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Abstract: In this talk we will explain how the main step technical steps in the proofs by Hastings and Hayden-Winter of the non-additivity of the
minimal output von Neumann and $p$-Renyi entropy (for any $p&gt;1$) can be reduced to a sharp version of Dvoretzky's theorem on almost
spherical sections of convex bodies. This substantially simplifies their analysis, at least on the conceptual level, and provides an alternative point of
view on these and related questions.

Joint work with G. Aubrun and E. Werner
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Talk summary

e the setup : quantum channels as subspaces

e p-Rényi entropy and a link to Dvoretzky's theorem
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Talk summary

e the setup : quantum channels as subspaces
e p-Rényi entropy and a link to Dvoretzky's theorem
e Dvoretzky's theorem and its various forms

e the Hayden-Winter counterexample
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Talk summary

e the setup : quantum channels as subspaces

e p-Rényi entropy and a link to Dvoretzky's theorem
e Dvoretzky's theorem and its various forms

e the Hayden-Winter counterexample

e the Hastings's counterexample

e measure concentration: the union bound vs. chaining
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QI objects (geometric functional analysis angle)

e a complex Hilbert space H, usually H = C¢
e the C*-algebra B(H), B(C%) = My
e the real space M3’ of d x d Hermitian matrices

e the Schatten p-norm on Mgy or M3 or M4k

| } /\1/p
7o = (tr(oto)’?)
e the positive semi-definite cone PSD C M

e D =D(H), the set of states of B('H), or of density matrices

o D(H) = PSD n {tr(-) = 1}, or the base of PSD

o D('H) = the positive face of the unit ball in the trace
class (Schatten 1-norm)

o D(H) = conv{|¥){(¢| : v € H, |¢| =1}
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QI morphisms : quantum operations, or channels

Completely positive (CP) maps ® : B('H1) — B(H2), or
®: M, — My, usually also required to be trace preserving (TP)

Fact 0: For ®: M,, — M,; T.F.AE. (Stinespring-Kraus-Choi)
ed is CPTP
e for some By, ....Bx € Myumwith 3 Bl B; = Idca

®(p) =X; B;pB]

e for some isometry V : C™ — C9 @ Ck
®(p) = tren(VpVT) = tra(VpVT)

- ubode relation between V and Bj's: V =) . B; @ e S



QI objects (geometric functional analysis angle)

e a complex Hilbert space H, usually H = C*
e the C*-algebra B(H), B(C%) = M4
e the real space M3’ of d x d Hermitian matrices

e the Schatten p-norm on My or M3 or M4k
/2\1/p
ollp = (tr(c'o)P/<)
e the positive semi-definite cone PSD C M

e D ="D(H), the set of states of B('H), or of density matrices

o D(H) = PSD n {tr(-) = 1}, or the base of PSD

o D('H) = the positive face of the unit ball in the trace
class (Schatten 1-norm)

o D(H) = conv{|¥){(¥| : ¥ € H, || =1}
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QI morphisms : quantum operations, or channels

Completely positive (CP) maps @ : B(H1) — B(H2), or
®: M, — My, usually also required to be trace preserving (TP)

Fact0: For ®: M,, — My T.F.AE. (Stinespring-Kraus-Choi)
ed is CPTP
o for some Bi....,Bx € Mgyxm with 3, B B; = Id¢a

®(p) =X, B,pB]

Fay !

(M

e for some isometry V : C™ — C9 @ Ck
®(p) = trex(VpVT) = trp(VpVT)

- belde relation between V and Bj's: V =) . B; @ e o



Channels as subspaces, range of a channel

Quantum operations ® : C™ — C? are really

~d\ —~ d = Ck

m-dimensional subspaces YV = V(C9) C C? = C
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Channels as subspaces, range of a channel

Quantum operations ® : C™ — C9 are really

m-dimensional subspaces JV = V/( jff) —C4 » Ck

.

The isometry V is not important: corresponds to fixing a basis of W
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Channels as subspaces, range of a channel

Quantum operations ® : C™ — C9 are really

m-dimensional subspaces VW = V/( f“'f) — C9  Ck

e

The isometry V is not important: corresponds to fixing a basis of W
Alternatively, one may consider ® : B(W) — B(C), with ® = tr>
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Channels as subspaces, range of a channel

Quantum operations ® : C™ — C9 are really

m-dimensional subspaces WV = V/(C9) c C¢ = C*

The isometry V is not important: corresponds to fixing a basis of W
Alternatively, one may consider ¢ : B(W) — B(C9), with ® = tr>

For a pure state o = Vv = )V, its image by ® is simply encoded
In its “Schmidt decomposition™ :
If o = 3, 5 15 @ vj, then &(|¢)(¥]) = tra(|0) () = 5, 2 i) (us
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Verification:

tra(le)(p]) = tra ( Y s @vi)(Y 54 G v;')
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Channels as subspaces, range of a channel

Quantum operations ® : C™ — C9 are really

m-dimensional subspaces W = V(C9) c C9 = C*

The isometry V is not important: corresponds to fixing a basis of W
Alternatively, one may consider ¢ : B(W) — B(C9), with ® = tr>

For a pure state o = Vv = )V, its image by ® is simply encoded
in its “Schmidt decomposition™ :

_ FEN ] : B o, e o T Ty
If o =2 _;s5iuj @ v;, then &(|¢)(¥]) = tra(|p)(p]) = 22; 57 |uj)(uj]
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Verification:

t1'2( ) {.'-:5) — Tl‘z( E S; Uy @ v;)( E Sj Uj & vj)
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Verification:

tra(|@)(]) = U‘z(é E Si U; ® v;) 'iE Sj Uj & vj)

i J
= E sisj |ui) (uj| tr(|vi)(v|)
I.J
= 21 N 11
= st |uj)(y
-

Recall: (u;), (v;) are orthonormal sequences in C? and C*
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Recapitulation in linear algebra terms

d — k

® associated to VYW C C C
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Recapitulation in linear algebra terms

® associated to W C C? @ Ck ~ M s

The identification ~ is induced by u) @ v) ~ |u)(v

Unit vector © ~ matrix A with ||Al> =1
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Recapitulation in linear algebra terms

® associated to W C C? @ C* ~ M 4«&
The identification ~ is induced by u) @ v) ~ |u)(v
Unit vector © ~ matrix A with ||Al> =1

Schmidt decomposition o = ) . s;u; @ v; ~SVD A = Ej. Si |uj) (V]

-
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Recapitulation in linear algebra terms

® associated to W C C? @ Ck ~ My
The identification ~ is induced by u) @ |v) ~ (u)(v
Unit vector © ~ matrix A with ||All, =1

Schmidt decomposition o =) . s5j u; @ v; ~SVD A= .5 |u;) (v}

)
=

The output  ®(|p)(¢|) =) _; s? |uj) (u;| = AAT

J

The bottom line: To understand quantum channels, we need to
understand the patterns of singular numbers of A as A varies over
an m-dimensional subspace VWV of the space of d x k matrices

Pirsa: 10070019 Page 23/101



The additivity conjecture

Von Neumann entropy of a state p:

S[;J) — —T_l"f'l,r.l lOg J.r).)
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The additivity conjecture

Von Neumann entropy of a state p:

S5(p) = —tr(plog Z gj log(1

if gj's are eigenvalues of p

Minimum output entropy of a channel ¢:

ST()):= min S(P(p))

,l’_:'f.ﬁ[ :fﬂ"

By concavity of S(-), S™" is always attained on a pure state.
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The additivity conjecture

Von Neumann entropy of a state p:

S(p) = —tr(plogp) =) _ qjlog(1/q;)
J
if gj's are eigenvalues of p

Minimum output entropy of a channel ®:

STM(D) := min S(P(p))

,l’_:.’.ﬁt ”:FJ"I}

By concavity of S(-), S™" is always attained on a pure state.

Additivity conjecture: For CPTP maps &, ¥, do we have
Smin(® @ W) = Siyin(®) + Spmin(V)

Prse 0TERRQ) n (Hagtings 2009)
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Rényi entropy and multiplicativity problems
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Rényi entropy and multiplicativity problems

Additivity of the minimum output entropy would follow from
additivity of the minimum output p-Rényi entropy

Sgun(q)):: min  S,(P(p))

pcD(Cm)

for p > 1, where S,(0) := _ﬁ—p log(tro”)
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Rényi entropy and multiplicativity problems

Additivity of the minimum output entropy would follow from
additivity of the minimum output p-Rényi entropy

Sp"(®) == min S,(d(p))

peD(Cm)

for p > 1, where S,(o0) = _ﬁ—p log(tro®) = lfp log || ||
(let p — 1)

Modulo normalizing factors and logarithmic change of variables,
S;""(®) is equivalent to max,cpcmy || P(p)p. or [ ®[l1—p

irsa: 10070019
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Rényi entropy and multiplicativity problems

Additivity of the minimum output entropy would follow from
additivity of the minimum output p-Rényi entropy

Sp(®):= m m P(®(P))

i - |

[

for p > 1, where S,(o0) = Lp log(tra?) = <& log||a|l,

(let p — 1) 2

Modulo normalizing factors and logarithmic change of variables,
5;n|n(¢) iIs equivalent to max ,pcmy ||P(p)||p. or [|P|1—
(again, attained on a pure state).

Additivity of SJ""(®) is equivalent to multiplicativity of ||®|1_,
“No" (Hayden-Winter 2008)
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Focus on |||,

Let 'V be the m-dimensional subspace of M, associated with ®
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Focus on ||®||;_,

Let V' be the m-dimensional subspace of M. associated with ®
¢ 1—p — M3Xpcy A =3 AAT . A Ep

In other words

©
’.....l
I
=
i)
P4
I
N
| &
8

1—p AEW\10}

I
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Conference “Perspectives in High Dimensions”

Cleveland, August 2 until August 6, 2010

http:/ /www.case.edu/artsci/math /perspectivesinHighDimensions/
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Dvoretzky's theorem

High-dimensional convex bodies have almost spherical sections of
large dimension.
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Dvoretzky's theorem

High-dimensional convex bodies have almost spherical sections of
large dimension.

Given m € N and = > 0 there is N = N(m. =) such that, for any
norm on RN (or CV) there is an m-dimensional subspace on which
the ratio between that norm and the Euclidean norm is
(approximately) constant, up to a multiplicative factor 1 + =.
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Milman's “tangible” version of Dvoretzky's theorem
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Milman's “tangible” version of Dvoretzky's theorem

Fact 1 : Consider the N-dimensional Euclidean space (over R or
C) endowed with the Euclidean norm | - | and some other norm

- || such that, forsome b >0, || - || < b| - |. Denote M = E|| X/,
where X is a random variable uniformly distributed on the unit
Euclidean sphere. Let = > 0 and let m < c=2(M/b)?>N, where
c > 0 is an appropriate (computable) universal constant. Then, for
most m-dimensional subspaces E we have

vxe E. (1—=)M|x| < ||x| <(1+=)M|x|.
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Milman's “tangible” version of Dvoretzky's theorem

Fact 1 : Consider the N-dimensional Euclidean space (over R or
C) endowed with the Euclidean norm | - | and some other norm

- || such that, forsome b >0, || - || < b| - |. Denote M = E|| X||,
where X is a random variable uniformly distributed on the unit
Euclidean sphere. Let = > 0 and let m < c=2(M/b)*>N, where
c > 0 is an appropriate (computable) universal constant. Then, for
most m-dimensional subspaces E we have

ixe E. (1—=)M|x| < ||x|| <(1+=)M|x].

A similar statement holds for Lipschitz functions in place of norms.
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Dvoretzky's theorem for Schatten classes (FLM '77)

For the Schatten norm | - |, with g =2p > 2
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Dvoretzky's theorem for Schatten classes (FLM '77)

For the Schatten norm

-|lqwithgq=2p>2,k=dand ¢
we get b=1 and M ~ d/971/2 (next slide), hence when

m ~ (M/b)2N = M2d? ~ (d*/a-1/2)%q2 = g1+2/a — g1+1/p

=
2

irsa: 10070019
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Dvoretzky's theorem for Schatten classes (FLM '77)

For the Schatten norm

llqwithg=2p>2,k=dand ¢

=
we get b=1 and M ~ d%/971/2 (next slide), hence when E

m ~ (Mb)jN = Mzdz - {:G’l g—1 2}3d2

dl—f > dl_l P
then for a generic m-dimensional subspace W of Mg

VA W

1

irsa: 10070019
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Dvoretzky's theorem for Schatten classes (FLM '77)

For the Schatten norm

-|lqwithgq=2p>2,k=dand ¢

.
we get b=1 and M ~ d/971/2 (next slide), hence when &

m ~ (M/b)2N = M2d? ~ (d'/a-1/2)%42

dl—ﬁ_q — dl—l P

then for a generic m-dimensional subspace W of My
VAW dY912||Allx < ||Allg < CdY912) A2

Accordingly, for the associated (random) channel ¢

All2p
Oll—p = (Taﬁ( All2 )

)

irsa: 10070019
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Dvoretzky's theorem for Schatten classes (FLM '77)

M| =

For the Schatten norm | - ||, with g =2p > 2, k=d and = =
we get b=1 and M ~ d/971/2 (next slide), hence when

m ~ (Mb):N — M2d? ~ (dl qg—1 2)3012 — 41+2/9 — dl_l'p,
then for a generic m-dimensional subspace W of My

VAe W dY97 12| A| < ||Allg < CdYY2|| A5

Accordingly, for the associated (random) channel ¢

2

All2 : i
Ol = (35 T4 ) < (G827 = Cotio

2

which is < 1 for large d and nearly as small as it can be:
®[|;_, > d/P1 always.
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Dvoretzky's theorem for Schatten classes (FLM '77)

P | =

For the Schatten norm | - ||, with g =2p > 2, k=d and = =
we get b=1 and M ~ d¥/971/2 (next slide), hence when

m ~ (M/b)’N = M?d? ~ (d/9-1/2)" 2 = di+2/a = ¢i+1/p,
then for a generic m-dimensional subspace W of My

VAW dY972||Al2 < ||Allg < CdY97H2||All;

Accordingly, for the associated (random) channel ¢

O .= (max - ) < (/T 2)

2

=i CEdI p—1

which is < 1 for large d and nearly as small as it can be:
®[|;_, > d/P1 always.

The counterexample follows by showing that for the composite

: 10070019

channel ® ® ® we have a nontrivial lower bound 2 ;o —2— ~ dl/P

P % 44/101



Fg—ou |- |lc=|-llop = E|X
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Why M ~ d1/a-1/27

e 2 is the same as in the Wigner semi-circle law

e d1'/? is due to the normalization in the Frobenius norm || - |2
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Why M ~ d1/a-1/27

Fg=0c0, || -lc = llogr s E|X]|op~ 2d /2

e 2 is the same as in the Wigner semi-circle law

e d1/2 is due to the normalization in the Frobenius norm || -

Obviously E||X||>, =1

For g € (2. o¢) we interpolate (Holder inequality)

irsa: 10070019
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The counterexample to additivity

of S™"(.) is more subtle (follows Brandao-Horodecki).
The analysis of a single random channel is based on two facts
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The counterexample to additivity

of S™"(.) is more subtle (follows Brandao-Horodecki).
The analysis of a single random channel is based on two facts

Fact 2 : Yo € D(C?) 5(c) > 5 (1) —d ||o — 14|
Consequently v& : M, — My
| Id ||
S™in(p) > log(d) — d - ®(p) — —|
(@) = log(d) e (p) —— a

irsa: 10070019
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The counterexample to additivity

of S™"(.) is more subtle (follows Brandao-Horodecki).
The analysis of a single random channel is based on two facts

Fact 2 : "?’JED(C“’) S{c) > S (—‘f —d‘ﬁ—ﬂé
Consequently V& : M,, — My
Id ||
Smm d) > | e — o $lo) — —
(®) = log(d) S (P) — — "

This reduces the study of the not-so-regular and somewhat

involved quantity S™"(-) to upper-bounding ||o — %Hz for o in
the range of ®
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Fact 3: If k ~ d?. m ~ d?, then, for a typical m-dimensional
subspace W C Mgk,

. Id | C
3 AA — e -
4—:'1"{'1.‘13—{'{ =1 d 1P — d
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The counterexample to additivity

of S™"(.) is more subtle (follows Brandao-Horodecki).
The analysis of a single random channel is based on two facts

. "‘F"JED(C“') S(0) = S () —d|lo — 4|,
Consequently V& : M, — My
Id {|©
Smm o) > | - o(o) _ 9
( )_ Og{ ) —Z”;“?é‘} (;J) d i

This reduces the study of the not-so-regular and somewhat
involved quantity S™"(-) to upper-bounding ||c — "7 ||, for o in
the range of ®
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Fact 3: If k ~ d?. m ~ d?, then, for a typical m-dimensional
subspace W C Mgk,

max | AA' —

~ d

Id ||
A=W . ||A =1 d 1P
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Fact 3: If k ~ d*. m ~ d?, then, for a typical m-dimensional
subspace W C M.k,

. Id| &
.4—'1'1@%4\{1:1 d 1P =

Recall: AA" = |A|? = ®(|2)(¢]), where ¢ is the unit vector
corresponding to A and @ is the channel associated to W.
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Fact 3: If k ~ d*. m ~ d?, then, for a typical m-dimensional
subspace W C Mgk,

1. M C
AA' ] e
A—:‘L\T'T.“-?jg:l' d i > — d
Recall: AA" = |Al? = ®(|2)(]), where ¢ is the unit vector

corresponding to A and ® is the channel associated to W.

Combining the estimates

S™in(®) > log(d) — d (g) — log(d) — O ()
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Fact 3: If k ~ d*. m ~ d?, then, for a typical m-dimensional
subspace W C M g«k,

R-—. N k
RAN ——F < —
A—:viﬁ;fg:l a8
Recall: AA" = |Al? = ®(|2)(]), where ¢ is the unit vector

corresponding to A and ® is the channel associated to W.

Combining the estimates
S™" (@) > log(d) — d c>3|(d)ol
— Og d — Og d

On the other hand, the “large subspace/large eigenvalue”
argument gives for the composite channel

| E — log d
smw¢¢)fmg¢)9(oi )
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Focus on Fact 3

For A< W. ||Allo =1, we have
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Focus on Fact 3

For A< W. |All>o = 1, we have

e - ME- .. Tl EE . ¥
d-j—?A —F':—EFA o d ——dz —= .7 —E_O
Consequently,

| C2\1/4 .

—1/4 « A4—1/4(1 | = —3/ 88y & 2
d~V4All < Alle < d~V4(1+—) " Al < d7H4(1+ )AL
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Focus on Fact 3

For Ac W. ||All> =1, we have

C2 Id || 2tr|A2  trld 1
5 = || 1A all, tr A ” 7 tr| A == 0
Consequently,
C2\1/4 C2 ..
—1/41| All, < [|All. < d—1/3 < 4—1/4 I
dH4|All2 < ||Alls < d (1+ d) All» < d (1+4d)uA|,2
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Focus on Fact 3

For Ac W, |Allo = 1, we have

C2 Id 2tr|Al>  trld 1
Az—— — tr|A|* — - A" >0
= A all, = tr| A . = =t 52
Consequently,
C2\1/4 € .
d=Y4|All> < ||Alls < d- ( d) All» < d (1 4d) All,
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Focus on Fact 3

For Ac W.||Al> =1, we have

2 2

C > Id a4 2trlA?  trld s 1
Consequently,
C2\1/4 — C2-
FH4AllL < ||Alle < & Y4 (14— Allo< d Y41+ — ) ||All-
d—Y4All» < ||Alls < d (1+d) Al2< d4(1+ =) 1Al

In other words, W is 1 + O(%}—Euclidean as a subspace of the
Schatten 4-class.
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Focus on Fact 3

For Ac W. ||All> =1, we have

2

T aaE TR R T o o
Consequently,

_ £ 2 1/4 ; Cj“
—1/4 | P / < —1/4 , < —1/4 K | ~
d=—4All> < ||Alla < d (1+—d ) Allz< d=4(1+ =) Al

In other words, W is 1 + O(%)—Euclidean as a subspace of the
Schatten 4-class.

Note : Applying directly Dvoretzky's theorem for the parameters

in question (k ~ d?. m ~ d?) gives only 1 + O(ﬁ}:)

va
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A bootstrap : Dvoretzky x 2

The trick : g(A) = HAA? — %Hz is only 2-Lipschitz on the
Frobenius sphere Sg, but much more regular on a large subset
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A bootstrap : Dvoretzky x 2

The trick : g(A) = HAAf — %Hz is only 2-Lipschitz on the
Frobenius sphere Sg, but much more regular on a large subset

Fact 4 : g is 6/+/d-Lipschitz when restricted to the set
Q={AcSr : ||Ale <3/Vd}

verifying P(£2¢) < exp(—ck). Moreover, for a typical
m-dimensional subspace E C My.x, EN S C QL.
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A bootstrap : Dvoretzky x 2

The trick : g(A) = HAA? - %Hz is only 2-Lipschitz on the
Frobenius sphere Sg, but much more regular on a large subset

Fact 4 : (1) g is 6/ d-Lipschitz when restricted to the set
Q={Ac Sk : |Al< <3/Vd}

verifying (2)P(€2°) < exp(—ck). (3) Moreover, for a typical
m-dimensional subspace E C My, EN S C L

(1)

Page 65/101
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A bootstrap : Dvoretzky x 2

The trick : g(A) = HAA? - %Hz is only 2-Lipschitz on the
Frobenius sphere Sg, but much more regular on a large subset

Fact4: (1) gis 6/ d-Lipschitz when restricted to the set
Q={Ac Sk : |All~ <3/Vd}

verifying (2)P(€2°) < exp(—ck). (3) Moreover, for a typical

m-dimensional subspace E C My, EN S C L

(1) £(A) — &(B) = [|AAT - |, — ||BBT — Z|,

AAT — BBT'H2

A(A"— B") + (A— B)BT|,

N LN
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A bootstrap : Dvoretzky x 2

The trick : g(A) = HAA'E‘ — %Hz is only 2-Lipschitz on the
Frobenius sphere Sg, but much more regular on a large subset

Fact 4 : (1) g is 6/\/d-Lipschitz when restricted to the set
Q={A€SF : ||Allw < 3/Vd}

verifying (2) P(€Q2€) < exp(—ck). (3) Moreover, for a typical
m-dimensional subspace E C Mg.x, EN S C QL.

(3)
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A bootstrap : Dvoretzky x 2

The trick : g(A) = HAA'T — %Hz is only 2-Lipschitz on the
Frobenius sphere Sg, but much more regular on a large subset

Fact 4 : (1) g is 6/\/d-Lipschitz when restricted to the set
Q={Ac Sk : ||Ale <3/Vd}

verifying (2) P(€Q2€) < exp(—ck). (3) Moreover, for a typical
m-dimensional subspace E C Mg.x, EN S C QL.

(3) follows from Dvoretzky's theorem with || - || = || - ||« and

= = 1/2 once we establish that the average M of || - || verifies
M~1/Vd+1/vVk <2/\/d
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A bootstrap : Dvoretzky x 2

The trick : g(A) = HAAJF — %Hz is only 2-Lipschitz on the
Frobenius sphere Sg, but much more regular on a large subset

Fact 4 : (1) g is 6/\/d-Lipschitz when restricted to the set
Q={A€SF : ||Al < 3/Vd}

verifying (2) P(€2¢) < exp(—ck). (3) Moreover, for a typical
m-dimensional subspace E C My«x, EN S C QL.

(3) follows from Dvoretzky's theorem with || - || = || - || and
= = 1/2 once we establish that the average M of || - || verifies

M~ 1/vd+1/vVk < 2/vd (Marchenko-Pastur)
Note: m ~ £2(M/b)?>N = (1/2)>M?kd ~ k ~ d?
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A bootstrap : Dvoretzky x 2

The trick : g(A) = HAA‘;‘ — %Hz is only 2-Lipschitz on the
Frobenius sphere Sg, but much more regular on a large subset

Fact 4 : (1) g is 6/v/ d-Lipschitz when restricted to the set
Q={Ac Sk : ||Als <3/Vd}

verifying (2) P(€2°) < exp(—ck). (3) Moreover, for a typical
m-dimensional subspace E C Myy«x, EN S C L

(3) follows from Dvoretzky's theorem with || - || = || - ||« and
= = 1/2 once we establish that the average M of || - || verifies

M~ 1/vd+1/vVk <2/vd (Marchenko-Pastur)
Note: m ~ =2(M/b)?>N = (1/2)°M?kd ~ k ~ d?

(2) follows from Levy's lemma

Page 70/101
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Levy's lemma

Fact 5: If f : SN-1 _ R is a 1-Lipschitz function, then for every
e >0,
P(|f(x)—pu| >=)< G exp(—cy N=2).
where x is uniformly distributed on SN=1, 1 is any central value of
f, and (;.c3 > 0 are absolute constants.
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Levy's lemma

Fact 5: If f : SN-1 _ R is a 1-Lipschitz function, then for every
s >0,
P(|f(x) —p| > =) < GG exp(—c N=9).
where x is uniformly distributed on SN=1, 1 is any central value of
f, and (;.c3 > 0 are absolute constants.

Central value : the median, the mean, or any number between
(say) the 1st and the 3rd quartile.
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Levy's lemma

Fact 5: If f : SN-1 . R is a 1-Lipschitz function, then for every
>0

P(|f(x) — p| > =) < G exp(—c N=7).

SN—I

where x is uniformly distributed on , it I1s any central value of

f, and (;.cy > 0 are absolute constants.

Central value : the median, the mean, or any number between
(say) the 1st and the 3rd quartile.

Here : =M <2/ Vd, = =1/Vd, N = 2kd
= p+ = < 3/v/d and g N=2 = 4k
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The final step

Restrict g(A) = H»‘fbﬁ\‘i — %”2 to €2, and then extend the restriction
ga to g : Sg — R without increasing the Lipschitz constant,

which is < 6/\/d
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The final step

Restrict g(A) = HAAT' — E||2 to €2, and then extend the restriction

d
ga to g : Sg — R without increasing the Lipschitz constant,

which is < 6/\/d

Next, apply the “non-linear” Dvoretzky's theorem to g.
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The final step

Restrict g(A) = H/-‘i'bfi\T — %”2 to 2, and then extend the restriction
ga to g : S — R without increasing the Lipschitz constant,

which is < 6/ d
Next, apply the “non-linear’ Dvoretzky's theorem to g.

Since for a typical m-dimensional subspace E we have E " Sg C (2,
it follows that g and g coincide on E N Sg, and the conclusion
obtained from the theorem is valid also for g, as required.
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The final step

Restrict g(A) = Hf’-’\ff\T — %”2 to €2, and then extend the restriction
g to g : S — R without increasing the Lipschitz constant,
which is < 6/\/d

Next, apply the “non-linear” Dvoretzky's theorem to g.

Since for a typical m-dimensional subspace E we have £E 1 Sg C (2,
it follows that g and g coincide on E N Sg, and the conclusion
obtained from the theorem is valid also for g, as required.

Needed to verify : Since we want to upper-bound g on E N Sg by
O(%), we need to check that
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The final step

Restrict g(A) = HAAT' — %”2 to €2, and then extend the restriction
giq to g : S — R without increasing the Lipschitz constant,

which is < 6/\/d
Next, apply the “non-linear’ Dvoretzky's theorem to g.

Since for a typical m-dimensional subspace E we have E 1 Sg C (2,
it follows that g and g coincide on E N Sg, and the conclusion
obtained from the theorem is valid also for g, as required.

Needed to verify : Since we want to upper-bound g on E N Sg by
O(%), we need to check that

e the median of g on Sg is O(3)

e allowing O(%) deviation from a central value of g leads to a

correct value of m, i.e., m~ k ~ d?
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The “non-linear” Dvoretzky's theorem

Fact 1': Let f : Sen — R is a 1-Lipschitz circled function and let
= > 0. Let E C C" be a random subspace (Haar-distributed) of
dimension m = cgN=2. Then, with large probability,

f—ul <= on Sju 17 3

where p is any central value of f (with respect to the normalized
Lebesgue measure on Scn) and ¢ is an absolute constant.
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The “non-linear” Dvoretzky's theorem

Fact 1": Let f : Sen — R is a 1-Lipschitz circled function and let

= > 0. Let E C C" be a random subspace (Haar-distributed) of
dimension m = ¢gN=2. Then, with large probability,

f—pl <e on SenNE,

where p is any central value of f (with respect to the normalized
Lebesgue measure on Scn) and ¢ is an absolute constant. If the
function is L-Lipschitz, the dimension changes to m = ¢gN(=/L)?
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Final verifications

1

o« L=6/Vd, == 0(1/d) = m~ N(§)* ~ kd(ZL%5) ~ k
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Final verifications

_— _. 2
o« L=6/Vd, c=0(1/d) = m~ N(§)* ~ kd( L) ~ k OK

e the median of g = O(1/d)

Marchenko-Pastur: with large probability, all singular values of A

are in the interval {—L N L_ 3 L_‘

= all eigenvalues of AA' are within O lk_d) of %
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The union bound vs. chaining

The standard proofs of Dvoretzky-like statements go as follows:
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The union bound vs. chaining

The standard proofs of Dvoretzky-like statements go as follows:

e for a fixed subspace Ey, choose an =/2-net N of SN—1 N £
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The union bound vs. chaining

The standard proofs of Dvoretzky-like statements go as follows:
e for a fixed subspace Ey, choose an =/2-net \/ of SN-1n1 F,

e if U is a random unitary, Levy's lemma implies that for fixed
z € N with large probability |f(Uz) — pu| < =/2
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The union bound vs. chaining

The standard proofs of Dvoretzky-like statements go as follows:
e for a fixed subspace Ey, choose an =/2-net \/ of SN-1n1 F,

e if U is a random unitary, Levy's lemma implies that for fixed
z € N with large probability |f(Uz) — u| < =/2

e the union bound = the same property for all z € \/

e f is 1-Lipshitz = |f(Uz) — u| < =/2+2/2 == on SN N UE
for “most of” choices of U
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The union bound vs. chaining

The standard proofs of Dvoretzky-like statements go as follows:
e for a fixed subspace Eg, choose an =/2-net \/ of SN-1n g

e if U is a random unitary, Levy's lemma implies that for fixed

z & N with large probability |f(Uz) — p| < =/2

e the union bound = the same property for all z € \/

e f is 1-Lipshitz = |f(Uz) —u| < =/2+</2 == on SN 1N UK

for “most of’ choices of U

l)dim Eg

Difficulty : necessarily card N > (2 , so for the procedure to

work one needs m := dim Ey = O(lagf—;;}N)
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The union bound vs. chaining

The standard proofs of Dvoretzky-like statements go as follows:
e for a fixed subspace Ey, choose an =/2-net \/ of SN-1n1 F,

e if U is a random unitary, Levy's lemma implies that for fixed
z € N with large probability |f(Uz) — u| < =/2

e the union bound = the same property for all z € \/

o f is 1-Lipshitz = |f(Uz) —u| < =/2+ /2 == on SN 1N UK
for “most of”’ choices of U

l)dim Eg

Difficulty : necessarily card ' = (= , so for the procedure to

-

work one needs m := dim Ep = O(_lﬂg(:—E;}N)

Remedy : a chaining argument, or a more economical usage of nets
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The chaining argument

e S compact metric space of radius R, h: S — R continuous
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The chaining argument

e S compact metric space of radius R, h: S — R continuous
ofrk—012 ___ N is an 27 %R-net of S; No = {so}

egivensc Sand k=0.1.2..., , let zi(s) € Ny verify
dist(s.zx(s)) < 27*R
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The chaining argument

e S compact metric space of radius R, h: S — R continuous
ofork=0.1.2...., N is an 27 “R-net of S; No = {0}

egivensc Sand k=0.1.2....,, let z(s) € N verify
dist(s. zx(s)) < 27*R

e then h(s) = h(so) + 310 h(zki1(s)) — h(zk(s)), hence
|h(s) — h(s0)| < Do MaxXeens. teni., |A(E) — (L)
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The chaining argument

e S compact metric space of radius R, h: S — R continuous
ofork=0.1.2...., N is an 2 ¥R-net of S; No = {0}

egivens<c Sand k=0.1.2...., , let z(s) € Ny verify
dist(s. zx(s)) < 27*R

e then h(s) = h(so) + > reg h(zk11(s)) — h(z«(s)), hence
h(S) == h(S{])‘ <_: Z;C:{j maxtr:_\'k.r’i‘«.}.;_l h(t) = h(ij)‘

o if (Xs)s:s are random variables, then
T Sy = N T i i
E|Xs — ng )| < zk:i} I MaAXtc N, /SN Xe — Xe
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The chaining argument

e S compact metric space of radius R, h: S — R continuous
efork=0.1.2...., N isan 2 %“R-net of S;: Np = {s0}

egivenscSand k=0.1.2..._, , let z(s) € N verify
dist(s. zx(s)) < 27%R

e then h(s) = h(so) + > reg h(zk11(s)) — h(z«(s)), hence
ih(S) = h(S{])‘ <_: Z?:D maxfE\‘k.fE\:‘.‘-_l h(t) == h(ij)‘

o if (XS)S£S are random variables, then
8 = X R
ElXs — Xg)| < SR:D 2 MAXtc N ' ENG Xe — X¢

Under appropriate assumptions on the continuity of the process
(XE)E:S* this argument leads to surprisingly sharp bounds
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Dudley’s inequality

Fact 6 : S compact metric space, (Xs)s:s a subgaussian process,
I.e., there are . 3 > 0 such that, forall t.t' € S and for all A > 0,

- ~ - ) \ ; |
P(|Xe — Xer| > A) < Bexp (“fm(r- rJ)

Then

R
E sup |[X; — Xp| < CBa? 3/ Vlog N(S.n) dn.
Jo

rfeS

where N(S.7) is the minimal cardinality of a 7-net of S and R is
the radius of S.
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In our context : f : S5ocv — R, 1-Lipschitz

S —(SenNE)U {0}, dmE —=m
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In our context : f : S5ocv — R, 1-Lipschitz

S = (ScnNE)U{0}, dmEy=m

e randomness : U € U(N), the Haar measure

o X, .= f(Us)

e subgaussian property, with &« = cN and 3 = O(1), is given by
Levy's lemma + some standard tricks
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In our context : f : S5ocn — R, 1-Lipschitz

S = (ScnNE)U{0}, dmEy=:m
e randomness : U € U(N), the Haar measure
o X, .= f(Us)

e subgaussian property, with &« = c/N and 7 = O(1), is given by
Levy's lemma + some standard tricks

e elementary bound N(S.7n) < (%)m

e singularity at O integrates out; in other words, no log(2/=) effect
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Is negative solution to the additivity conjecture
good or bad?
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Is negative solution to the additivity conjecture
good or bad?

An affirmative answer would greatly simplify the theory: BAD

On the other hand, a negative answer means that entanglement
allows using quantum channels more efficiently than previously

thought: GOOD

But to exploit this opportunity one would need explicit maps for
reasonable values of the parameters m. d
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Is negative solution to the additivity conjecture
good or bad?

An affirmative answer would greatly simplify the theory: BAD

On the other hand, a negative answer means that entanglement
allows using quantum channels more efficiently than previously

thought: GOOD

But to exploit this opportunity one would need explicit maps for
reasonable values of the parameters m. d
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Is negative solution to the additivity conjecture
good or bad?

An affirmative answer would greatly simplify the theory: BAD

On the other hand, a negative answer means that entanglement
allows using quantum channels more efficiently than previously

thought: GOOD

But to exploit this opportunity one would need explicit maps for
reasonable values of the parameters m. d
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