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Abstract: Within the framework of quantum repeated interactions we investigate the large time behaviour of random quantum channel. We focus on
generic quantum channels generated by unitary operators which are randomly distributed along the Haar measure. After studying the spectrum of
these channels, we state a convergence result for the iterations of generic channels. This allows to define a set of random quantum states called
"asymptotic induced ensemble”.
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Main Points

» Repeated Quantum Interactions and
Quantum Channel.

» Random Invariant State.

» Random Environment and 1.1.d
Interactions
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Introduction

@ What is the Quantum Repeated Interactions model?
@ Framework: Open System Quantum Dynamics
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Introduction

@ What is the Quantum Repeated Interactions model?
@ Framework: Open System Quantum Dynamics

@ Used as a useful approximation of Quantum Langevin Equation

e S Attal, Y Pautrat: From repeated to continuous quantum
interactions. Ann. Henn Poincaré, 7(1):59-104, 2006.
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Introduction

@ What is the Quantum Repeated Interactions model?
@ Framework: Open System Quantum Dynamics

© Used as a useful approximation of Quantum Langevin Equation

irsa: 10070015

e S Attal, Y Pautrat: From repeated to continuous quantum
interactions. Ann. Henri Poincaré, 7(1):59-104, 2006.

Used for developping a theory of discrete quantum repeated
measurement and approximation of Stochastic Master Equations

e C Pellegrini: Markov Chains Approximations of jump-Diffusion
Stochastic Master Equations. Ann Instit Henni Poincaré: Probability
and Statistic (in press).
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Basic model

@ A small system Hp in contact with an infinite chain @y Hx
HoerHi +Ho+ ...+ He + ...

@ Each Hyx = H interacts with Hg, one after the others, during a time
=

Pirsa: 10070015 Page 7/71



Basic model

@ A small system Hp in contact with an infinite chain @y Hx
HoeHi+Ho+ ...+ He + ...

@ Each Hix — H interacts with Hg, one after the others, during a time
=

@ The first copy H; interacts with Hg during a time 7
(Ho &~ Ha) + (Ha + ... + Hi +...)

then disappears

@ H, comes to interact

(Hoe» Ha) +(Ha+ ...+ Hi +...)
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Basic model

@ Single interaction: (Ho, p) + (H, ) described by a total
Hamiltonian on Ho @ H :
Hpe = Ho®@ 1 + 1@ H+ Hype, U = e Hux
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Basic model

@ Single interaction: (Ho, p) + (H, ) described by a total
Hamiltonian on Hg @ H :
Hpe = Ho®@ 1 + 1@ H+ Hypey, U = e Hemx

@ Schradinger picture: ;= U(p® g)U*
@ Partial trace over 7, we get a new state p; = ®Y%(p) = Try[u].
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Basic model

@ Single interaction: (Ho, p) + (H, ) described by a total
Hamiltonian on Ho @ H :
Hpe = Ho @ 1 + 1@ H+ Hypey, U = e Hex

@ Schradinger picture: p = U(p® B)U*
@ Partial trace over 7, we get a new state p; = ®Y?(p) = Try[u].

@ Interaction with the second copy of H:
(Ho,p1) + (H,B) = p2 = ®(p1) and so on...

Pk = (‘DU"S) :[k)(ﬂ)-
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Link with Quantum Channel

@ A linear map ® : My4(C) — My4(C) is a quantum channel if and only
if one of two properties holds

@ Stinespring dilation There exists a finite dimensional Hilbert space C? ,
a density matrix 3 on C? and an unitary operation U € U (dd’) such
that

®(X) =Tre [UX @ B8)U™], VX € Ma(C).
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Link with Quantum Channel

@ A linear map ® : My4(C) — My4(C) is a quantum channel if and only
if one of two properties holds

@ Stinespring dilation There exists a finite dimensional Hilbert space C? ,

a density matrix 3 on C? and an unitary operation U € U(dd") such
that

¢(X) = Try [U(X X ﬂ)U‘] , ¥Xe€ Md(C)*

@ Kraus decomposition There exists an integer k and matrices
Li,..., Lk € Mg(C) such that

k
O(X) =) LXL;, VX< Mq4(C)

—

and

k
y EL—L
i=1
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Main points

@ Initially, S_Attal and Y .Pautrat introduce a time-renormalization of
the total hamiltonian and show that when 7 goes to zero the
sequence of state py converges to the solution of usual Lindblad
equation which describes the evolution of open system in contact
with large reservoir.
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Main points

@ Initially, S_Attal and Y.Pautrat introduce a time-renormalization of
the total hamiltonian and show that when 7 goes to zero the
sequence of state py converges to the solution of usual Lindblad
equation which describes the evolution of open system in contact
with large reservoir.

@ Here we are interested in the large time behaviour of p;, when k
goes to infinity (U being fixed without renormalization). In other
terms what is the asymptotic behaviour of quantum channels.
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Main points

@ Initially, S_Attal and Y_Pautrat introduce a time-renormalization of
the total hamiltonian and show that when 7 goes to zero the
sequence of state py converges to the solution of usual Lindblad
equation which describes the evolution of open system in contact

with large reservoir.

@ Here we are interested in the large time behaviour of p;, when k
goes to infinity (U being fixed without renormalization). In other
terms what is the asymptotic behaviour of quantum channels.

@ U initially random and S fixed: limg (6Y-2)°%)()).

© U and 3 random at each step ¢Y«Px o ... 0 g"1:FP1

irsa: 10070015 Page 16/71



Spectral properties

@ Study of “iterations” of random quantum channel
®YB(p) = Tra[U(p ® B) U],

where U randomly chosen and S fixed
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Spectral properties

@ Study of “iterations” of random quantum channel
®Y3(p) = Tra[U(p @ B)U*],

where U randomly chosen and 3 fixed

@ In general, in order to attack such problem we need to study the
properties of the spectrum of quantum channels.
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Spectral properties of channels

Proposition

Let ® : M4(C) — M4(C a quantum channel. Then
@ @ has at least one invariant element which is a density matrix;
@ @ has trace operator norm 1;
@ @ has spectral radius 1;

@ O satisfies the Schwarz inequality

VX € My(C), o(X)"o(X) < [|®(])]| $(X"X).
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Asymptotic states

Let C be the set of all quantum channels that have 1 as a simple
eigenvalue and all other eigenvalues are contained in the open unit
disc.
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Asymptotic states

Let C be the set of all qguantum channels that have 1 as a simple
eigenvalue and all other eigenvalues are contained in the open unit
disc.

Proposition

Consider a quantum channel ® € C. Then, for all density matrices po,

= %
lim ®%(po) = poo,

where p.. is the unique invariant state of ®.
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@ For U € U(d), define the unitary conjugation channel

dy(X) = UXU™.
One can check that the spectrum of @y is
spec(®u) = {Aidj | A, Aj € spec(U)}.

For U = I, one gets the identity channel ®;(X) = X.
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@ For U € U(d), define the unitary conjugation channel

®y(X) = UXU™.
One can check that the spectrum of @y is
spec(®u) = {Aidj | Ai, Aj € spec(U)}.
For U = I, one gets the identity channel ®;(X) = X.
@ The depolarizing channel ¢4, : M;(C) — M4(C) is given by
Dgep(X) = Tr(X)é.

It has eigenvalues 1 (with multiplicity 1) and 0 (with multiplicity
d* —1).
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Generic quantum channels

@ Fix two integers d,d’ > 2 and a density matrix 3. To an unitary
matrix U € U(dd"), associate the channel

oY5(X) = Try [U(X @ B)U"].

@ Choosing U random from the Haar distribution on the unitary group,
we obtain a quantum channel-valued random variable (3 is fixed)

U(dd") — L(Ma(C))
U dY~2
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Generic quantum channels

@ Fix two integers d,d’ > 2 and a density matrix 3. To an unitary
matrix U € U(dd"), associate the channel

oYB(X) = Tre [U(X @ B)UT].

@ Choosing U random from the Haar distribution on the unitary group,
we obtain a quantum channel-valued random variable (3 is fixed)

U(dd") — L(Ma(C))
Uws oY5,

@ Question:
What are the properties of a generic quantum channel ?
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Almost all quantum channels are in C

Theorem

Let B be a fixed density matrix of size d’. If U is a random unitary matrix
distributed along the Haar invariant probability Haargg on U(dd"), then
®Y-8 € C almost surely.
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Almost all quantum channels are in C

Theorem
Let B be a fixed density matrix of size d’. If U is a random unitary matrix

distributed along the Haar invariant probability Haargg on U(dd"), then
®Y-8 € C almost surely.

Corollary

For almost all unitary matrices U € U(dd"), the channel ®Y- has an
unique invariant state p., and for all density matrices py,

n—o0

lim (¢U"ﬂ)" (Po) = Poo-

irsa: 10070015 Page 27/71




A key property: irreducibility

Définition
A positive map ® : Mg(C) — My4(C) is called
@ strictly positive (or positivity improving) if ®(X) > 0 for all X > 0;
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A key property: irreducibility

Définition
A positive map ® : Mg(C) — My4(C) is called
@ strictly positive (or positivity improving) if ®(X) > 0 for all X > 0;

@ irreducible if there is no (non-trivial) projector P such that
®(P) < AP for some A > 0.
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A key property: irreducibility

Définition
A positive map ® : Mg(C) — My4(C) is called
@ strictly positive (or positivity improving) if ®(X) > 0 for all X > 0;

@ irreducible if there is no (non-trivial) projector P such that
®(P) < AP for some A\ > 0.

Proposition
A positive linear map ® : My(C) — My(C) is irreducible if and only if the
map (I + ®)91 is strictly positive.
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Strictly positive and irreducible channels

Theorem

If ¥ is 2 unital, irreducible map on My(C) which satisfies the Schwarz
inequality (eg. the dual of an irreducible quantum channel ® ), then the
set of peripheral (i.e. modulus one) eigenvalues is a (possibly trivial)
subgroup of the unit circle T.

Moreover, every peripheral eigenvalue is simple and the corresponding
eigenspaces are spanned by unitary elements of M4(C).
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Strictly positive and irreducible channels

Theorem

If U is 2 unital, irreducible map on My(C) which satisfies the Schwarz
inequality (eg. the dual of an irreducible quantum channel ® ), then the
set of peripheral (i.e. modulus one) eigenvalues is a (possibly trivial)
subgroup of the unit circle T.

Moreover, every peripheral eigenvalue is simple and the corresponding
eigenspaces are spanned by unitary elements of M4(C).

Corollary
The peripheral eigenvalues of an irreducible quantum channel are simple
and contained in the finite set

{eT|N<<n<d? st =1}




Necessary and sufficient conditions for irreducibility

We denote by Lat( T) the lattice of invariant subspaces of an operator
T € My(C).

Proposition
Consider a completely positive map ® : Myz(C) — M4(C) defined by

k
O(X) =Y  LXL,
—

with L; € Mg(C), i =1,... k.
Then ® is irreducible if and only if

k
() Lat(L;)
i—1
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Necessary and sufficient conditions for irreducibility

Proposition (the Shemesh criterion)

Two matrices A, B € M4(C) have a common eigenvector if and only if

ﬂ ker [A', B'] # {0}.
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Necessary and sufficient conditions for irreducibility

Proposition (the Shemesh criterion)

Two matrices A, B € M4(C) have a common eigenvector if and only if

d—1

ﬂ ker [A', B'] # {0}.

ij=1

More generally, if A and B have a common invariant subspace of
dimension k (for 1 < k < d — 1), then their k-th wedge powers have a

common eigenvector, and hence (we put n = (i) )

_ﬂ ker [(A"%)", (B"*Y] # {0}
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Almost all quantum channels are irreducible

@ Write the matrix U defining a quantum channel ® as a d’ x d’ matrix

of blocks in Mg(C) : U € Mg (M4(C)). Then, the Kraus matrices L;
are (rescaled copies) of the blocks Us-f € M4(C).
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Necessary and sufficient conditions for irreducibility

Proposition (the Shemesh criterion)
Two matrices A, B € M4(C) have a common eigenvector if and only if

n ker [A', B'] # {0}.

More generally, if A and B have a common invariant subspace of
dimension k (for 1 < k < d — 1), then their k-th wedge powers have a
common eigenvector, and hence (we put n= (%))

(] ker [(A™Y, (BY] # {0}.
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Almost all quantum channels are irreducible

@ Write the matrix U defining a quantum channel ® as a d’ x d’ matrix
of blocks in Mg(C) : U € Mg(M4(C)). Then, the Kraus matrices L;
are (rescaled copies) of the blocks Us-* € M4(C).

@ | he Shemesh condition on the existence of an common invariant
subspace can be written as

det 3 [(A™%Y, (B - [(A™+Y, (B Y] =o.

ij=1
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Almost all quantum channels are irreducible

@ Write the matrix U defining a quantum channel ® as a d’ x d’ matrix

of blocks in Mg(C) : U € Mg (M4(C)). Then, the Kraus matrices L;
are (rescaled copies) of the blocks Us-f € M4(C).

@ | he Shemesh condition on the existence of an common invariant
subspace can be written as

det 3 [(A™Y, (BT - [(A™+Y, (B Y] =o.

ij—=1

@ This is a polynomial equation in the real and imaginary parts of the
(dd")? complex coefficients of the matrix U.
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Conclusion: almost all quantum channels are in C

Proposition
Let P € R[Xy,..., Xop]. the set

Z = {U = (uz) € U(d)/P(Re(uj;), Im(u;z)) = 0}

is either the whole U(d) or it has Haar mesure 0.
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Conclusion: almost all quantum channels are in C

Proposition
Let P € R[X;, ..., X54], the set

Z = {U = (u;) € U(d)/P(Re(uj;), Im(u;)) = 0}

is either the whole U(d) or it has Haar mesure 0.

@ For almost all unitary matrices U € U(dd"), the channel ®Y-7 is
irreducible,
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Almost all quantum channels are irreducible

@ Write the matrix U defining a quantum channel ® as a d’ x d’ matrix

of blocks in Mg(C) : U € Mg (M4(C)). Then, the Kraus matrices L;
are (rescaled copies) of the blocks Us-f € M4(C).

@ | he Shemesh condition on the existence of an common invariant
subspace can be written as

det 3 [(A™Y, (BY]" - [(A™Y, (B Y] =0

ij—=1

@ This is a polynomial equation in the real and imaginary parts of the
(dd")? complex coefficients of the matrix U.
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Conclusion: almost all quantum channels are in C

Proposition
Let P € RXy,..., Xpp], the set

Z = {U = (u;) € U(d)/P(Re(uj;), Im(u;)) = 0}

is either the whole U(d) or it has Haar mesure 0.

@ For almost all unitary matrices U € U(dd’), the channel ®Y-# is
irreducible,
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Conclusion: almost all quantum channels are in C

Proposition

Let P € R[Xl, — ,dezl, the set

Z = {U = (u;) € U(d)/P(Re(uj;), Im(u;)) = 0}

is either the whole U(d) or it has Haar mesure 0.

@ For almost all unitary matrices U € U(dd’), the channel ®Y-7 is
irreducible,

@ For almost all unitary matrices U € U(dd’), the channel ®Y-# has an
unique invariant state p., (which depends on U) and for all density
matrices pg,

lim (¢,U.B)" (Po) = Poo-

n—oo
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Asymptotic induced measure

@ As a result we have defined almost everywhere an application

U(dd') —» ML (C)
S Poo

@ A) Let b= (bn,..., by): by > ... 2 by, ) bi = 1 the eigenvalues
of the state 3 of the environment, the image measure of the Haar
probability through this application depends only on b and we denote
vy this measure.
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Asymptotic induced measure

@ As a result we have defined almost everywhere an application

U(dd') —» ML (C)
u Poc

@ A)Let b= (b1,...,bg): b1 > ... 2> by, ) _; bi = 1 the eigenvalues

of the state 3 of the environment, the image measure of the Haar
probability through this application depends only on b and we denote
vy this measure.

@ |he measure v is called the

Asymptotic Induced Measure.
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Asymptotic induced measure

@ B) For all unitary matrices V € U(d), p~ and V pV* have the same
distribution

@ () There exists a probability measure ng on the probability simplex
A4 1 such that if D is a diagonal matrix sample from np and V is an
independent Haar unitary on U(d), then VDV™ has distribution vp.
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Asymptotic induced measure

@ If ¥ is a random uniform element on the unit sphere of a product
H ® K, the distribution of

p1 = Trx[[¥) (¥]] (1)

is called the induced measure.
@ Let ¥ and U Haar distributed the state

p1 = Trxc[U|vo) (¥o| U] (2)

has the same distribution

@ Choosing ¥ — g ® fy, such that g and fy are first vectors of
orthonormal basis of H and K we see that the induced measure is

transported by the iterations of the quantum channel
®U-1k)(kl(lep) (en]) = Trxc[Ultbo) (vo| U*]
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Open questions

@ For the induced measure, we know asymptotic result when the
dimension of the respective system goes to infinity:
dimH
dim K

A
> C,

we recover the Marcenko-Pastur distribution.

@ Can we obtain a similar result for the asymptotic induced measure?
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Open questions

@ For the induced measure, we know asymptotic result when the
dimension of the respective system goes to infinity:
dimH
dim K

> C,

we recover the Marcenko-Pastur distribution.

@ Can we obtain a similar result for the asymptotic induced measure?
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Open questions

@ For the induced measure, we know asymptotic result when the
dimension of the respective system goes to infinity:

dmH
— C,
dim K
we recover the Marcenko-Pastur distribution.

@ Can we obtain a similar result for the asymptotic induced measure?

@ Power of disentanglement of repeated interactions.
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Open questions

@ For the induced measure, we know asymptotic result when the
dimension of the respective system goes to infinity:

dmH
dmKC

> C,

we recover the Marcenko-Pastur distribution.

@ Can we obtain a similar result for the asymptotic induced measure?

@ Power of disentanglement of repeated interactions.
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Asymptotic results: random environment

@ Discrete evolution equation
Pn — (bﬁn (pn—l) — T [U(Pn—l > BH)U*] .

In this model, the interaction unitary U is fixed beforehand and the
environment states (3,), are i.i.d. random density matrices.
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Asymptotic results: random environment

@ Discrete evolution equation
Pn — @ﬁ"(p"__l) = Trg [U(pml > JBH)U*] .

In this model, the interaction unitary U is fixed beforehand and the
environment states (3,), are i.i.d. random density matrices.

@ As usual, we are interested in the asymptotic behavior of the states
pn = D" 0 --- 0 ®P1(py).

@ We use results by L. Bruneau, A. Joye and M. Merkli on products of
random matrices, applied to the (i.i.d.) channels
& e £L(M4(C)).
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Asymptotic results: random environment

Theorem (BJM)

Let (M,)n be a sequence of i.i.d. random contractions of Mp(C) with the
following properties:

@ There exists a constant vector ¥ € CP such that My = ¥ almost
surely;
@ P(! is a simple eigenvalue of M) > 0.
Then the (deterministic) matrix E[M) has eigenvalue 1 with multiplicity
one and there exists a constant vector 8 € CP such that

Jim = Z M (w)Ma(w) - - - Ma(w) = [¥){(8] = Py M)

where P; gy is the rank-one spectral projector of E[M)] corresponding to
the eigenvalue 1.
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Asymptotic results: random environment

Using the duality between the Schrédinger and the Heisenberg pictures of
Quantum Mechanics, we obtain

T heorem

Let (®,), be a sequence of i.i.d. random quantum channels acting on
My4(C) such that

P(® has an unique invariant state) > 0.

Then E[®] is a quantum channel with an unique invariant state 6 and,
P-almost surely,

lim — Z[tb o---0®P](pg) =0, Vpe.

N—oc N
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Asymptotic results: random environment

Proposition
Let {Bn}n be a sequence of i.i.d. random density matrices such that, with

positive probability, the random quantum channel ®? has an unique
invariant state. Then, almost surely, for all initial states pg, one has

lim oat---tpm —
N—oo N

lim —Z[dﬁ" .0 ®71](pg) = 6

N—oc N

where @ is the unique invariant state of the deterministic channel ®E8l.
In particular, if E[B] = Iy /d’, then 0 is the “chaotic” state I5/d.
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Asymptotic results: i.i.d. unitaries

@ Discrete evolution equation
— i = Trg [U Ba) U,
Pn — (Pn—1) = Trar [Upn(pn—1 @ Ba) U] -

@ In this model, the interaction unitaries U, are Haar distributed
independent random matrices.
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Asymptotic results: i.i.d. unitaries

@ Discrete evolution equation
= = Trg [U Ba) Uy
Pn (Pn—1) ra [Un(pn—1 ® Ba) U] -

@ In this model, the interaction unitaries U, are Haar distributed

independent random matrices.
The environment states (3,), are independent of the family (U,),
and can have an arbitrary joint distribution.

Lemma
Let (V,)n, be a sequence of i.i.d. Haar unitaries independent of the family
{U,, Bn}n and consider the sequence of successive states (p,), defined
earlier. Then the sequences (p,), and (V,p,V, ) have the same
distribution.
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Asymptotic results: i.i.d. unitaries

Proposition

Let (p,)n be the successive states of a repeated quantum interaction
scheme with i.i.d. random unitary interactions. Then, almost surely,

i mt--- o U
m —_ —.
n—o0 n d
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Thanks
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Open questions

@ For the induced measure, we know asymptotic result when the
dimension of the respective system goes to infinity:
dimH
dim K

> C,

we recover the Marcenko-Pastur distribution.

@ Can we obtain a similar result for the asymptotic induced measure?
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Necessary and sufficient conditions for irreducibility

Proposition (the Shemesh criterion)

Two matrices A, B € Mg(C) have a common eigenvector if and only if

uroiucr g LuinpicLcry PI.D.I'IJ#E migpy v . ""dib} —= lVld\‘LrJ ucrinca vy

k
O(X) =Y  LXL,
—

with L; € Mg(C), i =1,...,k.
Then ® is irreducible if and only if

k
() Lat(L;)
—
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Generic quantum channels

@ Fix two integers d,d’ > 2 and a density matrix 3. To an unitary
matrix U € U(dd"), associate the channel

oY5(X) = Try [U(X @ B)U"].

@ Choosing U random from the Haar distribution on the unitary group,
we obtain a quantum channel-valued random variable (3 is fixed)

U(dd") — L(Ma(C))
U oY5,
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@ Initially, S_Attal and Y_Pautrat introduce a time-renormalization of
the total hamiltonian and show that when 7 goes to zero the
sequence of state py converges to the solution of usual Lindblad
equation which describes the evolution of open system in contact

with large reservoir.

@ Here we are interested in the large time behaviour of p; when k
goes to infinity (U being fixed without renormalization). In other
terms what is the asymptotic behaviour of quantum channels.

@ U initially random and S fixed: limg (¢Y-2)°(%)()).

© U and 3 random at each step ¢V« x o ... 0 gU1-FP1_
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Link with Quantum Channel

® A linear map ® : M4(C) — My4(C) is a quantum channel if and only
if one of two properties holds
@ Stinespring dilation There exists a finite dimensional Hilbert space C¢
a density matrix 3 on C¥ and an unitary operation U € U(dd") such
that
®(X) =Tra [UX @ B)UT], VX € Ma(C).
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@ What is the Quantum Repeated Interactions model?
@ Framework: Open System Quantum Dynamics

@ Used as a useful approximation of Quantum Langevin Equation

irsa: 10070015

e S Attal, Y_Pautrat: From repeated to continuous quantum
interactions. Ann. Henri Poincaré, 7(1):59-104, 2006.

Used for developping a theory of discrete quantum repeated
measurement and approximation of Stochastic Master Equations

e C_Pellegrini: Markov Chains Approximations of jump-Diffusion
Stochastic Master Equations. Ann Instit Henri Poincaré: Probability
and Statistic (in press).
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