cosh(\gamma(\hat{x} - \frac{v}{c}\hat{t})))]$$

Pirsa: 10080005 Page 202/896

Computational experiment performed by Evan J.Reed, Marin Soljacic and John D.Joannopoulos.

Shock Wave

A type of propagation of disturbance

Carries energy through a medium

Shock Wave Model

$$\epsilon(\hat{x} = \frac{x}{a}, \hat{t} = \frac{ct}{a}) = 7 + 6\sin[\pi(3\hat{x} - \frac{v}{c}\hat{t} - \frac{\pi}{\gamma}\log(2\cosh(\gamma(\hat{x} - \frac{v}{c}\hat{t})))]$$

Computational experiment performed by Evan J.Reed, Marin Soljacic and John D.Joannopoulos.

Shock Wave

A type of propagation of disturbance

Carries energy through a medium

Shock Wave Model

$$\epsilon(\hat{x} = \frac{x}{a}, \hat{t} = \frac{ct}{a}) = 7 + 6\sin[\pi(3\hat{x} - \frac{v}{c}\hat{t} - \frac{\pi}{\gamma}\log(2\cosh(\gamma(\hat{x} - \frac{v}{c}\hat{t})))]$$

Pirsa: 10080005 Page 204/896

Computational experiment performed by Evan J.Reed, Marin Soljacic and John D.Joannopoulos.

Shock Wave

A type of propagation of disturbance

Carries energy through a medium

Shock Wave Model

$$\epsilon(\hat{x} = \frac{x}{a}, \hat{t} = \frac{ct}{a}) = 7 + 6\sin[\pi(3\hat{x} - \frac{v}{c}\hat{t} - \frac{\pi}{\gamma}\log(2\cosh(\gamma(\hat{x} - \frac{v}{c}\hat{t})))]$$

Computational experiment performed by Evan J.Reed, Marin Soljacic and John D.Joannopoulos.

Shock Wave

A type of propagation of disturbance

Carries energy through a medium

Shock Wave Model

$$\epsilon(\hat{x} = \frac{x}{a}, \hat{t} = \frac{ct}{a}) = 7 + 6\sin[\pi(3\hat{x} - \frac{v}{c}\hat{t} - \frac{\pi}{\gamma}\log(2\cosh(\gamma(\hat{x} - \frac{v}{c}\hat{t})))]$$

Computational experiment performed by Evan J.Reed, Marin Soljacic and John D.Joannopoulos.

Shock Wave

A type of propagation of disturbance

Carries energy through a medium

Shock Wave Model

$$\epsilon(\hat{x} = \frac{x}{a}, \hat{t} = \frac{ct}{a}) = 7 + 6\sin[\pi(3\hat{x} - \frac{v}{c}\hat{t} - \frac{\pi}{\gamma}\log(2\cosh(\gamma(\hat{x} - \frac{v}{c}\hat{t})))]$$

Computational experiment performed by Evan J.Reed, Marin Soljacic and John D.Joannopoulos.

Shock Wave

A type of propagation of disturbance

Carries energy through a medium

Shock Wave Model

$$\epsilon(\hat{x} = \frac{x}{a}, \hat{t} = \frac{ct}{a}) = 7 + 6\sin[\pi(3\hat{x} - \frac{v}{c}\hat{t} - \frac{\pi}{\gamma}\log(2\cosh(\gamma(\hat{x} - \frac{v}{c}\hat{t})))]$$

Computational experiment performed by Evan J.Reed, Marin Soljacic and John D.Joannopoulos.

Shock Wave

A type of propagation of disturbance

Carries energy through a medium

Shock Wave Model

$$\epsilon(\hat{x} = \frac{x}{a}, \hat{t} = \frac{ct}{a}) = 7 + 6\sin[\pi(3\hat{x} - \frac{v}{c}\hat{t} - \frac{\pi}{\gamma}\log(2\cosh(\gamma(\hat{x} - \frac{v}{c}\hat{t})))]$$

Pirsa: 10080005 Page 209/896

Computational experiment performed by Evan J.Reed, Marin Soljacic and John D.Joannopoulos.

Shock Wave

A type of propagation of disturbance

Carries energy through a medium

Shock Wave Model

$$\epsilon(\hat{x} = \frac{x}{a}, \hat{t} = \frac{ct}{a}) = 7 + 6\sin[\pi(3\hat{x} - \frac{v}{c}\hat{t} - \frac{\pi}{\gamma}\log(2\cosh(\gamma(\hat{x} - \frac{v}{c}\hat{t})))]$$

Pirsa: 10080005 Page 210/896

Computational experiment performed by Evan J.Reed, Marin Soljacic and John D.Joannopoulos.

Shock Wave

A type of propagation of disturbance

Carries energy through a medium

Shock Wave Model

$$\epsilon(\hat{x} = \frac{x}{a}, \hat{t} = \frac{ct}{a}) = 7 + 6\sin[\pi(3\hat{x} - \frac{v}{c}\hat{t} - \frac{\pi}{\gamma}\log(2\cosh(\gamma(\hat{x} - \frac{v}{c}\hat{t})))]$$

Computational experiment performed by Evan J.Reed, Marin Soljacic and John D.Joannopoulos.

Shock Wave

A type of propagation of disturbance

Carries energy through a medium

Shock Wave Model

$$\epsilon(\hat{x} = \frac{x}{a}, \hat{t} = \frac{ct}{a}) = 7 + 6\sin[\pi(3\hat{x} - \frac{v}{c}\hat{t} - \frac{\pi}{\gamma}\log(2\cosh(\gamma(\hat{x} - \frac{v}{c}\hat{t})))]$$

Pirsa: 10080005 Page 212/896

Computational experiment performed by Evan J.Reed, Marin Soljacic and John D.Joannopoulos.

Shock Wave

A type of propagation of disturbance

Carries energy through a medium

Shock Wave Model

$$\epsilon(\hat{x} = \frac{x}{a}, \hat{t} = \frac{ct}{a}) = 7 + 6\sin[\pi(3\hat{x} - \frac{v}{c}\hat{t} - \frac{\pi}{\gamma}\log(2\cosh(\gamma(\hat{x} - \frac{v}{c}\hat{t})))]$$

Computational experiment performed by Evan J.Reed, Marin Soljacic and John D.Joannopoulos.

Shock Wave

A type of propagation of disturbance

Carries energy through a medium

Shock Wave Model

$$\epsilon(\hat{x} = \frac{x}{a}, \hat{t} = \frac{ct}{a}) = 7 + 6\sin[\pi(3\hat{x} - \frac{v}{c}\hat{t} - \frac{\pi}{\gamma}\log(2\cosh(\gamma(\hat{x} - \frac{v}{c}\hat{t})))]$$

Pirsa: 10080005 Page 214/896

Computational experiment performed by Evan J.Reed, Marin Soljacic and John D.Joannopoulos.

Shock Wave

A type of propagation of disturbance

Carries energy through a medium

Shock Wave Model

$$\epsilon(\hat{x} = \frac{x}{a}, \hat{t} = \frac{ct}{a}) = 7 + 6\sin[\pi(3\hat{x} - \frac{v}{c}\hat{t} - \frac{\pi}{\gamma}\log(2\cosh(\gamma(\hat{x} - \frac{v}{c}\hat{t})))]$$

Pirsa: 10080005 Page 215/896

Computational experiment performed by Evan J.Reed, Marin Soljacic and John D.Joannopoulos.

Shock Wave

A type of propagation of disturbance

Carries energy through a medium

Shock Wave Model

$$\epsilon(\hat{x} = \frac{x}{a}, \hat{t} = \frac{ct}{a}) = 7 + 6\sin[\pi(3\hat{x} - \frac{v}{c}\hat{t} - \frac{\pi}{\gamma}\log(2\cosh(\gamma(\hat{x} - \frac{v}{c}\hat{t})))]$$

Computational experiment performed by Evan J.Reed, Marin Soljacic and John D.Joannopoulos.

Shock Wave

A type of propagation of disturbance

Carries energy through a medium

Shock Wave Model

$$\epsilon(\hat{x} = \frac{x}{a}, \hat{t} = \frac{ct}{a}) = 7 + 6\sin[\pi(3\hat{x} - \frac{v}{c}\hat{t} - \frac{\pi}{\gamma}\log(2\cosh(\gamma(\hat{x} - \frac{v}{c}\hat{t})))]$$

Computational experiment performed by Evan J.Reed, Marin Soljacic and John D.Joannopoulos.

Shock Wave

A type of propagation of disturbance

Carries energy through a medium

Shock Wave Model

$$\epsilon(\hat{x} = \frac{x}{a}, \hat{t} = \frac{ct}{a}) = 7 + 6\sin[\pi(3\hat{x} - \frac{v}{c}\hat{t} - \frac{\pi}{\gamma}\log(2\cosh(\gamma(\hat{x} - \frac{v}{c}\hat{t})))]$$

Computational experiment performed by Evan J.Reed, Marin Soljacic and John D.Joannopoulos.

Shock Wave

A type of propagation of disturbance

Carries energy through a medium

Shock Wave Model

$$\epsilon(\hat{x} = \frac{x}{a}, \hat{t} = \frac{ct}{a}) = 7 + 6\sin[\pi(3\hat{x} - \frac{v}{c}\hat{t} - \frac{\pi}{\gamma}\log(2\cosh(\gamma(\hat{x} - \frac{v}{c}\hat{t})))]$$

Frequency - Position

Frequncy Shift

Frequency of light is shifted to the top of the bandgap.

The amount of frequency shift depends on the size of the bandgap of the pre-shocked crystal.

Frequency – Position

Frequncy Shift

Frequency of light is shifted to the top of the bandgap.

The amount of frequency shift depends on the size of the bandgap of the pre-shocked crystal.

Frequency – Position

Frequncy Shift

Frequency of light is shifted to the top of the bandgap.

The amount of frequency shift depends on the size of the bandgap of the pre-shocked crystal.

Pirsa: 10080005 Page 222/896

Frequency – Position

Frequncy Shift

Frequency of light is shifted to the top of the bandgap.

The amount of frequency shift depends on the size of the bandgap of the pre-shocked crystal.

Pirsa: 10080005 Page 223/896

Frequency – Position

Frequncy Shift

Frequency of light is shifted to the top of the bandgap.

The amount of frequency shift depends on the size of the bandgap of the pre-shocked crystal.

Pirsa: 10080005 Page 224/896

Frequency – Position

Frequncy Shift

Frequency of light is shifted to the top of the bandgap.

The amount of frequency shift depends on the size of the bandgap of the pre-shocked crystal.

Pirsa: 10080005 Page 225/896

Frequency – Position

Frequncy Shift

Frequency of light is shifted to the top of the bandgap.

The amount of frequency shift depends on the size of the bandgap of the pre-shocked crystal.

Frequency – Position

Frequncy Shift

Frequency of light is shifted to the top of the bandgap.

The amount of frequency shift depends on the size of the bandgap of the pre-shocked crystal.

Frequency – Position

Frequncy Shift

Frequency of light is shifted to the top of the bandgap.

The amount of frequency shift depends on the size of the bandgap of the pre-shocked crystal.

Pirsa: 10080005 Page 228/896

Frequency – Position

Frequncy Shift

Frequency of light is shifted to the top of the bandgap.

The amount of frequency shift depends on the size of the bandgap of the pre-shocked crystal.

Frequency – Position

Frequncy Shift

Frequency of light is shifted to the top of the bandgap.

The amount of frequency shift depends on the size of the bandgap of the pre-shocked crystal.

Pirsa: 10080005 Page 230/896

Frequency – Position

Frequncy Shift

Frequency of light is shifted to the top of the bandgap.

The amount of frequency shift depends on the size of the bandgap of the pre-shocked crystal.

Pirsa: 10080005 Page 231/896

Frequency – Position

Frequncy Shift

Frequency of light is shifted to the top of the bandgap.

The amount of frequency shift depends on the size of the bandgap of the pre-shocked crystal.

Pirsa: 10080005 Page 232/896

Frequency – Position

Frequncy Shift

Frequency of light is shifted to the top of the bandgap.

The amount of frequency shift depends on the size of the bandgap of the pre-shocked crystal.

Pirsa: 10080005 Page 233/896

Frequency – Position

Frequncy Shift

Frequency of light is shifted to the top of the bandgap.

The amount of frequency shift depends on the size of the bandgap of the pre-shocked crystal.

Pirsa: 10080005 Page 234/896

Frequency – Position

Frequncy Shift

Frequency of light is shifted to the top of the bandgap.

The amount of frequency shift depends on the size of the bandgap of the pre-shocked crystal.

Pirsa: 10080005 Page 235/896

Frequency – Position

Frequncy Shift

Frequency of light is shifted to the top of the bandgap.

The amount of frequency shift depends on the size of the bandgap of the pre-shocked crystal.

Pirsa: 10080005 Page 236/896

Frequency - Position

Frequncy Shift

Frequency of light is shifted to the top of the bandgap.

The amount of frequency shift depends on the size of the bandgap of the pre-shocked crystal.

Pirsa: 10080005 Page 237/896

Frequency – Position

Frequncy Shift

Frequency of light is shifted to the top of the bandgap.

The amount of frequency shift depends on the size of the bandgap of the pre-shocked crystal.

Frequency – Position

Frequncy Shift

Frequency of light is shifted to the top of the bandgap.

The amount of frequency shift depends on the size of the bandgap of the pre-shocked crystal.

Pirsa: 10080005 Page 239/896

Frequency – Position

Frequncy Shift

Frequency of light is shifted to the top of the bandgap.

The amount of frequency shift depends on the size of the bandgap of the pre-shocked crystal.

Pirsa: 10080005 Page 240/896

Frequency – Position

Frequncy Shift

Frequency of light is shifted to the top of the bandgap.

The amount of frequency shift depends on the size of the bandgap of the pre-shocked crystal.

Pirsa: 10080005 Page 241/896

Frequency – Position

Frequncy Shift

Frequency of light is shifted to the top of the bandgap.

The amount of frequency shift depends on the size of the bandgap of the pre-shocked crystal.

Pirsa: 10080005 Page 242/896

Frequency - Position

Frequncy Shift

Frequency of light is shifted to the top of the bandgap.

The amount of frequency shift depends on the size of the bandgap of the pre-shocked crystal.

Frequency – Position

Frequncy Shift

Frequency of light is shifted to the top of the bandgap.

The amount of frequency shift depends on the size of the bandgap of the pre-shocked crystal.

Pirsa: 10080005 Page 244/896

Frequency – Position

Frequncy Shift

Frequency of light is shifted to the top of the bandgap.

The amount of frequency shift depends on the size of the bandgap of the pre-shocked crystal.

Pirsa: 10080005 Page 245/896

Frequency – Position

Frequncy Shift

Frequency of light is shifted to the top of the bandgap.

The amount of frequency shift depends on the size of the bandgap of the pre-shocked crystal.

Frequency - Position

Frequncy Shift

Frequency of light is shifted to the top of the bandgap.

The amount of frequency shift depends on the size of the bandgap of the pre-shocked crystal.

Pirsa: 10080005 Page 247/896

Frequency – Position

Frequncy Shift

Frequency of light is shifted to the top of the bandgap.

The amount of frequency shift depends on the size of the bandgap of the pre-shocked crystal.

Frequency – Position

Frequncy Shift

Frequency of light is shifted to the top of the bandgap.

The amount of frequency shift depends on the size of the bandgap of the pre-shocked crystal.

Pirsa: 10080005 Page 249/896

Frequency - Position

Localization of Light

Light is trapped in a localized state at the shock front in the overlapping bandgap.

In this period, frequency is shifted.

Frequency – Position

Localization of Light

Light is trapped in a localized state at the shock front in the overlapping bandgap.

In this period, frequency is shifted.

Frequency - Position

Localization of Light

Light is trapped in a localized state at the shock front in the overlapping bandgap.

In this period, frequency is shifted.

Frequency - Position

Localization of Light

Light is trapped in a localized state at the shock front in the overlapping bandgap.

In this period, frequency is shifted.

Frequency - Position

Localization of Light

Light is trapped in a localized state at the shock front in the overlapping bandgap.

In this period, frequency is shifted.

Frequency - Position

Localization of Light

Light is trapped in a localized state at the shock front in the overlapping bandgap.

In this period, frequency is shifted.

Frequency - Position

Localization of Light

Light is trapped in a localized state at the shock front in the overlapping bandgap.

In this period, frequency is shifted.

Frequency - Position

Localization of Light

Light is trapped in a localized state at the shock front in the overlapping bandgap.

In this period, frequency is shifted.

Frequency - Position

Localization of Light

Light is trapped in a localized state at the shock front in the overlapping bandgap.

In this period, frequency is shifted.

Frequency - Position

Localization of Light

Light is trapped in a localized state at the shock front in the overlapping bandgap.

In this period, frequency is shifted.

Frequency – Position

Bandwidth Narrowing

The slower of the shock velocities are, the more the bandwidth is narrowed.

Unlike bandwidth broading, bandwidth narrowing have not been obtained in non-linear systems.

Frequency – Position

Bandwidth Narrowing

The slower of the shock velocities are, the more the bandwidth is narrowed.

Unlike bandwidth broading, bandwidth narrowing have not been obtained in non-linear systems.

Frequency - Position

Bandwidth Narrowing

The slower of the shock velocities are, the more the bandwidth is narrowed.

Unlike bandwidth broading, bandwidth narrowing have not been obtained in non-linear systems.

Frequency – Position

Bandwidth Narrowing

The slower of the shock velocities are, the more the bandwidth is narrowed.

Unlike bandwidth broading, bandwidth narrowing have not been obtained in non-linear systems.

Frequency – Position

Bandwidth Narrowing

The slower of the shock velocities are, the more the bandwidth is narrowed.

Unlike bandwidth broading, bandwidth narrowing have not been obtained in non-linear systems.

Frequency - Position

Bandwidth Narrowing

The slower of the shock velocities are, the more the bandwidth is narrowed.

Unlike bandwidth broading, bandwidth narrowing have not been obtained in non-linear systems.

Frequency - Position

Bandwidth Narrowing

The slower of the shock velocities are, the more the bandwidth is narrowed.

Unlike bandwidth broading, bandwidth narrowing have not been obtained in non-linear systems.

Frequency – Position

Bandwidth Narrowing

The slower of the shock velocities are, the more the bandwidth is narrowed.

Unlike bandwidth broading, bandwidth narrowing have not been obtained in non-linear systems.

Frequency - Position

Bandwidth Narrowing

The slower of the shock velocities are, the more the bandwidth is narrowed.

Unlike bandwidth broading, bandwidth narrowing have not been obtained in non-linear systems.

Frequency - Position

Bandwidth Narrowing

The slower of the shock velocities are, the more the bandwidth is narrowed.

Unlike bandwidth broading, bandwidth narrowing have not been obtained in non-linear systems.

Frequency - Position

Bandwidth Narrowing

The slower of the shock velocities are, the more the bandwidth is narrowed.

Unlike bandwidth broading, bandwidth narrowing have not been obtained in non-linear systems.

Frequency – Position

Bandwidth Narrowing

The slower of the shock velocities are, the more the bandwidth is narrowed.

Unlike bandwidth broading, bandwidth narrowing have not been obtained in non-linear systems.

Frequency – Position

Bandwidth Narrowing

The slower of the shock velocities are, the more the bandwidth is narrowed.

Unlike bandwidth broading, bandwidth narrowing have not been obtained in non-linear systems.

Frequency - Position

Bandwidth Narrowing

The slower of the shock velocities are, the more the bandwidth is narrowed.

Unlike bandwidth broading, bandwidth narrowing have not been obtained in non-linear systems.

Frequency - Position

Bandwidth Narrowing

The slower of the shock velocities are, the more the bandwidth is narrowed.

Unlike bandwidth broading, bandwidth narrowing have not been obtained in non-linear systems.

Frequency – Position

Bandwidth Narrowing

The slower of the shock velocities are, the more the bandwidth is narrowed.

Unlike bandwidth broading, bandwidth narrowing have not been obtained in non-linear systems.

Frequency – Position

Bandwidth Narrowing

The slower of the shock velocities are, the more the bandwidth is narrowed.

Unlike bandwidth broading, bandwidth narrowing have not been obtained in non-linear systems.

Frequency - Position

Bandwidth Narrowing

The slower of the shock velocities are, the more the bandwidth is narrowed.

Unlike bandwidth broading, bandwidth narrowing have not been obtained in non-linear systems.

Frequency – Position

Bandwidth Narrowing

The slower of the shock velocities are, the more the bandwidth is narrowed.

Unlike bandwidth broading, bandwidth narrowing have not been obtained in non-linear systems.

Frequency – Position

Bandwidth Narrowing

The slower of the shock velocities are, the more the bandwidth is narrowed.

Unlike bandwidth broading, bandwidth narrowing have not been obtained in non-linear systems.

Frequency - Position

Bandwidth Narrowing

The slower of the shock velocities are, the more the bandwidth is narrowed.

Unlike bandwidth broading, bandwidth narrowing have not been obtained in non-linear systems.

Frequency – Position

Bandwidth Narrowing

The slower of the shock velocities are, the more the bandwidth is narrowed.

Unlike bandwidth broading, bandwidth narrowing have not been obtained in non-linear systems.

Frequency - Position

Bandwidth Narrowing

The slower of the shock velocities are, the more the bandwidth is narrowed.

Unlike bandwidth broading, bandwidth narrowing have not been obtained in non-linear systems.

Frequency - Position

Bandwidth Narrowing

The slower of the shock velocities are, the more the bandwidth is narrowed.

Unlike bandwidth broading, bandwidth narrowing have not been obtained in non-linear systems.

Frequency – Position

Bandwidth Narrowing

The slower of the shock velocities are, the more the bandwidth is narrowed.

Unlike bandwidth broading, bandwidth narrowing have not been obtained in non-linear systems.

Frequency - Position

Bandwidth Narrowing

The slower of the shock velocities are, the more the bandwidth is narrowed.

Unlike bandwidth broading, bandwidth narrowing have not been obtained in non-linear systems.

Colorful Nature Creative Human Reference Acknowledgement

Concept of Photonic Crystal Design Your Photonic Crystal Unexpected New Phenomena

Possible Properties

No photon absorbed or re-emitted

Colorful Nature Creative Human Reference Acknowledgement

Concept of Photonic Crystal Design Your Photonic Crystal Unexpected New Phenomena

Possible Properties

No photon absorbed or re-emitted

No measurement on the photons

Pirsa: 10080005 Page 287/896

Possible Properties

No photon absorbed or re-emitted

No measurement on the photons

The state of the photon may be changed slightly, preserving a quantum entanglement with another photon.

Pirsa: 10080005 Page 288/896

No photon absorbed or re-emitted

No measurement on the photons

The state of the photon may be changed slightly, preserving a quantum entanglement with another photon.

Pirsa: 10080005 Page 289/896

No photon absorbed or re-emitted

No measurement on the photons

The state of the photon may be changed slightly, preserving a quantum entanglement with another photon.

Pirsa: 10080005 Page 290/896

No photon absorbed or re-emitted

No measurement on the photons

The state of the photon may be changed slightly, preserving a quantum entanglement with another photon.

Pirsa: 10080005 Page 291/896

No photon absorbed or re-emitted

No measurement on the photons

The state of the photon may be changed slightly, preserving a quantum entanglement with another photon.

Pirsa: 10080005 Page 292/896

No photon absorbed or re-emitted

No measurement on the photons

The state of the photon may be changed slightly, preserving a quantum entanglement with another photon.

Pirsa: 10080005

No photon absorbed or re-emitted

No measurement on the photons

The state of the photon may be changed slightly, preserving a quantum entanglement with another photon.

Pirsa: 10080005 Page 294/896

No photon absorbed or re-emitted

No measurement on the photons

The state of the photon may be changed slightly, preserving a quantum entanglement with another photon.

Pirsa: 10080005 Page 295/896

Colorful Nature Creative Human Reference Acknowledgement

Reference

[1]http://en.wikipedia.org/wiki/Photonic_crystal

[2]http://en.wikipedia.org/wiki/Opal

[3] Solid State Communications, Vol.102, No.2-3, pp.165-173, 1997

[4] The color of shock waves in photonic crystals

Pirsa: 10080005 Page 296/896

Outline

- What We See
- Damping and Energy Transfer
- Douglas Fir

Outline

- What We See
- Damping and Energy Transfer
- Douglas Fir

The Wind Does Not Break a Tree that Bends

Complex Movement

Wind or No Wind

Snapping Back

Types of Damping

Aerodynamic

Viscous

Sharing

Structural Damping

The Douglas Fir

The Douglas Fir

The Douglas Fir

- Eingenfrequencies of branches
 - Matching eignfrequencies
 - Multiple resonance damping

Frequency

- Eingenfrequencies of branches
 - Matching eignfrequencies
 - Multiple resonance damping

Frequency

- Eingenfrequencies of branches
 - Matching eignfrequencies
 - Multiple resonance damping

Frequency

- Eingenfrequencies of branches
 - Matching eignfrequencies
 - Multiple resonance damping

Frequency

- Eingenfrequencies of branches
 - Matching eignfrequencies
 - Multiple resonance damping

Frequency

- Eingenfrequencies of branches
 - Matching eignfrequencies
 - Multiple resonance damping

Frequency

- Eingenfrequencies of branches
 - Matching eignfrequencies
 - Multiple resonance damping

Frequency

- Eingenfrequencies of branches
 - Matching eignfrequencies
 - Multiple resonance damping

Frequency

- Eingenfrequencies of branches
 - Matching eignfrequencies
 - Multiple resonance damping

Frequency

- Eingenfrequencies of branches
 - Matching eignfrequencies
 - Multiple resonance damping

Frequency

- Eingenfrequencies of branches
 - Matching eignfrequencies
 - Multiple resonance damping

Frequency

- Eingenfrequencies of branches
 - Matching eignfrequencies
 - Multiple resonance damping

Frequency

- Eingenfrequencies of branches
 - Matching eignfrequencies
 - Multiple resonance damping

Frequency

- Eingenfrequencies of branches
 - Matching eignfrequencies
 - Multiple resonance damping

Frequency

- Eingenfrequencies of branches
 - Matching eignfrequencies
 - Multiple resonance damping

Frequency

- Eingenfrequencies of branches
 - Matching eignfrequencies
 - Multiple resonance damping

Frequency

Branch Statistics

Multiple resonance damping or how do trees escape dangerously large oscillations

Concluding Remarks

Optimizes damping

Reduces danger

Further experiments

End of slide show, click to exit.

Pires: 1008/005

Spatial Hearing and Sound Localization

Lauren Greenspan Perimeter Institute

1

- Hearing in 3-D
- Filtering out the "noise"
- Ears favor frequencies of human speech
 - Psychophysics scientific study of perceptual system

- Hearing in 3-D
- Filtering out the "noise"
- Ears favor frequencies of human speech
 - Psychophysics scientific study of perceptual system

- Hearing in 3-D
- · Filtering out the "noise"
- Ears favor frequencies of human speech
 - Psychophysics scientific study of perceptual system

- Hearing in 3-D
- · Filtering out the "noise"
- Ears favor frequencies of human speech
 - Psychophysics scientific study of perceptual system

- Hearing in 3-D
- Filtering out the "noise"
- Ears favor frequencies of human speech
 - Psychophysics scientific study of perceptual system

- Hearing in 3-D
- · Filtering out the "noise"
- Ears favor frequencies of human speech
 - Psychophysics scientific study of perceptual system

- Hearing in 3-D
- Filtering out the "noise"
- Ears favor frequencies of human speech
 - Psychophysics scientific study of perceptual system

- Hearing in 3-D
- Filtering out the "noise"
- Ears favor frequencies of human speech
 - Psychophysics scientific study of perceptual system

- Hearing in 3-D
- · Filtering out the "noise"
- Ears favor frequencies of human speech
 - Psychophysics scientific study of perceptual system

- Hearing in 3-D
- Filtering out the "noise"
- Ears favor frequencies of human speech
 - Psychophysics scientific study of perceptual system

- Hearing in 3-D
- Filtering out the "noise"
- Ears favor frequencies of human speech
 - Psychophysics scientific study of perceptual system

- Hearing in 3-D
- · Filtering out the "noise"
- Ears favor frequencies of human speech
 - Psychophysics scientific study of perceptual system

- Hearing in 3-D
- · Filtering out the "noise"
- Ears favor frequencies of human speech
 - Psychophysics scientific study of perceptual system

- Hearing in 3-D
- Filtering out the "noise"
- Ears favor frequencies of human speech
 - Psychophysics scientific study of perceptual system

- Hearing in 3-D
- · Filtering out the "noise"
- Ears favor frequencies of human speech
 - Psychophysics scientific study of perceptual system

- Hearing in 3-D
- Filtering out the "noise"
- Ears favor frequencies of human speech
 - Psychophysics scientific study of perceptual system

- Hearing in 3-D
- · Filtering out the "noise"
- Ears favor frequencies of human speech
 - Psychophysics scientific study of perceptual system

- Sound Localization Cues
 - Interaural Time Difference (ITD)
 - Interaural Level Differences (ILD)
 - Wave interference
 "Spatial Hearing and Understanding Speech in Complex Environments" T. Neher, T. Behrens, D.L. Beck
- Head Related Transfer Functions (HRTFs)
 - Spectral filtering of the head and torso
- The Pinna

Spatial Hearing: The Psychophysics of Human Sound Localization J. Lauert

- Sound Localization Cues
 - Interaural Time Difference (ITD)
 - Interaural Level Differences (ILD)
 - Wave interference
 "Spatial Hearing and Understanding Speech in Complex Environments" T. Neher, T. Behrens, D.L. Beck
- Head Related Transfer Functions (HRTFs)
 - Spectral filtering of the head and torso
- The Pinna

Spatial Hearing: The Psychophysics of Human Sound Localization J. Lauert

- Sound Localization Cues
 - Interaural Time Difference (ITD)
 - Interaural Level Differences (ILD)
 - Wave interference "Spatial Hearing and Understanding Speech in Complex Environments" T. Neher, T. Behrens, D.L. Beck
- Head Related Transfer Functions (HRTFs)
 - Spectral filtering of the head and torso
- The Pinna

Spatial Hearing: The Psychophysics of Human Sound Localization J. Lauert

- Sound Localization Cues
 - Interaural Time Difference (ITD)
 - Interaural Level Differences (ILD)
 - Wave interference
 "Spatial Hearing and Understanding Speech in Complex Environments" T. Neher, T. Behrens, D.L. Beck
- Head Related Transfer Functions (HRTFs)
 - Spectral filtering of the head and torso
- The Pinna

Spatial Hearing: The Psychophysics of Human Sound Localization J. Lauert

- Sound Localization Cues
 - Interaural Time Difference (ITD)
 - Interaural Level Differences (ILD)
 - Wave interference
 "Spatial Hearing and Understanding Speech in Complex Environments" T. Neher, T. Behrens, D.L. Beck
- Head Related Transfer Functions (HRTFs)
 - Spectral filtering of the head and torso
- The Pinna

Spatial Hearing: The Psychophysics of Human Sound Localization J. Lauert

- Sound Localization Cues
 - Interaural Time Difference (ITD)
 - Interaural Level Differences (ILD)
 - Wave interference
 "Spatial Hearing and Understanding Speech in Complex Environments" T. Neher, T. Behrens, D.L. Beck
- Head Related Transfer Functions (HRTFs)
 - Spectral filtering of the head and torso
- The Pinna

Spatial Hearing: The Psychophysics of Human Sound Localization J. Lauert

- Sound Localization Cues
 - Interaural Time Difference (ITD)
 - Interaural Level Differences (ILD)
 - Wave interference
 "Spatial Hearing and Understanding Speech in Complex Environments" T. Neher, T. Behrens, D.L. Beck
- Head Related Transfer Functions (HRTFs)
 - Spectral filtering of the head and torso
- The Pinna

Spatial Hearing: The Psychophysics of Human Sound Localization J. Lauert

- Sound Localization Cues
 - Interaural Time Difference (ITD)
 - Interaural Level Differences (ILD)
 - Wave interference "Spatial Hearing and Understanding Speech in Complex Environments" T. Neher, T. Behrens, D.L. Beck
- Head Related Transfer Functions (HRTFs)
 - Spectral filtering of the head and torso
- The Pinna

Spatial Hearing: The Psychophysics of Human Sound Localization J. Lauert

- Sound Localization Cues
 - Interaural Time Difference (ITD)
 - Interaural Level Differences (ILD)
 - Wave interference
 "Spatial Hearing and Understanding Speech in Complex Environments" T. Neher, T. Behrens, D.L. Beck
- Head Related Transfer Functions (HRTFs)
 - Spectral filtering of the head and torso
- The Pinna

Spatial Hearing: The Psychophysics of Human Sound Localization J. Lauert

- Sound Localization Cues
 - Interaural Time Difference (ITD)
 - Interaural Level Differences (ILD)
 - Wave interference "Spatial Hearing and Understanding Speech in Complex Environments" T. Neher, T. Behrens, D.L. Beck
- Head Related Transfer Functions (HRTFs)
 - Spectral filtering of the head and torso
- The Pinna

Spatial Hearing: The Psychophysics of Human Sound Localization J. Lauert

- Sound Localization Cues
 - Interaural Time Difference (ITD)
 - Interaural Level Differences (ILD)
 - Wave interference
 "Spatial Hearing and Understanding Speech in Complex Environments" T. Neher, T. Behrens, D.L. Beck
- Head Related Transfer Functions (HRTFs)
 - Spectral filtering of the head and torso
- The Pinna

Spatial Hearing: The Psychophysics of Human Sound Localization J. Lauert

- Sound Localization Cues
 - Interaural Time Difference (ITD)
 - Interaural Level Differences (ILD)
 - Wave interference
 "Spatial Hearing and Understanding Speech in Complex Environments" T. Neher, T. Behrens, D.L. Beck
- Head Related Transfer Functions (HRTFs)
 - Spectral filtering of the head and torso
- The Pinna

Spatial Hearing: The Psychophysics of Human Sound Localization J. Lauert

- Sound Localization Cues
 - Interaural Time Difference (ITD)
 - Interaural Level Differences (ILD)
 - Wave interference "Spatial Hearing and Understanding Speech in Complex Environments" T. Neher, T. Behrens, D.L. Beck
- Head Related Transfer Functions (HRTFs)
 - Spectral filtering of the head and torso
- The Pinna

Spatial Hearing: The Psychophysics of Human Sound Localization J. Lauert

- Sound Localization Cues
 - Interaural Time Difference (ITD)
 - Interaural Level Differences (ILD)
 - Wave interference "Spatial Hearing and Understanding Speech in Complex Environments" T. Neher, T. Behrens, D.L. Beck
- Head Related Transfer Functions (HRTFs)
 - Spectral filtering of the head and torso
- The Pinna

Spatial Hearing: The Psychophysics of Human Sound Localization J. Lauert

- Sound Localization Cues
 - Interaural Time Difference (ITD)
 - Interaural Level Differences (ILD)
 - Wave interference
 "Spatial Hearing and Understanding Speech in Complex Environments" T. Neher, T. Behrens, D.L. Beck
- Head Related Transfer Functions (HRTFs)
 - Spectral filtering of the head and torso
- The Pinna

Spatial Hearing: The Psychophysics of Human Sound Localization J. Lauert

- Sound Localization Cues
 - Interaural Time Difference (ITD)
 - Interaural Level Differences (ILD)
 - Wave interference
 "Spatial Hearing and Understanding Speech in Complex Environments" T. Neher, T. Behrens, D.L. Beck
- Head Related Transfer Functions (HRTFs)
 - Spectral filtering of the head and torso
- The Pinna

Spatial Hearing: The Psychophysics of Human Sound Localization J. Lauert

- Sound Localization Cues
 - Interaural Time Difference (ITD)
 - Interaural Level Differences (ILD)
 - Wave interference
 "Spatial Hearing and Understanding Speech in Complex Environments" T. Neher, T. Behrens, D.L. Beck
- Head Related Transfer Functions (HRTFs)
 - Spectral filtering of the head and torso
- The Pinna

Spatial Hearing: The Psychophysics of Human Sound Localization J. Lauert

- Sound Localization Cues
 - Interaural Time Difference (ITD)
 - Interaural Level Differences (ILD)
 - Wave interference
 "Spatial Hearing and Understanding Speech in Complex Environments" T. Neher, T. Behrens, D.L. Beck
- Head Related Transfer Functions (HRTFs)
 - Spectral filtering of the head and torso
- The Pinna

Spatial Hearing: The Psychophysics of Human Sound Localization J. Lauert

- Sound Localization Cues
 - Interaural Time Difference (ITD)
 - Interaural Level Differences (ILD)
 - Wave interference
 "Spatial Hearing and Understanding Speech in Complex Environments" T. Neher, T. Behrens, D.L. Beck
- Head Related Transfer Functions (HRTFs)
 - Spectral filtering of the head and torso
- The Pinna

Spatial Hearing: The Psychophysics of Human Sound Localization J. Lauert

- Sound Localization Cues
 - Interaural Time Difference (ITD)
 - Interaural Level Differences (ILD)
 - Wave interference
 "Spatial Hearing and Understanding Speech in Complex Environments" T. Neher, T. Behrens, D.L. Beck
- Head Related Transfer Functions (HRTFs)
 - Spectral filtering of the head and torso
- The Pinna

Spatial Hearing: The Psychophysics of Human Sound Localization J. Lauert

- Sound Localization Cues
 - Interaural Time Difference (ITD)
 - Interaural Level Differences (ILD)
 - Wave interference "Spatial Hearing and Understanding Speech in Complex Environments" T. Neher, T. Behrens, D.L. Beck
- Head Related Transfer Functions (HRTFs)
 - Spectral filtering of the head and torso
- The Pinna

Spatial Hearing: The Psychophysics of Human Sound Localization J. Lauert

- Sound Localization Cues
 - Interaural Time Difference (ITD)
 - Interaural Level Differences (ILD)
 - Wave interference
 "Spatial Hearing and Understanding Speech in Complex Environments" T. Neher, T. Behrens, D.L. Beck
- Head Related Transfer Functions (HRTFs)
 - Spectral filtering of the head and torso
- The Pinna

Spatial Hearing: The Psychophysics of Human Sound Localization J. Lauert

- Sound Localization Cues
 - Interaural Time Difference (ITD)
 - Interaural Level Differences (ILD)
 - Wave interference
 "Spatial Hearing and Understanding Speech in Complex Environments" T. Neher, T. Behrens, D.L. Beck
- Head Related Transfer Functions (HRTFs)
 - Spectral filtering of the head and torso
- The Pinna

Spatial Hearing: The Psychophysics of Human Sound Localization J. Lauert

- Sound Localization Cues
 - Interaural Time Difference (ITD)
 - Interaural Level Differences (ILD)
 - Wave interference
 "Spatial Hearing and Understanding Speech in Complex Environments" T. Neher, T. Behrens, D.L. Beck
- Head Related Transfer Functions (HRTFs)
 - Spectral filtering of the head and torso
- The Pinna

Spatial Hearing: The Psychophysics of Human Sound Localization J. Lauert

- Sound Localization Cues
 - Interaural Time Difference (ITD)
 - Interaural Level Differences (ILD)
 - Wave interference
 "Spatial Hearing and Understanding Speech in Complex Environments" T. Neher, T. Behrens, D.L. Beck
- Head Related Transfer Functions (HRTFs)
 - Spectral filtering of the head and torso
- The Pinna

Spatial Hearing: The Psychophysics of Human Sound Localization J. Lauert

- Sound Localization Cues
 - Interaural Time Difference (ITD)
 - Interaural Level Differences (ILD)
 - Wave interference "Spatial Hearing and Understanding Speech in Complex Environments" T. Neher, T. Behrens, D.L. Beck
- Head Related Transfer Functions (HRTFs)
 - Spectral filtering of the head and torso
- The Pinna

Spatial Hearing: The Psychophysics of Human Sound Localization J. Lauert

- Sound Localization Cues
 - Interaural Time Difference (ITD)
 - Interaural Level Differences (ILD)
 - Wave interference
 "Spatial Hearing and Understanding Speech in Complex Environments" T. Neher, T. Behrens, D.L. Beck
- Head Related Transfer Functions (HRTFs)
 - Spectral filtering of the head and torso
- The Pinna

Spatial Hearing: The Psychophysics of Human Sound Localization J. Lauert

- Sound Localization Cues
 - Interaural Time Difference (ITD)
 - Interaural Level Differences (ILD)
 - Wave interference
 "Spatial Hearing and Understanding Speech in Complex Environments" T. Neher, T. Behrens, D.L. Beck
- Head Related Transfer Functions (HRTFs)
 - Spectral filtering of the head and torso
- The Pinna

Spatial Hearing: The Psychophysics of Human Sound Localization J. Lauert

- Sound Localization Cues
 - Interaural Time Difference (ITD)
 - Interaural Level Differences (ILD)
 - Wave interference
 "Spatial Hearing and Understanding Speech in Complex Environments" T. Neher, T. Behrens, D.L. Beck
- Head Related Transfer Functions (HRTFs)
 - Spectral filtering of the head and torso
- The Pinna

Spatial Hearing: The Psychophysics of Human Sound Localization J. Lauert

- Sound Localization Cues
 - Interaural Time Difference (ITD)
 - Interaural Level Differences (ILD)
 - Wave interference
 "Spatial Hearing and Understanding Speech in Complex Environments" T. Neher, T. Behrens, D.L. Beck
- Head Related Transfer Functions (HRTFs)
 - Spectral filtering of the head and torso
- The Pinna

Spatial Hearing: The Psychophysics of Human Sound Localization J. Lauert

- Sound Localization Cues
 - Interaural Time Difference (ITD)
 - Interaural Level Differences (ILD)
 - Wave interference
 "Spatial Hearing and Understanding Speech in Complex Environments" T. Neher, T. Behrens, D.L. Beck
- Head Related Transfer Functions (HRTFs)
 - Spectral filtering of the head and torso
- The Pinna

Spatial Hearing: The Psychophysics of Human Sound Localization J. Lauert

- Sound Localization Cues
 - Interaural Time Difference (ITD)
 - Interaural Level Differences (ILD)
 - Wave interference
 "Spatial Hearing and Understanding Speech in Complex Environments" T. Neher, T. Behrens, D.L. Beck
- Head Related Transfer Functions (HRTFs)
 - Spectral filtering of the head and torso
- The Pinna

Spatial Hearing: The Psychophysics of Human Sound Localization J. Lauert

Outline

- Sound Localization Cues
 - Interaural Time Difference (ITD)
 - Interaural Level Differences (ILD)
 - Wave interference
 "Spatial Hearing and Understanding Speech in Complex Environments" T. Neher, T. Behrens, D.L. Beck
- Head Related Transfer Functions (HRTFs)
 - Spectral filtering of the head and torso
- The Pinna

Spatial Hearing: The Psychophysics of Human Sound Localization J. Lauert

Outline

- Sound Localization Cues
 - Interaural Time Difference (ITD)
 - Interaural Level Differences (ILD)
 - Wave interference
 "Spatial Hearing and Understanding Speech in Complex Environments" T. Neher, T. Behrens, D.L. Beck
- Head Related Transfer Functions (HRTFs)
 - Spectral filtering of the head and torso
- The Pinna

Spatial Hearing: The Psychophysics of Human Sound Localization J. Lauert

Coordinate System

Pirsa: 10080005

Page 435/896

www.tonmeister.ca

- Phase difference between the ears causes time delay
- Helps localize sound's origin
- Most useful for frequencies below 1500 Hz

www.diracdelta.co.uk

- Phase difference between the ears causes time delay
- Helps localize sound's origin
- Most useful for frequencies below 1500 Hz

www.diracdelta.co.uk

- Phase difference between the ears causes time delay
- Helps localize sound's origin
- Most useful for frequencies below 1500 Hz

www.diracdelta.co.uk

- Phase difference between the ears causes time delay
- Helps localize sound's origin
- Most useful for frequencies below 1500 Hz

www.diracdelta.co.uk

- Phase difference between the ears causes time delay
- Helps localize sound's origin
- Most useful for frequencies below 1500 Hz

www.diracdelta.co.uk

- Phase difference between the ears causes time delay
- Helps localize sound's origin
- Most useful for frequencies below 1500 Hz

www.diracdelta.co.uk

- Phase difference between the ears causes time delay
- Helps localize sound's origin
- Most useful for frequencies below 1500 Hz

www.diracdelta.co.uk

- Phase difference between the ears causes time delay
- Helps localize sound's origin
- Most useful for frequencies below 1500 Hz

www.diracdelta.co.uk

- Phase difference between the ears causes time delay
- Helps localize sound's origin
- Most useful for frequencies below 1500 Hz

www.diracdelta.co.uk

- Phase difference between the ears causes time delay
- Helps localize sound's origin
- Most useful for frequencies below 1500 Hz

www.diracdelta.co.uk

Interaural Level Difference (ILD)

- Negligible for frequencies below 1000 Hz
- Sound intensity "shadowed" by head

- Proposed by Lord Rayleigh in 1907
- Combines ITD's and ILD's to explain full spectrum sound localization for pure tones
- Cone of confusion
 - Resolved by head movements for pure tones

- Proposed by Lord Rayleigh in 1907
- Combines ITD's and ILD's to explain full spectrum sound localization for pure tones
- Cone of confusion
 - Resolved by head movements for pure tones

- Proposed by Lord Rayleigh in 1907
- Combines ITD's and ILD's to explain full spectrum sound localization for pure tones
- Cone of confusion
 - Resolved by head movements for pure tones

- Proposed by Lord Rayleigh in 1907
- Combines ITD's and ILD's to explain full spectrum sound localization for pure tones
- Cone of confusion
 - Resolved by head movements for pure tones

- Proposed by Lord Rayleigh in 1907
- Combines ITD's and ILD's to explain full spectrum sound localization for pure tones
- Cone of confusion
 - Resolved by head movements for pure tones

- Proposed by Lord Rayleigh in 1907
- Combines ITD's and ILD's to explain full spectrum sound localization for pure tones
- Cone of confusion
 - Resolved by head movements for pure tones

- Proposed by Lord Rayleigh in 1907
- Combines ITD's and ILD's to explain full spectrum sound localization for pure tones
- Cone of confusion
 - Resolved by head movements for pure tones

- Proposed by Lord Rayleigh in 1907
- Combines ITD's and ILD's to explain full spectrum sound localization for pure tones
- Cone of confusion
 - Resolved by head movements for pure tones

- Proposed by Lord Rayleigh in 1907
- Combines ITD's and ILD's to explain full spectrum sound localization for pure tones
- Cone of confusion
 - Resolved by head movements for pure tones

- Proposed by Lord Rayleigh in 1907
- Combines ITD's and ILD's to explain full spectrum sound localization for pure tones
- Cone of confusion
 - Resolved by head movements for pure tones

- Proposed by Lord Rayleigh in 1907
- Combines ITD's and ILD's to explain full spectrum sound localization for pure tones
- Cone of confusion
 - Resolved by head movements for pure tones

- Proposed by Lord Rayleigh in 1907
- Combines ITD's and ILD's to explain full spectrum sound localization for pure tones
- Cone of confusion
 - Resolved by head movements for pure tones

- Proposed by Lord Rayleigh in 1907
- Combines ITD's and ILD's to explain full spectrum sound localization for pure tones
- Cone of confusion
 - Resolved by head movements for pure tones

- Proposed by Lord Rayleigh in 1907
- Combines ITD's and ILD's to explain full spectrum sound localization for pure tones
- Cone of confusion
 - Resolved by head movements for pure tones

- Proposed by Lord Rayleigh in 1907
- Combines ITD's and ILD's to explain full spectrum sound localization for pure tones
- Cone of confusion
 - Resolved by head movements for pure tones

- Proposed by Lord Rayleigh in 1907
- Combines ITD's and ILD's to explain full spectrum sound localization for pure tones
- Cone of confusion
 - Resolved by head movements for pure tones

- Proposed by Lord Rayleigh in 1907
- Combines ITD's and ILD's to explain full spectrum sound localization for pure tones
- Cone of confusion
 - Resolved by head movements for pure tones

- Proposed by Lord Rayleigh in 1907
- Combines ITD's and ILD's to explain full spectrum sound localization for pure tones
- Cone of confusion
 - Resolved by head movements for pure tones

- Proposed by Lord Rayleigh in 1907
- Combines ITD's and ILD's to explain full spectrum sound localization for pure tones
- Cone of confusion
 - Resolved by head movements for pure tones

- Proposed by Lord Rayleigh in 1907
- Combines ITD's and ILD's to explain full spectrum sound localization for pure tones
- Cone of confusion
 - Resolved by head movements for pure tones

- Proposed by Lord Rayleigh in 1907
- Combines ITD's and ILD's to explain full spectrum sound localization for pure tones
- Cone of confusion
 - Resolved by head movements for pure tones

- Proposed by Lord Rayleigh in 1907
- Combines ITD's and ILD's to explain full spectrum sound localization for pure tones
- Cone of confusion
 - Resolved by head movements for pure tones

- Proposed by Lord Rayleigh in 1907
- Combines ITD's and ILD's to explain full spectrum sound localization for pure tones
- Cone of confusion
 - Resolved by head movements for pure tones

- Proposed by Lord Rayleigh in 1907
- Combines ITD's and ILD's to explain full spectrum sound localization for pure tones
- Cone of confusion
 - Resolved by head movements for pure tones

- Proposed by Lord Rayleigh in 1907
- Combines ITD's and ILD's to explain full spectrum sound localization for pure tones
- Cone of confusion
 - Resolved by head movements for pure tones

- Proposed by Lord Rayleigh in 1907
- Combines ITD's and ILD's to explain full spectrum sound localization for pure tones
- Cone of confusion
 - Resolved by head movements for pure tones

- Proposed by Lord Rayleigh in 1907
- Combines ITD's and ILD's to explain full spectrum sound localization for pure tones
- Cone of confusion
 - Resolved by head movements for pure tones

- Proposed by Lord Rayleigh in 1907
- Combines ITD's and ILD's to explain full spectrum sound localization for pure tones
- Cone of confusion
 - Resolved by head movements for pure tones

- Proposed by Lord Rayleigh in 1907
- Combines ITD's and ILD's to explain full spectrum sound localization for pure tones
- Cone of confusion
 - Resolved by head movements for pure tones

- Proposed by Lord Rayleigh in 1907
- Combines ITD's and ILD's to explain full spectrum sound localization for pure tones
- Cone of confusion
 - Resolved by head movements for pure tones

- Proposed by Lord Rayleigh in 1907
- Combines ITD's and ILD's to explain full spectrum sound localization for pure tones
- Cone of confusion
 - Resolved by head movements for pure tones

- Proposed by Lord Rayleigh in 1907
- Combines ITD's and ILD's to explain full spectrum sound localization for pure tones
- Cone of confusion
 - Resolved by head movements for pure tones

- Proposed by Lord Rayleigh in 1907
- Combines ITD's and ILD's to explain full spectrum sound localization for pure tones
- Cone of confusion
 - Resolved by head movements for pure tones

- Proposed by Lord Rayleigh in 1907
- Combines ITD's and ILD's to explain full spectrum sound localization for pure tones
- Cone of confusion
 - Resolved by head movements for pure tones

- Proposed by Lord Rayleigh in 1907
- Combines ITD's and ILD's to explain full spectrum sound localization for pure tones
- Cone of confusion
 - Resolved by head movements for pure tones

- Relates Sound Pressure Level (SPL) at eardrum to SPL at heads center
- Unique for each person and sound source location
- Take into account spectral filtering of torso, head, pinna, etc.

- Relates Sound Pressure Level (SPL) at eardrum to SPL at heads center
- Unique for each person and sound source location
- Take into account spectral filtering of torso, head, pinna, etc.

- Relates Sound Pressure Level (SPL) at eardrum to SPL at heads center
- Unique for each person and sound source location
- Take into account spectral filtering of torso, head, pinna, etc.

- Relates Sound Pressure Level (SPL) at eardrum to SPL at heads center
- Unique for each person and sound source location
- Take into account spectral filtering of torso, head, pinna, etc.

- Relates Sound Pressure Level (SPL) at eardrum to SPL at heads center
- Unique for each person and sound source location
- Take into account spectral filtering of torso, head, pinna, etc.

- Relates Sound Pressure Level (SPL) at eardrum to SPL at heads center
- Unique for each person and sound source location
- Take into account spectral filtering of torso, head, pinna, etc.

- Relates Sound Pressure Level (SPL) at eardrum to SPL at heads center
- Unique for each person and sound source location
- Take into account spectral filtering of torso, head, pinna, etc.

- Relates Sound Pressure Level (SPL) at eardrum to SPL at heads center
- Unique for each person and sound source location
- Take into account spectral filtering of torso, head, pinna, etc.

- Relates Sound Pressure Level (SPL) at eardrum to SPL at heads center
- Unique for each person and sound source location
- Take into account spectral filtering of torso, head, pinna, etc.

- Relates Sound Pressure Level (SPL) at eardrum to SPL at heads center
- Unique for each person and sound source location
- Take into account spectral filtering of torso, head, pinna, etc.

- Relates Sound Pressure Level (SPL) at eardrum to SPL at heads center
- Unique for each person and sound source location
- Take into account spectral filtering of torso, head, pinna, etc.

- Relates Sound Pressure Level (SPL) at eardrum to SPL at heads center
- Unique for each person and sound source location
- Take into account spectral filtering of torso, head, pinna, etc.

- Relates Sound Pressure Level (SPL) at eardrum to SPL at heads center
- Unique for each person and sound source location
- Take into account spectral filtering of torso, head, pinna, etc.

- Relates Sound Pressure Level (SPL) at eardrum to SPL at heads center
- Unique for each person and sound source location
- Take into account spectral filtering of torso, head, pinna, etc.

- Relates Sound Pressure Level (SPL) at eardrum to SPL at heads center
- Unique for each person and sound source location
- Take into account spectral filtering of torso, head, pinna, etc.

- Relates Sound Pressure Level (SPL) at eardrum to SPL at heads center
- Unique for each person and sound source location
- Take into account spectral filtering of torso, head, pinna, etc.

- Relates Sound Pressure Level (SPL) at eardrum to SPL at heads center
- Unique for each person and sound source location
- Take into account spectral filtering of torso, head, pinna, etc.

- Relates Sound Pressure Level (SPL) at eardrum to SPL at heads center
- Unique for each person and sound source location
- Take into account spectral filtering of torso, head, pinna, etc.

- Relates Sound Pressure Level (SPL) at eardrum to SPL at heads center
- Unique for each person and sound source location
- Take into account spectral filtering of torso, head, pinna, etc.

- Relates Sound Pressure Level (SPL) at eardrum to SPL at heads center
- Unique for each person and sound source location
- Take into account spectral filtering of torso, head, pinna, etc.

- Relates Sound Pressure Level (SPL) at eardrum to SPL at heads center
- Unique for each person and sound source location
- Take into account spectral filtering of torso, head, pinna, etc.

- Relates Sound Pressure Level (SPL) at eardrum to SPL at heads center
- Unique for each person and sound source location
- Take into account spectral filtering of torso, head, pinna, etc.

- Relates Sound Pressure Level (SPL) at eardrum to SPL at heads center
- Unique for each person and sound source location
- Take into account spectral filtering of torso, head, pinna, etc.

- Relates Sound Pressure Level (SPL) at eardrum to SPL at heads center
- Unique for each person and sound source location
- Take into account spectral filtering of torso, head, pinna, etc.

- Relates Sound Pressure Level (SPL) at eardrum to SPL at heads center
- Unique for each person and sound source location
- Take into account spectral filtering of torso, head, pinna, etc.

- Relates Sound Pressure Level (SPL) at eardrum to SPL at heads center
- Unique for each person and sound source location
- Take into account spectral filtering of torso, head, pinna, etc.

- Relates Sound Pressure Level (SPL) at eardrum to SPL at heads center
- Unique for each person and sound source location
- Take into account spectral filtering of torso, head, pinna, etc.

- Relates Sound Pressure Level (SPL) at eardrum to SPL at heads center
- Unique for each person and sound source location
- Take into account spectral filtering of torso, head, pinna, etc.

- Relates Sound Pressure Level (SPL) at eardrum to SPL at heads center
- Unique for each person and sound source location
- Take into account spectral filtering of torso, head, pinna, etc.

- Relates Sound Pressure Level (SPL) at eardrum to SPL at heads center
- Unique for each person and sound source location
- Take into account spectral filtering of torso, head, pinna, etc.

- Relates Sound Pressure Level (SPL) at eardrum to SPL at heads center
- Unique for each person and sound source location
- Take into account spectral filtering of torso, head, pinna, etc.

- Relates Sound Pressure Level (SPL) at eardrum to SPL at heads center
- Unique for each person and sound source location
- Take into account spectral filtering of torso, head, pinna, etc.

- Relates Sound Pressure Level (SPL) at eardrum to SPL at heads center
- Unique for each person and sound source location
- Take into account spectral filtering of torso, head, pinna, etc.

- Relates Sound Pressure Level (SPL) at eardrum to SPL at heads center
- Unique for each person and sound source location
- Take into account spectral filtering of torso, head, pinna, etc.

- Relates Sound Pressure Level (SPL) at eardrum to SPL at heads center
- Unique for each person and sound source location
- Take into account spectral filtering of torso, head, pinna, etc.

- Relates Sound Pressure Level (SPL) at eardrum to SPL at heads center
- Unique for each person and sound source location
- Take into account spectral filtering of torso, head, pinna, etc.

 Contribute spectral notches and peaks to HRTF

Not analytically described

 Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 518/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 519/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 520/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 521/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 522/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 523/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 524/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 525/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 526/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 527/896

- Contribute spectral notches and peaks to HRTF
- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 528/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 529/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 530/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 531/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 532/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 533/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 534/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 535/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 536/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 537/896

- Contribute spectral notches and peaks to HRTF
- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 538/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 539/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 540/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 541/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 542/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 543/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 544/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 545/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 546/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 547/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 548/896

 Contribute spectral notches and peaks to HRTF

Not analytically described

 Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 549/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 550/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 551/896

- Contribute spectral notches and peaks to HRTF
- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 552/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 553/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 554/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 555/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 556/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 557/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 558/896

 Contribute spectral notches and peaks to HRTF

Not analytically described

 Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 559/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 560/896

Thank you

Pirsa: 10080005

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 562/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 563/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 564/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 565/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 566/896

 Contribute spectral notches and peaks to HRTF

Not analytically described

 Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 567/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 568/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 569/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 570/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 571/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 572/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 573/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 574/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 575/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 576/896

- Contribute spectral notches and peaks to HRTF
- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 577/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 578/896

- Contribute spectral notches and peaks to HRTF
- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 579/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 580/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 581/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 582/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 583/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 584/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 585/896

 Contribute spectral notches and peaks to HRTF

Not analytically described

 Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 586/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 587/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 588/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 589/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 590/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 591/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 592/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 593/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 594/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 595/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 596/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 597/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 598/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 599/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 600/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 601/896

 Contribute spectral notches and peaks to HRTF

Not analytically described

 Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 602/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 603/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 604/896

 Contribute spectral notches and peaks to HRTF

Not analytically described

 Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 605/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 606/896

 Contribute spectral notches and peaks to HRTF

Not analytically described

 Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 607/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 608/896

 Contribute spectral notches and peaks to HRTF

- Not analytically described
- Acts as a funnel a low frequencies

"An Approach to Individualization of head-related transfer functions based on the spectral cues for sound localization." Kazuhiro IIDA Page 609/896

The Ideal Body for Swimming (a Physics swan song) José Ricardo Oliveira Perimeter Scholars International 2010/11 Pirsa: 10080005

The Ideal Body for Swimming (a Physics swan song) José Ricardo Oliveira Perimeter Scholars International 2010/11

Pirsa: 10080005

Outline

We will discuss the influence of body shape in swimming, namely how an adequate shape can reduce drag:

- description of the fluid-dynamic problem;
- qualitative remarks on the mechanisms of drag.

Pirsa: 10080005 Page 612/896

Outline

We will discuss the influence of body shape in swimming, namely how an adequate shape can reduce drag:

- description of the fluid-dynamic problem;
- qualitative remarks on the mechanisms of drag.

Pirsa: 10080005 Page 613/896

Outline

We will discuss the influence of body shape in swimming, namely how an adequate shape can reduce drag:

- description of the fluid-dynamic problem;
- qualitative remarks on the mechanisms of drag.

Pirsa: 10080005 Page 614/896

Image: flyfishingnature.com

Image 123rf.com

Pirsa: 10080005 Page 615/896

Image: Coilgun Systems website

 Clearly, if there is a point to the animals' body shapes, it is to reduce drag (as it slows you down, and requires a bigger effort to swim)

Pirsa: 10080005 Page 616/896

Image: Coilgun Systems website

 Clearly, if there is a point to the animals' body shapes, it is to reduce drag (as it slows you down, and requires a bigger effort to swim)

Pirsa: 10080005 Page 617/896

Image: Coilgun Systems website

 Clearly, if there is a point to the animals' body shapes, it is to reduce drag (as it slows you down, and requires a bigger effort to swim)

Pirsa: 10080005 Page 618/896

Image: Coilgun Systems website

 Clearly, if there is a point to the animals' body shapes, it is to reduce drag (as it slows you down, and requires a bigger effort to swim)

Pirsa: 10080005 Page 619/896

Image: Coilgun Systems website

 Clearly, if there is a point to the animals' body shapes, it is to reduce drag (as it slows you down, and requires a bigger effort to swim)

Pirsa: 10080005 Page 620/896

Image: Coilgun Systems website

 Clearly, if there is a point to the animals' body shapes, it is to reduce drag (as it slows you down, and requires a bigger effort to swim)

Pirsa: 10080005 Page 621/896

Image: Coilgun Systems website

 Clearly, if there is a point to the animals' body shapes, it is to reduce drag (as it slows you down, and requires a bigger effort to swim)

Pirsa: 10080005 Page 622/896

Image: Coilgun Systems website

 Clearly, if there is a point to the animals' body shapes, it is to reduce drag (as it slows you down, and requires a bigger effort to swim)

Pirsa: 10080005 Page 623/896

Image: Coilgun Systems website

 Clearly, if there is a point to the animals' body shapes, it is to reduce drag (as it slows you down, and requires a bigger effort to swim)

Pirsa: 10080005 Page 624/896

Image: Coilgun Systems website

 Clearly, if there is a point to the animals' body shapes, it is to reduce drag (as it slows you down, and requires a bigger effort to swim)

Pirsa: 10080005 Page 625/896

Image: Coilgun Systems website

 Clearly, if there is a point to the animals' body shapes, it is to reduce drag (as it slows you down, and requires a bigger effort to swim)

Pirsa: 10080005 Page 626/896

Pirsa: 10080005 Page 627/896

Let us try to gain some intuition on which shapes are more efficient:

Pirsa: 10080005 Page 628/896

 Consider the flow of a viscous fluid past an obstacle (equivalent to the swim of a body in a previously static fluid):

Image: Coilgun Systems website

- For simplicity, consider a 2D flow
- Velocity is constant far from the body, $\vec{v} = v \vec{e}_x$
- In the surface, the normal component of velocity vanishes, $\vec{v} \cdot \vec{n} = 0$

Pirsa: 10080005 Page 629/896

 Consider the flow of a viscous fluid past an obstacle (equivalent to the swim of a body in a previously static fluid):

Image: Coilgun Systems website

- For simplicity, consider a 2D flow
- Velocity is constant far from the body, $\vec{v} = v \vec{e}_x$
- In the surface, the normal component of velocity vanishes, $\vec{v} \cdot \vec{n} = 0$

Pirsa: 10080005 Page 630/896

 Consider the flow of a viscous fluid past an obstacle (equivalent to the swim of a body in a previously static fluid):

Image: Coilgun Systems website

- For simplicity, consider a 2D flow
- Velocity is constant far from the body, $\vec{v} = v \vec{e}_x$
- In the surface, the normal component of velocity vanishes, $\vec{v} \cdot \vec{n} = 0$

Pirsa: 10080005 Page 631/896

 Consider the flow of a viscous fluid past an obstacle (equivalent to the swim of a body in a previously static fluid):

Image: Coilgun Systems website

- For simplicity, consider a 2D flow
- Velocity is constant far from the body, $\vec{v} = v \vec{e}_x$
- In the surface, the normal component of velocity vanishes, $\vec{v} \cdot \vec{n} = 0$

Pirsa: 10080005 Page 632/896

 Consider the flow of a viscous fluid past an obstacle (equivalent to the swim of a body in a previously static fluid):

Image: Coilgun Systems website

- For simplicity, consider a 2D flow
- Velocity is constant far from the body, $\vec{v} = v \vec{e}_x$
- In the surface, the normal component of velocity vanishes, $\vec{v} \cdot \vec{n} = 0$

Pirsa: 10080005 Page 633/896

 Consider the flow of a viscous fluid past an obstacle (equivalent to the swim of a body in a previously static fluid):

Image: Coilgun Systems website

- For simplicity, consider a 2D flow
- Velocity is constant far from the body, $\vec{v} = v \vec{e}_x$
- In the surface, the normal component of velocity vanishes, $\vec{v} \cdot \vec{n} = 0$

Pirsa: 10080005 Page 634/896

 Consider the flow of a viscous fluid past an obstacle (equivalent to the swim of a body in a previously static fluid):

Image: Coilgun Systems website

- For simplicity, consider a 2D flow
- Velocity is constant far from the body, $\vec{v} = v \vec{e}_x$
- In the surface, the normal component of velocity vanishes, $\vec{v} \cdot \vec{n} = 0$

Pirsa: 10080005 Page 635/896

 Consider the flow of a viscous fluid past an obstacle (equivalent to the swim of a body in a previously static fluid):

Image: Coilgun Systems website

- For simplicity, consider a 2D flow
- Velocity is constant far from the body, $\vec{v} = v \vec{e}_x$
- In the surface, the normal component of velocity vanishes, $\vec{v} \cdot \vec{n} = 0$

Pirsa: 10080005 Page 636/896

 Consider the flow of a viscous fluid past an obstacle (equivalent to the swim of a body in a previously static fluid):

Image: Coilgun Systems website

- For simplicity, consider a 2D flow
- Velocity is constant far from the body, $\vec{v} = v \vec{e}_x$
- In the surface, the normal component of velocity vanishes, $\vec{v} \cdot \vec{n} = 0$

Pirsa: 10080005 Page 637/896

 Consider the flow of a viscous fluid past an obstacle (equivalent to the swim of a body in a previously static fluid):

Image: Coilgun Systems website

- For simplicity, consider a 2D flow
- Velocity is constant far from the body, $\vec{v} = v \vec{e}_x$
- In the surface, the normal component of velocity vanishes, $\vec{v} \cdot \vec{n} = 0$

Pirsa: 10080005 Page 638/896

 Consider the flow of a viscous fluid past an obstacle (equivalent to the swim of a body in a previously static fluid):

Image: Coilgun Systems website

- For simplicity, consider a 2D flow
- Velocity is constant far from the body, $\vec{v} = v \vec{e}_x$
- In the surface, the normal component of velocity vanishes, $\vec{v} \cdot \vec{n} = 0$

Pirsa: 10080005 Page 639/896

 Consider the flow of a viscous fluid past an obstacle (equivalent to the swim of a body in a previously static fluid):

Image: Coilgun Systems website

- For simplicity, consider a 2D flow
- Velocity is constant far from the body, $\vec{v} = v \vec{e}_x$
- In the surface, the normal component of velocity vanishes, $\vec{v} \cdot \vec{n} = 0$

Pirsa: 10080005 Page 640/896

 Consider the flow of a viscous fluid past an obstacle (equivalent to the swim of a body in a previously static fluid):

Image: Coilgun Systems website

- For simplicity, consider a 2D flow
- Velocity is constant far from the body, $\vec{v} = v \vec{e}_x$
- In the surface, the normal component of velocity vanishes, $\vec{v} \cdot \vec{n} = 0$

Pirsa: 10080005 Page 641/896

 Consider the flow of a viscous fluid past an obstacle (equivalent to the swim of a body in a previously static fluid):

Image: Coilgun Systems website

- For simplicity, consider a 2D flow
- Velocity is constant far from the body, $\vec{v} = v \vec{e}_x$
- In the surface, the normal component of velocity vanishes, $\vec{v} \cdot \vec{n} = 0$

Pirsa: 10080005 Page 642/896

 Consider the flow of a viscous fluid past an obstacle (equivalent to the swim of a body in a previously static fluid):

Image: Coilgun Systems website

- For simplicity, consider a 2D flow
- Velocity is constant far from the body, $\vec{v} = v \vec{e}_x$
- In the surface, the normal component of velocity vanishes, $\vec{v} \cdot \vec{n} = 0$

Pirsa: 10080005 Page 643/896

 Consider the flow of a viscous fluid past an obstacle (equivalent to the swim of a body in a previously static fluid):

Image: Coilgun Systems website

- For simplicity, consider a 2D flow
- Velocity is constant far from the body, \$\vec{v} = v \vec{e}_x\$
- In the surface, the normal component of velocity vanishes, $\vec{v} \cdot \vec{n} = 0$

Pirsa: 10080005 Page 644/896

 Consider the flow of a viscous fluid past an obstacle (equivalent to the swim of a body in a previously static fluid):

Image: Coilgun Systems website

- For simplicity, consider a 2D flow
- Velocity is constant far from the body, $\vec{v} = v \vec{e}_x$
- In the surface, the normal component of velocity vanishes, $\vec{v} \cdot \vec{n} = 0$

Pirsa: 10080005 Page 645/896

 Consider the flow of a viscous fluid past an obstacle (equivalent to the swim of a body in a previously static fluid):

Image: Coilgun Systems website

- For simplicity, consider a 2D flow
- Velocity is constant far from the body, $\vec{v} = v \vec{e}_x$
- In the surface, the normal component of velocity vanishes, $\vec{v} \cdot \vec{n} = 0$

Pirsa: 10080005 Page 646/896

 Consider the flow of a viscous fluid past an obstacle (equivalent to the swim of a body in a previously static fluid):

Image: Coilgun Systems website

- For simplicity, consider a 2D flow
- Velocity is constant far from the body, $\vec{v} = v \vec{e}_x$
- In the surface, the normal component of velocity vanishes, $\vec{v} \cdot \vec{n} = 0$

Pirsa: 10080005 Page 647/896

 Consider the flow of a viscous fluid past an obstacle (equivalent to the swim of a body in a previously static fluid):

Image: Coilgun Systems website

- For simplicity, consider a 2D flow
- Velocity is constant far from the body, $\vec{v} = v \vec{e}_x$
- In the surface, the normal component of velocity vanishes, $\vec{v} \cdot \vec{n} = 0$

Pirsa: 10080005 Page 648/896

 Consider the flow of a viscous fluid past an obstacle (equivalent to the swim of a body in a previously static fluid):

Image: Coilgun Systems website

- For simplicity, consider a 2D flow
- Velocity is constant far from the body, $\vec{v} = v \vec{e}_x$
- In the surface, the normal component of velocity vanishes, $\vec{v} \cdot \vec{n} = 0$

Pirsa: 10080005 Page 649/896

 Consider the flow of a viscous fluid past an obstacle (equivalent to the swim of a body in a previously static fluid):

Image: Coilgun Systems website

- For simplicity, consider a 2D flow
- Velocity is constant far from the body, $\vec{v} = v \vec{e}_x$
- In the surface, the normal component of velocity vanishes, $\vec{v} \cdot \vec{n} = 0$

Pirsa: 10080005 Page 650/896

 Consider the flow of a viscous fluid past an obstacle (equivalent to the swim of a body in a previously static fluid):

Image: Coilgun Systems website

- For simplicity, consider a 2D flow
- Velocity is constant far from the body, $\vec{v} = v \vec{e}_x$
- In the surface, the normal component of velocity vanishes, $\vec{v} \cdot \vec{n} = 0$

Pirsa: 10080005 Page 651/896

 Consider the flow of a viscous fluid past an obstacle (equivalent to the swim of a body in a previously static fluid):

Image: Coilgun Systems website

- For simplicity, consider a 2D flow
- Velocity is constant far from the body, $\vec{v} = v \vec{e}_x$
- In the surface, the normal component of velocity vanishes, $\vec{v} \cdot \vec{n} = 0$

Pirsa: 10080005 Page 652/896

 Consider the flow of a viscous fluid past an obstacle (equivalent to the swim of a body in a previously static fluid):

Image: Coilgun Systems website

- For simplicity, consider a 2D flow
- Velocity is constant far from the body, $\vec{v} = v \vec{e}_x$
- In the surface, the normal component of velocity vanishes, $\vec{v} \cdot \vec{n} = 0$

Pirsa: 10080005 Page 653/896

 Consider the flow of a viscous fluid past an obstacle (equivalent to the swim of a body in a previously static fluid):

Image: Coilgun Systems website

- For simplicity, consider a 2D flow
- Velocity is constant far from the body, $\vec{v} = v \vec{e}_x$
- In the surface, the normal component of velocity vanishes, $\vec{v} \cdot \vec{n} = 0$

Pirsa: 10080005 Page 654/896

 Consider the flow of a viscous fluid past an obstacle (equivalent to the swim of a body in a previously static fluid):

Image: Coilgun Systems website

- For simplicity, consider a 2D flow
- Velocity is constant far from the body, $\vec{v} = v \vec{e}_x$
- In the surface, the normal component of velocity vanishes, $\vec{v} \cdot \vec{n} = 0$

Pirsa: 10080005 Page 655/896

 Consider the flow of a viscous fluid past an obstacle (equivalent to the swim of a body in a previously static fluid):

Image: Coilgun Systems website

- For simplicity, consider a 2D flow
- Velocity is constant far from the body, $\vec{v} = v \vec{e}_x$
- In the surface, the normal component of velocity vanishes, $\vec{v} \cdot \vec{n} = 0$

Pirsa: 10080005 Page 656/896

 Consider the flow of a viscous fluid past an obstacle (equivalent to the swim of a body in a previously static fluid):

Image: Coilgun Systems website

- For simplicity, consider a 2D flow
- Velocity is constant far from the body, $\vec{v} = v \vec{e}_x$
- In the surface, the normal component of velocity vanishes, $\vec{v} \cdot \vec{n} = 0$

Pirsa: 10080005 Page 657/896

 Consider the flow of a viscous fluid past an obstacle (equivalent to the swim of a body in a previously static fluid):

Image: Coilgun Systems website

- For simplicity, consider a 2D flow
- Velocity is constant far from the body, $\vec{v} = v \vec{e}_x$
- In the surface, the normal component of velocity vanishes, $\vec{v} \cdot \vec{n} = 0$

Pirsa: 10080005 Page 658/896

 Consider the flow of a viscous fluid past an obstacle (equivalent to the swim of a body in a previously static fluid):

Image: Coilgun Systems website

- For simplicity, consider a 2D flow
- Velocity is constant far from the body, \$\vec{v} = v \vec{e}_x\$
- In the surface, the normal component of velocity vanishes, $\vec{v} \cdot \vec{n} = 0$

Pirsa: 10080005 Page 659/896

 Consider the flow of a viscous fluid past an obstacle (equivalent to the swim of a body in a previously static fluid):

Image: Coilgun Systems website

- For simplicity, consider a 2D flow
- Velocity is constant far from the body, $\vec{v} = v \vec{e}_x$
- In the surface, the normal component of velocity vanishes, $\vec{v} \cdot \vec{n} = 0$

Pirsa: 10080005 Page 660/896

 Consider the flow of a viscous fluid past an obstacle (equivalent to the swim of a body in a previously static fluid):

Image: Coilgun Systems website

- For simplicity, consider a 2D flow
- Velocity is constant far from the body, $\vec{v} = v \vec{e}_x$
- In the surface, the normal component of velocity vanishes, $\vec{v} \cdot \vec{n} = 0$

Pirsa: 10080005 Page 661/896

 Consider the flow of a viscous fluid past an obstacle (equivalent to the swim of a body in a previously static fluid):

Image: Coilgun Systems website

- For simplicity, consider a 2D flow
- Velocity is constant far from the body, $\vec{v} = v \vec{e}_x$
- In the surface, the normal component of velocity vanishes, $\vec{v} \cdot \vec{n} = 0$

Pirsa: 10080005 Page 662/896

 Consider the flow of a viscous fluid past an obstacle (equivalent to the swim of a body in a previously static fluid):

Image: Coilgun Systems website

- For simplicity, consider a 2D flow
- Velocity is constant far from the body, $\vec{v} = v \vec{e}_x$
- In the surface, the normal component of velocity vanishes, $\vec{v} \cdot \vec{n} = 0$

Pirsa: 10080005 Page 663/896

 Consider the flow of a viscous fluid past an obstacle (equivalent to the swim of a body in a previously static fluid):

Image: Coilgun Systems website

- For simplicity, consider a 2D flow
- Velocity is constant far from the body, $\vec{v} = v \vec{e}_x$
- In the surface, the normal component of velocity vanishes, $\vec{v} \cdot \vec{n} = 0$

Pirsa: 10080005 Page 664/896

 Consider the flow of a viscous fluid past an obstacle (equivalent to the swim of a body in a previously static fluid):

Image: Coilgun Systems website

- For simplicity, consider a 2D flow
- Velocity is constant far from the body, $\vec{v} = v \vec{e}_x$
- In the surface, the normal component of velocity vanishes, $\vec{v} \cdot \vec{n} = 0$

Pirsa: 10080005 Page 665/896

 Consider the flow of a viscous fluid past an obstacle (equivalent to the swim of a body in a previously static fluid):

Image: Coilgun Systems website

- For simplicity, consider a 2D flow
- Velocity is constant far from the body, $\vec{v} = v \vec{e}_x$
- In the surface, the normal component of velocity vanishes, $\vec{v} \cdot \vec{n} = 0$

Pirsa: 10080005 Page 666/896

 Flow dynamics is described by the Navier-Stokes equations, together with the continuity equation:

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \mathbf{v} \nabla^2 \mathbf{v}$$
$$\nabla \cdot \mathbf{v} = 0$$

- Boundary conditions are given by velocity constraints at infinity and body surface.
- Given a solution, one can compute the net force exerted on the body:

$$\vec{F} = \int_{surface} \left(-\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} \right) \cdot \vec{n} \, dS$$

and by comparing drag forces, determine the most efficient shape. Easy, right?

Pirsa: 100800005

 Flow dynamics is described by the Navier-Stokes equations, together with the continuity equation:

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \mathbf{v} \nabla^2 \mathbf{v}$$
$$\nabla \cdot \mathbf{v} = 0$$

- Boundary conditions are given by velocity constraints at infinity and body surface.
- Given a solution, one can compute the net force exerted on the body:

$$\vec{F} = \int_{surface} \left(-\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} \right) \cdot \vec{n} \, dS$$

and by comparing drag forces, determine the most efficient shape. Easy, right?

Pirsa: 10080005 Page 668/896

 Flow dynamics is described by the Navier-Stokes equations, together with the continuity equation:

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \mathbf{v} \nabla^2 \mathbf{v}$$
$$\nabla \cdot \mathbf{v} = 0$$

- Boundary conditions are given by velocity constraints at infinity and body surface.
- Given a solution, one can compute the net force exerted on the body:

$$\vec{F} = \int_{surface} \left(-\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} \right) \cdot \vec{n} \, dS$$

and by comparing drag forces, determine the most efficient shape. Easy, right?

Pirsa: 10080005 Page 669/896

 Flow dynamics is described by the Navier-Stokes equations, together with the continuity equation:

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \mathbf{v} \nabla^2 \mathbf{v}$$
$$\nabla \cdot \mathbf{v} = 0$$

- Boundary conditions are given by velocity constraints at infinity and body surface.
- Given a solution, one can compute the net force exerted on the body:

$$\vec{F} = \int_{surface} \left(-\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} \right) \cdot \vec{n} \, dS$$

and by comparing drag forces, determine the most efficient shape. Easy, right?

Pirsa: 10080005 Page 670/896

 Flow dynamics is described by the Navier-Stokes equations, together with the continuity equation:

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \mathbf{v} \nabla^2 \mathbf{v}$$
$$\nabla \cdot \mathbf{v} = 0$$

- Boundary conditions are given by velocity constraints at infinity and body surface.
- Given a solution, one can compute the net force exerted on the body:

$$\vec{F} = \int_{surface} \left(-\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} \right) \cdot \vec{n} \, dS$$

and by comparing drag forces, determine the most efficient shape. Easy, right?

Pirsa: 10080005 Page 671/896

 Flow dynamics is described by the Navier-Stokes equations, together with the continuity equation:

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \mathbf{v} \nabla^2 \mathbf{v}$$
$$\nabla \cdot \mathbf{v} = 0$$

- Boundary conditions are given by velocity constraints at infinity and body surface.
- Given a solution, one can compute the net force exerted on the body:

$$\vec{F} = \int_{surface} \left(-\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} \right) \cdot \vec{n} \, dS$$

and by comparing drag forces, determine the most efficient shape. Easy, right?

Pirsa: 10080005 Page 672/896

 Flow dynamics is described by the Navier-Stokes equations, together with the continuity equation:

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \mathbf{v} \nabla^2 \mathbf{v}$$
$$\nabla \cdot \mathbf{v} = 0$$

- Boundary conditions are given by velocity constraints at infinity and body surface.
- Given a solution, one can compute the net force exerted on the body:

$$\vec{F} = \int_{surface} \left(-\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} \right) \cdot \vec{n} \, dS$$

and by comparing drag forces, determine the most efficient shape. Easy, right?

Pirsa: 10080005 Page 673/896

 Flow dynamics is described by the Navier-Stokes equations, together with the continuity equation:

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \mathbf{v} \nabla^2 \mathbf{v}$$
$$\nabla \cdot \mathbf{v} = 0$$

- Boundary conditions are given by velocity constraints at infinity and body surface.
- Given a solution, one can compute the net force exerted on the body:

$$\vec{F} = \int_{surface} \left(-\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} \right) \cdot \vec{n} \, dS$$

and by comparing drag forces, determine the most efficient shape. Easy, right?

Pirsa: 10080005 Page 674/896

 Flow dynamics is described by the Navier-Stokes equations, together with the continuity equation:

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \mathbf{v} \nabla^2 \mathbf{v}$$
$$\nabla \cdot \mathbf{v} = 0$$

- Boundary conditions are given by velocity constraints at infinity and body surface.
- Given a solution, one can compute the net force exerted on the body:

$$\vec{F} = \int_{surface} \left(-\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} \right) \cdot \vec{n} \, dS$$

and by comparing drag forces, determine the most efficient shape. Easy, right?

Pirsa: 10080005 Page 675/896

 Flow dynamics is described by the Navier-Stokes equations, together with the continuity equation:

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \mathbf{v} \nabla^2 \mathbf{v}$$
$$\nabla \cdot \mathbf{v} = 0$$

- Boundary conditions are given by velocity constraints at infinity and body surface.
- Given a solution, one can compute the net force exerted on the body:

$$\vec{F} = \int_{surface} \left(-\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} \right) \cdot \vec{n} \, dS$$

and by comparing drag forces, determine the most efficient shape. Easy, right?

Pirsa: 10080005 Page 676/896

 Flow dynamics is described by the Navier-Stokes equations, together with the continuity equation:

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \mathbf{v} \nabla^2 \mathbf{v}$$
$$\nabla \cdot \mathbf{v} = 0$$

- Boundary conditions are given by velocity constraints at infinity and body surface.
- Given a solution, one can compute the net force exerted on the body:

$$\vec{F} = \int_{surface} \left(-\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} \right) \cdot \vec{n} \, dS$$

and by comparing drag forces, determine the most efficient shape. Easy, right?

Pirsa: 10080005 Page 677/896

 Flow dynamics is described by the Navier-Stokes equations, together with the continuity equation:

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \mathbf{v} \nabla^2 \mathbf{v}$$
$$\nabla \cdot \mathbf{v} = 0$$

- Boundary conditions are given by velocity constraints at infinity and body surface.
- Given a solution, one can compute the net force exerted on the body:

$$\vec{F} = \int_{surface} \left(-\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} \right) \cdot \vec{n} \, dS$$

and by comparing drag forces, determine the most efficient shape. Easy, right?

PIIsa: 10080005

 Flow dynamics is described by the Navier-Stokes equations, together with the continuity equation:

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \mathbf{v} \nabla^2 \mathbf{v}$$
$$\nabla \cdot \mathbf{v} = 0$$

- Boundary conditions are given by velocity constraints at infinity and body surface.
- Given a solution, one can compute the net force exerted on the body:

$$\vec{F} = \int_{surface} \left(-\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} \right) \cdot \vec{n} \, dS$$

and by comparing drag forces, determine the most efficient shape. Easy, right?

Pirsa: 10080005 Page 679/896

 Flow dynamics is described by the Navier-Stokes equations, together with the continuity equation:

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \mathbf{v} \nabla^2 \mathbf{v}$$
$$\nabla \cdot \mathbf{v} = 0$$

- Boundary conditions are given by velocity constraints at infinity and body surface.
- Given a solution, one can compute the net force exerted on the body:

$$\vec{F} = \int_{surface} \left(-\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} \right) \cdot \vec{n} \, dS$$

and by comparing drag forces, determine the most efficient shape. Easy, right?

Pirsa: 10080005

 Flow dynamics is described by the Navier-Stokes equations, together with the continuity equation:

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \mathbf{v} \nabla^2 \mathbf{v}$$
$$\nabla \cdot \mathbf{v} = 0$$

- Boundary conditions are given by velocity constraints at infinity and body surface.
- Given a solution, one can compute the net force exerted on the body:

$$\vec{F} = \int_{sunface} \left(-\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} \right) \cdot \vec{n} \, dS$$

and by comparing drag forces, determine the most efficient shape. Easy, right?

Pirsa: 10080005 Page 681/896

 Flow dynamics is described by the Navier-Stokes equations, together with the continuity equation:

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \mathbf{v} \nabla^2 \mathbf{v}$$
$$\nabla \cdot \mathbf{v} = 0$$

- Boundary conditions are given by velocity constraints at infinity and body surface.
- Given a solution, one can compute the net force exerted on the body:

$$\vec{F} = \int_{surface} \left(-\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} \right) \cdot \vec{n} \, dS$$

and by comparing drag forces, determine the most efficient shape. Easy, right?

Pirsa: 10080005 Page 682/896

 Flow dynamics is described by the Navier-Stokes equations, together with the continuity equation:

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \mathbf{v} \nabla^2 \mathbf{v}$$
$$\nabla \cdot \mathbf{v} = 0$$

- Boundary conditions are given by velocity constraints at infinity and body surface.
- Given a solution, one can compute the net force exerted on the body:

$$\vec{F} = \int_{surface} \left(-\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} \right) \cdot \vec{n} \, dS$$

and by comparing drag forces, determine the most efficient shape. Easy, right?

Pirsa: 10080005 Page 683/896

 Flow dynamics is described by the Navier-Stokes equations, together with the continuity equation:

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \mathbf{v} \nabla^2 \mathbf{v}$$
$$\nabla \cdot \mathbf{v} = 0$$

- Boundary conditions are given by velocity constraints at infinity and body surface.
- Given a solution, one can compute the net force exerted on the body:

$$\vec{F} = \int_{surface} \left(-\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} \right) \cdot \vec{n} \, dS$$

and by comparing drag forces, determine the most efficient shape. Easy, right?

Pirsa: 10080005 Page 684/896

 Flow dynamics is described by the Navier-Stokes equations, together with the continuity equation:

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \mathbf{v} \nabla^2 \mathbf{v}$$
$$\nabla \cdot \mathbf{v} = 0$$

- Boundary conditions are given by velocity constraints at infinity and body surface.
- Given a solution, one can compute the net force exerted on the body:

$$\vec{F} = \int_{surface} \left(-\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} \right) \cdot \vec{n} \, dS$$

and by comparing drag forces, determine the most efficient shape. Easy, right?

Pirsa: 10080005 Page 685/896

 Flow dynamics is described by the Navier-Stokes equations, together with the continuity equation:

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \mathbf{v} \nabla^2 \mathbf{v}$$
$$\nabla \cdot \mathbf{v} = 0$$

- Boundary conditions are given by velocity constraints at infinity and body surface.
- Given a solution, one can compute the net force exerted on the body:

$$\vec{F} = \int_{sunface} \left(-\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} \right) \cdot \vec{n} \, dS$$

and by comparing drag forces, determine the most efficient shape. Easy, right?

Pirsa: 10080005 Page 686/

 Flow dynamics is described by the Navier-Stokes equations, together with the continuity equation:

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \mathbf{v} \nabla^2 \mathbf{v}$$
$$\nabla \cdot \mathbf{v} = 0$$

- Boundary conditions are given by velocity constraints at infinity and body surface.
- Given a solution, one can compute the net force exerted on the body:

$$\vec{F} = \int_{surface} \left(-\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} \right) \cdot \vec{n} \, dS$$

and by comparing drag forces, determine the most efficient shape. Easy, right?

Pirsa: 10080005 Page 687/896

 Flow dynamics is described by the Navier-Stokes equations, together with the continuity equation:

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \mathbf{v} \nabla^2 \mathbf{v}$$
$$\nabla \cdot \mathbf{v} = 0$$

- Boundary conditions are given by velocity constraints at infinity and body surface.
- Given a solution, one can compute the net force exerted on the body:

$$\vec{F} = \int_{surface} \left(-\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} \right) \cdot \vec{n} \, dS$$

and by comparing drag forces, determine the most efficient shape. Easy, right?

Pirsa: 10080005 Page 688/896

 Flow dynamics is described by the Navier-Stokes equations, together with the continuity equation:

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \mathbf{v} \nabla^2 \mathbf{v}$$
$$\nabla \cdot \mathbf{v} = 0$$

- Boundary conditions are given by velocity constraints at infinity and body surface.
- Given a solution, one can compute the net force exerted on the body:

$$\vec{F} = \int_{sunface} \left(-\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} \right) \cdot \vec{n} \, dS$$

and by comparing drag forces, determine the most efficient shape. Easy, right?

Pirsa: 10080005 Page 689/896

 Flow dynamics is described by the Navier-Stokes equations, together with the continuity equation:

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \mathbf{v} \nabla^2 \mathbf{v}$$
$$\nabla \cdot \mathbf{v} = 0$$

- Boundary conditions are given by velocity constraints at infinity and body surface.
- Given a solution, one can compute the net force exerted on the body:

$$\vec{F} = \int_{sunface} \left(-\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} \right) \cdot \vec{n} \, dS$$

and by comparing drag forces, determine the most efficient shape. Easy, right?

Pirsa: 10080005 Page 690/896

 Flow dynamics is described by the Navier-Stokes equations, together with the continuity equation:

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \mathbf{v} \nabla^2 \mathbf{v}$$
$$\nabla \cdot \mathbf{v} = 0$$

- Boundary conditions are given by velocity constraints at infinity and body surface.
- Given a solution, one can compute the net force exerted on the body:

$$\vec{F} = \int_{surface} \left(-\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} \right) \cdot \vec{n} \, dS$$

and by comparing drag forces, determine the most efficient shape. Easy, right?

Pirsa: 10080005 Page 691/896

 Flow dynamics is described by the Navier-Stokes equations, together with the continuity equation:

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \mathbf{v} \nabla^2 \mathbf{v}$$
$$\nabla \cdot \mathbf{v} = 0$$

- Boundary conditions are given by velocity constraints at infinity and body surface.
- Given a solution, one can compute the net force exerted on the body:

$$\vec{F} = \int_{surface} \left(-\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} \right) \cdot \vec{n} \, dS$$

and by comparing drag forces, determine the most efficient shape. Easy, right?

Pirsa: 10080005

 Flow dynamics is described by the Navier-Stokes equations, together with the continuity equation:

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \mathbf{v} \nabla^2 \mathbf{v}$$
$$\nabla \cdot \mathbf{v} = 0$$

- Boundary conditions are given by velocity constraints at infinity and body surface.
- Given a solution, one can compute the net force exerted on the body:

$$\vec{F} = \int_{surface} \left(-\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} \right) \cdot \vec{n} \, dS$$

and by comparing drag forces, determine the most efficient shape. Easy, right?

Pirsa: 10080005 Page 693/896

 Flow dynamics is described by the Navier-Stokes equations, together with the continuity equation:

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \mathbf{v} \nabla^2 \mathbf{v}$$
$$\nabla \cdot \mathbf{v} = 0$$

- Boundary conditions are given by velocity constraints at infinity and body surface.
- Given a solution, one can compute the net force exerted on the body:

$$\vec{F} = \int_{sunface} \left(-\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} \right) \cdot \vec{n} \, dS$$

and by comparing drag forces, determine the most efficient shape. Easy, right?

Pirsa: 10080005 Page 694/896

 Flow dynamics is described by the Navier-Stokes equations, together with the continuity equation:

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \mathbf{v} \nabla^2 \mathbf{v}$$
$$\nabla \cdot \mathbf{v} = 0$$

- Boundary conditions are given by velocity constraints at infinity and body surface.
- Given a solution, one can compute the net force exerted on the body:

$$\vec{F} = \int_{surface} \left(-\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} \right) \cdot \vec{n} \, dS$$

and by comparing drag forces, determine the most efficient shape. Easy, right?

Pirsa: 10080005 Page 695/896

 Flow dynamics is described by the Navier-Stokes equations, together with the continuity equation:

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \mathbf{v} \nabla^2 \mathbf{v}$$
$$\nabla \cdot \mathbf{v} = 0$$

- Boundary conditions are given by velocity constraints at infinity and body surface.
- Given a solution, one can compute the net force exerted on the body:

$$\vec{F} = \int_{surface} \left(-\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} \right) \cdot \vec{n} \, dS$$

and by comparing drag forces, determine the most efficient shape. Easy, right?

Pirsa: 10080005 Page 696/896

 Flow dynamics is described by the Navier-Stokes equations, together with the continuity equation:

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \mathbf{v} \nabla^2 \mathbf{v}$$
$$\nabla \cdot \mathbf{v} = 0$$

- Boundary conditions are given by velocity constraints at infinity and body surface.
- Given a solution, one can compute the net force exerted on the body:

$$\vec{F} = \int_{surface} \left(-\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} \right) \cdot \vec{n} \, dS$$

and by comparing drag forces, determine the most efficient shape. Easy, right?

Pirsa: 10080005 Page 697/896

 Flow dynamics is described by the Navier-Stokes equations, together with the continuity equation:

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \mathbf{v} \nabla^2 \mathbf{v}$$
$$\nabla \cdot \mathbf{v} = 0$$

- Boundary conditions are given by velocity constraints at infinity and body surface.
- Given a solution, one can compute the net force exerted on the body:

$$\vec{F} = \int_{surface} \left(-\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} \right) \cdot \vec{n} \, dS$$

and by comparing drag forces, determine the most efficient shape. Easy, right?

Pirsa: 10080005 Page 698/896

 Flow dynamics is described by the Navier-Stokes equations, together with the continuity equation:

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \mathbf{v} \nabla^2 \mathbf{v}$$
$$\nabla \cdot \mathbf{v} = 0$$

- Boundary conditions are given by velocity constraints at infinity and body surface.
- Given a solution, one can compute the net force exerted on the body:

$$\vec{F} = \int_{surface} \left(-\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} \right) \cdot \vec{n} \, dS$$

and by comparing drag forces, determine the most efficient shape. Easy, right?

Pirsa: 10080005 Page 699/896

 Flow dynamics is described by the Navier-Stokes equations, together with the continuity equation:

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \mathbf{v} \nabla^2 \mathbf{v}$$
$$\nabla \cdot \mathbf{v} = 0$$

- Boundary conditions are given by velocity constraints at infinity and body surface.
- Given a solution, one can compute the net force exerted on the body:

$$\vec{F} = \int_{surface} \left(-\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} \right) \cdot \vec{n} \, dS$$

and by comparing drag forces, determine the most efficient shape. Easy, right?

Pirsa: 10080005 Page 700/896

 Flow dynamics is described by the Navier-Stokes equations, together with the continuity equation:

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \mathbf{v} \nabla^2 \mathbf{v}$$
$$\nabla \cdot \mathbf{v} = 0$$

- Boundary conditions are given by velocity constraints at infinity and body surface.
- Given a solution, one can compute the net force exerted on the body:

$$\vec{F} = \int_{surface} \left(-\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} \right) \cdot \vec{n} \, dS$$

and by comparing drag forces, determine the most efficient shape. Easy, right?

Pirsa: 10080005 Page 701/896

 Flow dynamics is described by the Navier-Stokes equations, together with the continuity equation:

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \mathbf{v} \nabla^2 \mathbf{v}$$
$$\nabla \cdot \mathbf{v} = 0$$

- Boundary conditions are given by velocity constraints at infinity and body surface.
- Given a solution, one can compute the net force exerted on the body:

$$\vec{F} = \int_{surface} \left(-\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} \right) \cdot \vec{n} \, dS$$

and by comparing drag forces, determine the most efficient shape. Easy, right?

Pirsa: 10080005 Page 702/896

 Flow dynamics is described by the Navier-Stokes equations, together with the continuity equation:

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \mathbf{v} \nabla^2 \mathbf{v}$$
$$\nabla \cdot \mathbf{v} = 0$$

- Boundary conditions are given by velocity constraints at infinity and body surface.
- Given a solution, one can compute the net force exerted on the body:

$$\vec{F} = \int_{surface} \left(-\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} \right) \cdot \vec{n} \, dS$$

and by comparing drag forces, determine the most efficient shape. Easy, right?

Pirsa: 10080005 Page 703/896

 Flow dynamics is described by the Navier-Stokes equations, together with the continuity equation:

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{1}{\rho} \nabla p + \mathbf{v} \nabla^2 \mathbf{v}$$
$$\nabla \cdot \mathbf{v} = 0$$

- Boundary conditions are given by velocity constraints at infinity and body surface.
- Given a solution, one can compute the net force exerted on the body:

$$\vec{F} = \int_{surface} \left(-\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} \right) \cdot \vec{n} \, dS$$

and by comparing drag forces, determine the most efficient shape. Easy, right?

Pirsa: 10080005 Page 704/896

We can, however, obtain some qualitative insight, verifiable both by experiment and numerical simulations.

Pirsa: 10080005 Page 705/896

We can, however, obtain some qualitative insight, verifiable both by experiment and numerical simulations.

Pirsa: 10080005 Page 706/896

We can, however, obtain some qualitative insight, verifiable both by experiment and numerical simulations.

Pirsa: 10080005 Page 707/896

We can, however, obtain some qualitative insight, verifiable both by experiment and numerical simulations.

Pirsa: 10080005 Page 708/896

We can, however, obtain some qualitative insight, verifiable both by experiment and numerical simulations.

Pirsa: 10080005 Page 709/896

We can, however, obtain some qualitative insight, verifiable both by experiment and numerical simulations.

Pirsa: 10080005 Page 710/896

We can, however, obtain some qualitative insight, verifiable both by experiment and numerical simulations.

Pirsa: 10080005 Page 711/896

We can, however, obtain some qualitative insight, verifiable both by experiment and numerical simulations.

Pirsa: 10080005 Page 712/896

Principle: In low-viscosity fluids, internal friction is only appreciable in a thin region surrounding the boundaries, the boundary layer.

This results in two different sources of drag:

- Skin friction;
- Pressure drag.

Pirsa: 10080005 Page 713/896

Principle: In low-viscosity fluids, internal friction is only appreciable in a thin region surrounding the boundaries, the boundary layer.

This results in two different sources of drag:

- Skin friction;
- Pressure drag.

Pirsa: 10080005 Page 714/896

Principle: In low-viscosity fluids, internal friction is only appreciable in a thin region surrounding the boundaries, the boundary layer.

This results in two different sources of drag:

- Skin friction;
- Pressure drag.

Pirsa: 10080005 Page 715/896

Principle: In low-viscosity fluids, internal friction is only appreciable in a thin region surrounding the boundaries, the boundary layer.

This results in two different sources of drag:

- Skin friction;
- Pressure drag.

Pirsa: 10080005 Page 716/896

Principle: In low-viscosity fluids, internal friction is only appreciable in a thin region surrounding the boundaries, the boundary layer.

This results in two different sources of drag:

- Skin friction;
- Pressure drag.

Pirsa: 10080005 Page 717/896

Principle: In low-viscosity fluids, internal friction is only appreciable in a thin region surrounding the boundaries, the boundary layer.

This results in two different sources of drag:

- Skin friction;
- Pressure drag.

Pirsa: 10080005 Page 718/896

Principle: In low-viscosity fluids, internal friction is only appreciable in a thin region surrounding the boundaries, the boundary layer.

This results in two different sources of drag:

- Skin friction;
- Pressure drag.

Pirsa: 10080005 Page 719/896

Principle: In low-viscosity fluids, internal friction is only appreciable in a thin region surrounding the boundaries, the boundary layer.

This results in two different sources of drag:

- Skin friction;
- Pressure drag.

Pirsa: 10080005 Page 720/896

Principle: In low-viscosity fluids, internal friction is only appreciable in a thin region surrounding the boundaries, the boundary layer.

This results in two different sources of drag:

- Skin friction;
- Pressure drag.

Pirsa: 10080005 Page 721/896

Principle: In low-viscosity fluids, internal friction is only appreciable in a thin region surrounding the boundaries, the boundary layer.

This results in two different sources of drag:

- Skin friction;
- Pressure drag.

Pirsa: 10080005 Page 722/896

Principle: In low-viscosity fluids, internal friction is only appreciable in a thin region surrounding the boundaries, the boundary layer.

This results in two different sources of drag:

- Skin friction;
- Pressure drag.

Pirsa: 10080005

Principle: In low-viscosity fluids, internal friction is only appreciable in a thin region surrounding the boundaries, the boundary layer.

This results in two different sources of drag:

- Skin friction;
- Pressure drag.

Pirsa: 10080005 Page 724/896

Principle: In low-viscosity fluids, internal friction is only appreciable in a thin region surrounding the boundaries, the boundary layer.

This results in two different sources of drag:

- Skin friction;
- Pressure drag.

Pirsa: 10080005 Page 725/896

Principle: In low-viscosity fluids, internal friction is only appreciable in a thin region surrounding the boundaries, the boundary layer.

This results in two different sources of drag:

- Skin friction;
- Pressure drag.

Pirsa: 10080005 Page 726/896

Principle: In low-viscosity fluids, internal friction is only appreciable in a thin region surrounding the boundaries, the boundary layer.

This results in two different sources of drag:

- Skin friction;
- Pressure drag.

Pirsa: 10080005 Page 727/896

Principle: In low-viscosity fluids, internal friction is only appreciable in a thin region surrounding the boundaries, the boundary layer.

This results in two different sources of drag:

- Skin friction;
- Pressure drag.

Pirsa: 10080005 Page 728/896

Principle: In low-viscosity fluids, internal friction is only appreciable in a thin region surrounding the boundaries, the boundary layer.

This results in two different sources of drag:

- Skin friction;
- Pressure drag.

Pirsa: 10080005 Page 729/896

Principle: In low-viscosity fluids, internal friction is only appreciable in a thin region surrounding the boundaries, the boundary layer.

This results in two different sources of drag:

- Skin friction;
- Pressure drag.

Pirsa: 10080005 Page 730/896

Principle: In low-viscosity fluids, internal friction is only appreciable in a thin region surrounding the boundaries, the boundary layer.

This results in two different sources of drag:

- Skin friction;
- Pressure drag.

Pirsa: 10080005 Page 731/896

Principle: In low-viscosity fluids, internal friction is only appreciable in a thin region surrounding the boundaries, the boundary layer.

This results in two different sources of drag:

- Skin friction;
- Pressure drag.

Pirsa: 10080005 Page 732/896

Principle: In low-viscosity fluids, internal friction is only appreciable in a thin region surrounding the boundaries, the boundary layer.

This results in two different sources of drag:

- Skin friction;
- Pressure drag.

Pirsa: 10080005 Page 733/896

Principle: In low-viscosity fluids, internal friction is only appreciable in a thin region surrounding the boundaries, the boundary layer.

This results in two different sources of drag:

- Skin friction;
- Pressure drag.

Pirsa: 10080005

Principle: In low-viscosity fluids, internal friction is only appreciable in a thin region surrounding the boundaries, the boundary layer.

This results in two different sources of drag:

- Skin friction;
- Pressure drag.

Pirsa: 10080005 Page 735/896

Principle: In low-viscosity fluids, internal friction is only appreciable in a thin region surrounding the boundaries, the boundary layer.

This results in two different sources of drag:

- Skin friction;
- Pressure drag.

Pirsa: 10080005 Page 736/896

Principle: In low-viscosity fluids, internal friction is only appreciable in a thin region surrounding the boundaries, the boundary layer.

This results in two different sources of drag:

- Skin friction;
- Pressure drag.

Pirsa: 10080005 Page 737/896

Principle: In low-viscosity fluids, internal friction is only appreciable in a thin region surrounding the boundaries, the boundary layer.

This results in two different sources of drag:

- Skin friction;
- Pressure drag.

Pirsa: 10080005

Principle: In low-viscosity fluids, internal friction is only appreciable in a thin region surrounding the boundaries, the boundary layer.

This results in two different sources of drag:

- Skin friction;
- Pressure drag.

Pirsa: 10080005

Principle: In low-viscosity fluids, internal friction is only appreciable in a thin region surrounding the boundaries, the boundary layer.

This results in two different sources of drag:

- Skin friction;
- Pressure drag.

Pirsa: 10080005 Page 740/896

Principle: In low-viscosity fluids, internal friction is only appreciable in a thin region surrounding the boundaries, the boundary layer.

This results in two different sources of drag:

- Skin friction;
- Pressure drag.

Pirsa: 10080005 Page 741/896

Principle: In low-viscosity fluids, internal friction is only appreciable in a thin region surrounding the boundaries, the boundary layer.

This results in two different sources of drag:

- Skin friction;
- Pressure drag.

Pirsa: 10080005 Page 742/896

Principle: In low-viscosity fluids, internal friction is only appreciable in a thin region surrounding the boundaries, the boundary layer.

This results in two different sources of drag:

- Skin friction;
- Pressure drag.

Pirsa: 10080005

Principle: In low-viscosity fluids, internal friction is only appreciable in a thin region surrounding the boundaries, the boundary layer.

This results in two different sources of drag:

- Skin friction;
- Pressure drag.

Pirsa: 10080005 Page 744/896

Pirsa: 10080005

friction...

Page 746/896

Boundary layer is slowed down because of skin friction...

... and is dragged away from the surface by neighbouring fluid, as it gets thicker...

Pirsa: 10080005

Pirsa: 10080005 Page 748/896

Wake (turbulence at very low viscosity)

Boundary layer is slowed down because of skin friction...

... and is dragged away from the surface by neighbouring fluid, as it gets thicker... ... eventually separating, which creates pressure drag.

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 750/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 751/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 752/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 753/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 755/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 756/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 757/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 758/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 759/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 762/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 763/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 764/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 765/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 766/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 767/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 768/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 769/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 770/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 771/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 773/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 774/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 775/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 776/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 777/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 778/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 780/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 782/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 783/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 784/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 785/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 787/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 789/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 790/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 791/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 793/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 795/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 798/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 800/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 802/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 805/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 807/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 808/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 810/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 814/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 817/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 818/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 820/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 821/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

Pirsa: 10080005 Page 822/896

While skin friction can only be reduced with skin surface smoothening body shape plays an important role in separation and pressure drag:

- minimizing the angle gradients in the surface leads to less separation;
- the less separation there is, the more pressure is recovered at the body's end, hence less pressure drag.

Streamlined body shapes seem to be more adequate for swimming than, say, squares or circles.

Open question – rigorous treatment!

2. Qualitative Description of Drag

1. Outline of the physical problem

 Consider the flow of a viscous fluid past an obstacle (equivalent to the swim of a body in a previously static fluid):

Image: Coilgun Systems website

- For simplicity, consider a 2D flow
- Velocity is constant far from the body, $\vec{v} = v \vec{e}_x$
- In the surface, the normal component of velocity vanishes, $\vec{v} \cdot \vec{n} = 0$

Pirsa: 10080005 Page 825/896

1. Outline of the physical problem

 Consider the flow of a viscous fluid past an obstacle (equivalent to the swim of a body in a previously static fluid):

Image: Coilgun Systems website

- For simplicity, consider a 2D flow
- Velocity is constant far from the body, $\vec{v} = v \vec{e}_x$
- In the surface, the normal component of velocity vanishes, $\vec{v} \cdot \vec{n} = 0$

Pirsa: 10080005 Page 826/896

The Ideal Body for Swimming (a Physics swan song) José Ricardo Oliveira Perimeter Scholars International 2010/11

 Streamlined body shapes are seen in most waterbound and flying animals; do they serve a purpose in swimming?

Image: flyfishingnature.com

Image 123rf.com

Pirsa: 10080005 Page 828/896

Previous

Image: flyfishingnature.com

Image: 123rf.com

Pirsa: 10080005 Page 829/896

amlined body shapes are seen in most waterbound and flying nals; do they serve a purpose in swimming?

Image: flyfishingnature.com

Image: 123rf.com

 Streamlined body shapes are seen in most waterbound and flying animals; do they serve a purpose in swimming?

Image: Coilgun Systems website

 Clearly, if there is a point to the animals' body shapes, it is to reduce drag (as it slows you down, and requires a bigger effort to swim)

Pirsa: 10080005 Page 831/896

Propagation of vibration

Propagation of vibration

Contents

- Propagation of vibrations
- Types of wave

Is a water wave transverse or longitudinal?

Types of waves

Pirsa: 10080005 Page 864/896

Click to exit presentation...

Pirsa: 10080005

Types of waves

Pirsa: 10080005

How Candles Burn

Trevor J. Rempel August 20, 2010

How Candles Burn

Trevor J. Rempel August 20, 2010

Outline

- Where Does the Wax Go?
- Capillary Action
 - Cohesion and Adhesion
 - Height of Liquid in a Tube
- Rest of the Story
- Conclusion

Pirsa: 10080005 Page 870/896

Lighting the wick melts wax

Pirsa: 10080005 Page 871/896

Lighting the wick melts wax

Candle burns until wax is gone

Pirsa: 10080005 Page 872/896

Lighting the wick melts wax

- Candle burns until wax is gone
- But where does the wax go?

Pirsa: 10080005 Page 873/896

Capillary Action

Tendency of liquids to rise against gravity

Pirsa: 10080005 Page 874/896

Capillary Action

Tendency of liquids to rise against gravity

Pirsa: 10080005 Page 876/896

Capillary Action

Tendency of liquids to rise against gravity

- Common phenomenon
 - Paper Towels

Pirsa: 10080005 Sponges

Cohesive Force

Intermolecular forces between like molecules

Pirsa: 10080005 Page 878/896

Cohesive Force

- Intermolecular forces between like molecules
- Cause of Surface Tension

Cohesive Force

- Intermolecular forces between like molecules
- Cause of Surface Tension

Adhesive Force

Intermolecular forces between unlike molecules

Pirsa: 10080005 Page 882/896

Adhesive Force

- Intermolecular forces between unlike molecules
- Why you need to dry your dishes

Adhesive Force

- Intermolecular forces between unlike molecules
- Why you need to dry your dishes

Consider a small tube immersed in liquid

Interplay between cohesive and adhesive forces

Pirsa: 10080005 Page 886/896

Consider a small tube immersed in liquid

Interplay between cohesive and adhesive forces

Pirsa: 10080005 Page 888/896

$$\Delta \mathfrak{P} = \frac{2 \mathfrak{P} \mathfrak{P}}{\mathfrak{P}}$$

$$\Delta M = M h$$

Pirsa: 10080005 Page 889/896

$$h = \frac{2 \, \text{CRRTRRRRP}}{2 \, \text{RRRP}}$$

Pirsa: 10080005 Page 890/896

Pirsa: 10080005 Page 892/896

Rest of the Story

 Once wax is melted, capillary action draws wax up the wick

Rest of the Story

- Once wax is melted, capillary action draws wax up the wick
- Heat from flame then evaporates the wax

Rest of the Story

- Once wax is melted, capillary action draws wax up the wick
- Heat from flame then evaporates the wax
- Process continues until wax runs out

Conclusion

- Candle relies on capillary action
- After initially melting wax, adhesive forces between wax and wick draw wax up wick
- Heat from flame then evaporates the wax

