Title: Ensembles of random quantum states

Date: Jul 05, 2010 01:30 PM

URL: http://pirsa.org/10070012

Abstract: TBA

Pirsa: 10070012 Page 1/47

Ensembles of Random Quantum States

Karol Życzkowski

in collaboration with

S. Braunstein, B. Collins, I. Nechita, V. Osipov, K. Penson, and H.-J. Sommers

Institute of Physics, Jagiellonian University, Cracow and Center for Theoretical Physics, PAS, Warsaw

Perimeter Institute Workshop, Waterloo, July 5, 2010

How to generate an ensemble of random density operators?

Reduction of random pure states

- 1) Consider an ensemble of random pure states $|\psi\rangle$ of a composite system distributed according to a given measure μ .
- 2) Perform partial trace over a chosen subsystem B to get a random mixed state

$$\rho := \operatorname{Tr}_{B} |\psi\rangle\langle\psi|$$

Depending on the **structure** of the composite system, the initial **measure** μ in the space of the pure states and the choice of the **subsystem** B, over which the averaging is performed

one obtaines different ensembles of random mixed states.

Pure states in a finite dimensional Hilbert space \mathcal{H}_N

Space of normalized complex pure states for an arbitrary N:

Since $\langle \psi | \psi \rangle = 1$ a **normalized** state belongs to the **sphere** S^{2N-1} .

Two states equal up to a phase are identified, $|\psi\rangle \sim e^{i\alpha}|\psi\rangle$, so the set of states is equivalent to the **complex projective space** $\mathbb{C}P^{N-1}$ of 2N-2 real dimensions.

N = 2: For **qubit** = **quantum** bit can be treated literally!

the word geometry

$$|\psi\rangle = \cos\frac{\vartheta}{2}|1\rangle + e^{i\phi}\sin\frac{\vartheta}{2}|0\rangle$$

 $\mathbb{C}P^1 =$ Bloch sphere of N = 2 pure states

Random Pure states in \mathcal{H}_N

'Quantum chaotic' dynamics (pseudo-random evolution)

described by a random unitary matrix U acting on a pure state produces (almost surely) a 'generic pure state' $|\psi\rangle = U|\phi_0\rangle$.

- Formally one defines an (unique) **Fubini–Study measure** μ on complex projective spaces which is **unitarily invariant**: for any (measurable) set A of states one requires $\mu(A) = \mu(U(A))$.
- This measure covers the entire space $\mathbb{C}P^{N-1}$ uniformly, and for N=2 it is just equivalent to the uniform, Lebesgue measure on the sphere S^2 .

How to obtain numerically a random pure state $|\psi\rangle$?

- a) Take a column (a row) of a random unitary U so that $|\psi\rangle = U|i\rangle$.
- b) generate N independent complex random numbers z_i according to the normal distribution. Write $|\psi\rangle = \sum_{i=1}^N c_i |i\rangle$ where the expansion coefficients read $c_i = z_i/\sqrt{\sum_i |z_i|^2}$.

Properties of 'typical' pure states in \mathcal{H}_N

Expansion coefficients: $|\psi\rangle = \sum_{i=1}^{N} c_i |i\rangle$

Expand a 'typical' state $|\psi\rangle$ in an (arbitrary) basis $|i\rangle$. What is the distribution of the components $y_i = |c_i|^2$?

- To characterize the distribution P(y) define the **entropy** $S(\psi) = -\sum_{i=1}^{N} y_i \ln y_i$
- Compute the mean entropy averaged over the set of pure quantum states of size N

$$\langle \mathcal{S} \rangle_{\psi} = \Psi(N+1) - \Psi(2) = \sum_{k=2}^{N} 1/k \sim \ln N - (1-\gamma),$$

where $\Psi(x)$ represents Digamma function,

while $\gamma = 0.5772...$ is the **Euler constant**.

Study of the distribution P(y) - the eigenvector statistics,

Kuś, Mostowski, Haake, 1988

One quantum state fixed, one random...

Fix an arbitrary state $|\psi_1\rangle$. Generate randomly the other state $|\psi_2\rangle$.

- ullet What is the average angle χ between these states ?
- What is the distribution $P(\chi)$ of the angle $\chi := \arccos |\langle \psi_1 | \psi_2 \rangle|$?

Properties of 'typical' pure states in \mathcal{H}_N

Expansion coefficients: $|\psi\rangle = \sum_{i=1}^{N} c_i |i\rangle$

Expand a 'typical' state $|\psi\rangle$ in an (arbitrary) basis $|i\rangle$. What is the distribution of the components $y_i = |c_i|^2$?

- To characterize the distribution P(y) define the **entropy** $S(\psi) = -\sum_{i=1}^{N} y_i \ln y_i$
- Compute the mean entropy averaged over the set of pure quantum states of size N

$$\langle \mathcal{S} \rangle_{\psi} = \Psi(N+1) - \Psi(2) = \sum_{k=2}^{N} 1/k \sim \ln N - (1-\gamma),$$

where $\Psi(x)$ represents Digamma function,

while $\gamma = 0.5772...$ is the **Euler constant**.

Study of the distribution P(y) - the eigenvector statistics,

Kuś, Mostowski, Haake, 1988

One quantum state fixed, one random...

Fix an arbitrary state $|\psi_1\rangle$. Generate randomly the other state $|\psi_2\rangle$.

- ullet What is the average angle χ between these states ?
- What is the distribution $P(\chi)$ of the angle $\chi := \arccos |\langle \psi_1 | \psi_2 \rangle|$?

One quantum state fixed, one random...

Fix an arbitrary state $|\psi_1\rangle$. Generate randomly the other state $|\psi_2\rangle$.

- \bullet What is the average angle χ between these states ?
- What is the distribution $P(\chi)$ of the angle $\chi := \arccos |\langle \psi_1 | \psi_2 \rangle|$?

Measure concentration phenomenon

'Fat hiper-equator' of the sphere S^N in \mathbb{R}^{N+1} ...

It is a consequence of the Jacobian factor for expressing the volume element of the N- sphere. Let $z=\cos\vartheta_1$, so that

$$J \sim (\sin \vartheta_1)^{N-1} J_2(\vartheta_2, \dots, \vartheta_N)$$

Hence the typical angle χ is 'close' to $\pi/2$ and two 'typical random states' are orthogonal and the distribution $P(\chi)$ is 'close' to $\delta(\chi - \pi/2)$.

How close?

Quantitative description of Measure Concentration

Levy's Lemma (on higher dimensional spheres)

Let $f: S^N \to \mathbb{R}$ be a **Lipschitz function**, with the constant η and the mean value $\langle f \rangle = \int_{S^N} f(x) d\mu(x)$. Pick a point $x \in S^N$ at random from the sphere. For large N it is then **unlikely** to get a value of f much different then the average:

$$P(|f(x) - \langle f \rangle| > \alpha) \le 2 \exp(-\frac{(N+1)\alpha^2}{9\pi^3\eta^2})$$

Simple application: the distance from the 'equator'

Take $f(x_1,...x_{N+1}) = x_1$. Then **Levy's Lemma** says that the probability of finding a random point of S^N outside a band along the **equator of** width 2α converges **exponentially** to zero as $2\exp[-C(N+1)\alpha^2]$.

As N >> 1 then every equator of S^N is 'FAT'.

Composed systems & entangled states

bi-partite systems: $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$

- separable pure states: $|\psi\rangle = |\phi_A\rangle \otimes |\phi_B\rangle$
- entangled pure states: all states not of the above product form.

Two-qubit system: $d = 2 \times 2 = 4$

Maximally entangled **Bell state** $|\varphi^{+}\rangle := \frac{1}{\sqrt{2}}\Big(|00\rangle + |11\rangle\Big)$

Entanglement measures

For any pure state $|\psi\rangle \in \mathcal{H}_A \otimes \mathcal{H}_B$ define its partial trace $\sigma = \mathrm{Tr}_B |\psi\rangle \langle \psi|$. **Definition:** Entanglement entropy of $|\psi\rangle$ is equal to von Neumann entropy of the partial trace

$$E(|\psi\rangle) := -\text{Tr } \sigma \ln \sigma$$

The more mixed partial trace, the more entangled initial pure state...

Entanglement of two real qubits

Entanglement entropy at the tetrahedron of d=4 real pure states

More on this is can be found in

I. Bengtsson and K. Zyczkowski, Geometry of Quantum States (Cambridge, 2006, 2008)

Generic pure states of a bi-partite system

'Two quNits' = $N \times N$ quantum system

The space $\mathbb{C}P^{N^2-1}$ of all states in $\mathcal{H}=\mathcal{H}_N\otimes\mathcal{H}_N$ has $d_{\mathrm{tot}}=N^2-2$ dimensions.

The subspace of **separable (product) states** $\mathbb{C}P^{N-1} \times \mathbb{C}P^{N-1}$ has only $d_{\mathrm{sep}} = 2(N-2)$ dimensions. For large N we observe that $d_{\mathrm{sep}} \sim 2N << d_{\mathrm{tot}} \sim N^2$ so the **separable states** form a set of measure zero in the space of all states.

Thus a 'typical' random state is entangled!

How much entangled?

Mean entropy of the reduced density matrix ρ

Let us call $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$. Take any **pure state** $|\psi\rangle \in \mathcal{H}$ and define its partial trace $\rho := \mathrm{Tr}_B |\psi\rangle \langle \psi| = \mathrm{Tr}_A |\psi\rangle \langle \psi|$.

The von Neumann entropy S of the reduced mixed state ρ is a measure of entanglement of the initially pure bi-partite state $|\psi\rangle$.

Average entanglement entropy for a bipartite system

$N \times N$ system

$$\langle S(\psi) \rangle_{\psi} \approx \ln N - \frac{1}{2} + \mathcal{O}(\frac{\ln N}{N})$$

$N \times K$ system: formula of Don Page (1993/1995)

valid for random states in $\mathcal{H}_N \otimes \mathcal{H}_K$ with $K \geq N$

$$\langle S(\psi) \rangle_{\psi} = \Psi(NK+1) - \Psi(K+1) - \frac{N-1}{2K} \approx \ln N - \frac{N}{2K}.$$

$N \times K$ system: probability measure

Let $\lambda = \{\lambda_1, \dots \lambda_N\}$ denote the spectrum of the reduced matrix $\rho := \operatorname{Tr}_B |\psi\rangle\langle\psi|$. If $|\psi\rangle$ is taken **uniformly** on $\mathcal{H}_N \otimes \mathcal{H}_K$ then

$$P_{N,K}(\lambda) = C_{N,K} \delta(1 - \sum_{i} \lambda_i) \prod_{i} \lambda_i^{K-N} \prod_{i < j} (\lambda_i - \lambda_j)^2$$

normalization constants $C_{N,K}$ derived in Sommers, Życzkowski (2001)

Concentration of entropy of the partial trace

Consider an $N \times K$ system with $K \geq N$

The maximal entropy (achieved for $\rho_* = \mathbb{1}_N/N$) is equal to $S_{\max} := \ln N$. Since the **mean entropy**, $\langle S \rangle_{\psi} \approx S_{\max} - \frac{N}{2K}$, is close to the maximal value a **concentration effect** has to occur...

Levy's lemma and concentration of entanglement

Consider the sphere S^{2NK-1} which represents pure states of a $N \times K$ system with $K \ge N \ge 3$. Use **Levy's lemma** with $f = S(\rho)$. It implies

$$P\left(S(\operatorname{Tr}_{B}|\psi\rangle\langle\psi|)<\ln N-N/2K-\alpha\right) \leq \exp\left(-\frac{(NK-1)}{8(\pi\ln N)^2}\alpha^2\right)$$

Hayden, Leung, Winter (2006)

Thus the **reduced density matrix** ρ is close to the maximally mixed state $\rho_* = \mathbb{1}_N/N$, while the initial **random pure state** is close to a **maximally entangled state** $|\psi^+\rangle$ with entropy $S_{\max} = \ln N$.

Composed bi–partite systems on $\mathcal{H}_A \otimes \mathcal{H}_B$

Partial trace over one subsystem produces mixed state

Consider an ensemble of random pure states $|\psi\rangle$ distributed according to a given measure μ . Define a reduced mixed state $\rho_A = \text{Tr}_B |\psi\rangle\langle\psi|$.

Ensembles obtained by partial trace: a) induced measure

i) natural measure on the space of pure states obtained by acting on a fixed state $|0,0\rangle$ with a global random unitary U_{AB} of size KN.

ii) partial trace over the K dimensional subsystem B leads to the **induced** measure $P_{N,K}(\lambda)$ in the space of mixed states of size N. Integrating out all eigenvalues but λ_1 one arrives (for large N) at the Marchenko–Pastur distribution $P_c(x = N\lambda_1)$ with the parameter c = K/N.

Composed bi–partite systems on $\mathcal{H}_A \otimes \mathcal{H}_B$

Partial trace over one subsystem produces mixed state

Consider an ensemble of random pure states $|\psi\rangle$ distributed according to a given measure μ . Define a reduced mixed state $\rho_A = \text{Tr}_B |\psi\rangle\langle\psi|$.

Ensembles obtained by partial trace: a) induced measure

i) natural measure on the space of pure states obtained by acting on a fixed state $|0,0\rangle$ with a global random unitary U_{AB} of size KN.

ii) partial trace over the K dimensional subsystem B leads to the **induced** measure $P_{N,K}(\lambda)$ in the space of mixed states of size N. Integrating out all eigenvalues but λ_1 one arrives (for large N) at the Marchenko–Pastur distribution $P_c(x = N\lambda_1)$ with the parameter c = K/N.

Spectral properties of random matrices

Non-hermitian matrix G of size N of the Ginibre ensemble

Under normalization $TrGG^{\dagger} = N$ the spectrum of G fills **uniformly** (for large N!) the **unit disk**

The so-called circular law!

Hermitian, positive matrix $\rho = GG^{\dagger}$ of the Wishart ensemble

Let $x = N\lambda_i$, where $\{\lambda_i\}$ denotes the spectrum of ρ . As $\text{Tr}\rho = 1$ so $\langle x \rangle = 1$. Distribution of the spectrum P(x) is asymptotically given by the Marchenko–Pastur law

$$\pi^{(1)}(x) = P_{\text{MP}}(x) = \frac{1}{2\pi} \sqrt{\frac{4}{x} - 1} \text{ for } x \in [0, 4]$$

'Biased' ensembles of bi-partite states

Superposition of locally transformed states

Consider a superposition of a given bi-partite state $|\phi_{AB}\rangle \in \mathcal{H}_N \otimes \mathcal{H}_N$ with the same state transformed by a random local unitary U_A

$$|\psi\rangle = \frac{1}{\sqrt{2}} \Big(|\phi_{AB}\rangle + (U_A \otimes \mathbb{1}_N) |\phi_{AB}\rangle \Big)$$

Is the outcome superposition state $|\psi\rangle$ (on average) more entangled than the initial $|\phi_{AB}\rangle$?

What reduced states are (on average) more mixed:

$$\rho = \text{Tr} |\phi_{AB}\rangle \langle \phi_{AB}| \text{ or } \rho' = \text{Tr} |\psi\rangle \langle \psi| ??$$

Composed bi-partite systems II

b) Arcsine ensemble

i) Consider a superposition of **two maximally entangled** states on $\mathcal{H}_N \otimes \mathcal{H}_N$

 $|\phi\rangle = |\psi_{AB}^{+}\rangle + (U_{A} \otimes 1_{N})|\psi_{AB}^{+}\rangle$, where $|\psi_{AB}^{+}\rangle = (1/\sqrt{N})\sum_{i=1}^{N}|i,i\rangle$, while $U_{A} \in U(N)$ is a **Haar random unitary matrix** with phases α_{i} .

ii) The reduced state $\rho_A = \frac{\text{Tr}_B|\phi\rangle\langle\phi|}{\langle\phi|\phi\rangle} = \frac{2\mathbb{1} + U_A + U_A^\dagger}{2N + \text{Tr}(U_A + U_A^\dagger)}$. has the spectrum $\lambda_i = (1 + \cos\alpha_i)/N$ for $i = 1, \ldots, N$. Thus for large N the spectral density has the form of the **arcsine distribution**, $P_{\text{arc}}(x) = \frac{1}{\pi\sqrt{x(2-x)}}$ with support $x \in [0,2]$, where $x = N\lambda$.

c) Bures ensemble

i) Consider a superposition of two pure states: a random state $|\psi_1\rangle$ and the same state transformed by a **local unitary** V_A ,

$$|\phi\rangle := (\mathbb{1} \otimes \mathbb{1} + V_A \otimes \mathbb{1})|\psi_1\rangle$$
, where $|\psi_1\rangle = U_{AB}|0,0\rangle$

while $V_A \in U(N)$ and $U_{AB} \in U(N^2)$ are Haar random unitary matrices.

ii) The reduced state $\rho_{\rm B}=\frac{(1+V_A)GG^\dagger(1+V_A^\dagger)}{{\rm Tr}[(1+V_A)GG^\dagger(1+V_A^\dagger)]}$ is distributed according

to the Bures measure, $P_B(\lambda_1,...\lambda_N) = C_N^B \prod_i \lambda_i^{-1/2} \prod_{i < j}^{1...N} \frac{(\lambda_i - \lambda_j)^2}{\lambda_i + \lambda_j}$

(Osipov, Sommers, Życzkowski, 2010) characterized by the Bures distribution.

$$P_{\rm B}(x) = \frac{1}{4\pi\sqrt{3}} \left[\left(\frac{a}{x} + \sqrt{\left(\frac{a}{x} \right)^2 - 1} \right)^{2/3} - \left(\frac{a}{x} - \sqrt{\left(\frac{a}{x} \right)^2 - 1} \right)^{2/3} \right]$$

where $a = 3\sqrt{3}$. Square matrix G of size N from the **Ginibre ensemble** is obtained from the first column of U_{AB} od size N^2 which acts on $|0,0\rangle$.

Composed mutipartite systems & projections

a) Four-partite system & $\pi^{(2)}$ distribution

Take a four-partite product state,

$$|\psi_0\rangle = |0\rangle_A \otimes |0\rangle_B \otimes |0\rangle_C \otimes |0\rangle_D =: |0,0,0,0\rangle \in \mathcal{H}_N^{\otimes 4}.$$

i) Apply two random unitary matrices U_{AB} and U_{CD} of size N^2 ,

$$|\psi\rangle = U_{AB} \otimes U_{CD} |\psi_0\rangle = \sum_{i,j=1}^{N} \sum_{k,l=1}^{N} G_{ij} E_{kl} |i\rangle_A \otimes |j\rangle_B \otimes |k\rangle_C \otimes |I\rangle_D$$

ii) Consider projector $P:=\mathbb{1}_A\otimes |\Psi_{BC}^+\rangle\langle \Psi_{BC}^+|\otimes \mathbb{1}_D$

on the maximally entangled state, $|\Psi^+_{BC}
angle = rac{1}{\sqrt{N}} \; \sum_{\mu=1}^N |\mu
angle_B \otimes |\mu
angle_C$

The spectrum of the iii) reduced state $\rho_A = \frac{\text{Tr}_D|\phi\rangle\langle\phi|}{\langle\phi|\phi\rangle} = \frac{GEE^{\dagger}G^{\dagger}}{\text{Tr}\ GEE^{\dagger}G^{\dagger}}$ consists of squared singular values of the product GE of **two independent Ginibre matrices**, so the spectral density is described by the **Fuss-Catalan distribution** $\pi^{(2)}(x)$.

b) 2s-partite system & $\pi^{(s)}$ Fuss-Catalan distribution

Take a 2s-partite product state,

$$|\psi_0\rangle = |0\rangle_1 \otimes \cdots \otimes |0\rangle_{2s} \in \mathcal{H}_{\mathcal{N}}^{\otimes 2s}.$$

i) Apply s random unitary matrices $U_{1,2}$, $U_{3,4}$,... $U_{2s-1,2s}$ of size N^2 each,

$$|\psi\rangle U_{1,2}\otimes \cdots U_{2s-1,2s}|0,\ldots,0\rangle = \sum_{i_1,\ldots i_{2s}} (G_1)_{i_1,i_2}\cdots (G_s)_{i_{2s-1},i_{2s}}|i_1,\ldots,i_{2s}\rangle$$

ii) Project onto the product of (s-1) maximally entangled states,

$$P_s := \mathbb{1}_1 \otimes |\Psi_{2,3}^+\rangle \langle \Psi_{2,3}^+| \otimes \cdots \otimes |\Psi_{2s-2,2s-1}^+\rangle \langle \Psi_{2s-2,2s-1}^+| \otimes \mathbb{1}_{2s}$$

The spectrum of the iii) reduced state

$$\rho_A = \frac{\operatorname{Tr}_{2s}|\phi\rangle\langle\phi|}{\langle\phi|\phi\rangle} = \frac{G_1 G_2 \cdots G_s (G_1 G_2 \cdots G_s)^{\dagger}}{\operatorname{Tr} \left[G_1 G_2 \cdots G_s (G_1 G_2 \cdots G_s)^{\dagger}\right]}$$

consists of squared singular values of the product $G_1 \cdots G_s$ of **s independent Ginibre matrices**, so the spectral density is described by the **Fuss-Catalan distribution** $\pi^{(s)}(x)$.

Fuss-Catalan distribution $\pi^{(s)}$

defined for an integer number s is characterized by its moments

$$\int x^{p} \pi^{(s)}(x) dx = \frac{1}{sp+1} \binom{sp+p}{p} =: FC_{p}^{(s)}$$

equal to the generalized Fuss-Catalan numbers .

The density $\pi^{(s)}$ is analitic on the support $[0, (s+1)^{s+1}/s^s]$, while for $x \to 0$ it behaves as $1/(\pi x^{s/(s+1)})$.

The case s = 1 is equivalent to the Marchenko-Pastur distribution.

Spectral properties of the ensembles analyzed

Spectral density P(x) of the rescaled eigenvalue $x = N\lambda$

matrix W	P(x)	$x \rightarrow 0$	support	mean entropy
1	$\pi^{(0)}$	-	{1}	0
1+U	arcsine	$\chi^{-1/2}$	[0, 2]	$\ln 2 - 1 \approx -0.307$
G	MP. $\pi^{(1)}$	$\chi^{-1/2}$	[0, 4]	-1/2 = -0.5
(1+U)G	Bures	$x^{-2/3}$	$[0, 3\sqrt{3}]$	$-\ln 2 \approx -0.693$
G_1G_2	F–C $\pi^{(2)}$	$x^{-2/3}$	$[0, 6\frac{3}{4}]$	$-5/6 \approx -0.833$

$G_1 \cdots G_s$	F-C π ^(s)	$\chi^{-s/(s+1)}$	$[0,b_s]$	$-\sum_{j=2}^{s+1} \frac{1}{j}$

Table: Ensembles of random mixed states obtained as normalized Wishart matrices, $\rho = WW^{\dagger}/\mathrm{Tr}WW^{\dagger}$. Here $b_s = (s+1)^{s+1}/s^s$ and the mean entropy $\langle S \rangle = -\int x \ln x P(x) dx$.

Interpolating ensembles of random states

Generalized ensemble of random Wishart matrices

Let

$$W_{a,s} := \left(a\mathbb{1} + (1-a)U\right)G_1 \cdots G_s$$

where U is the Haar random unitary matrix, while G_i are independent random Ginibre matrices. Define interpolationg ensemble of normalized random density matrices

$$\rho_{a,s} := W_{a,s} W_{a,s}^{\dagger} / \text{Tr}(W_{a,s} W_{a,s}^{\dagger})$$

Special cases:

$$s = 0$$
. $a = 0$ \Rightarrow arcsine ensemble

$$s=1, \ a=1/2 \Rightarrow$$
 Bures ensemble

$$s = 0, a = 1 \Rightarrow Hilbert-Schmidt ensemble$$

s.
$$a=1 \Rightarrow s$$
 - Fuss Catalan ensemble

Multi-partite systems: graphs

Graph random states

Consider a graph Γ consisting of m edges $B_1, \ldots B_m$ and k vertices $V_1, \ldots V_k$. It represents a composite **quantum system** consisting of 2m sub—systems described in the Hilbert space with 2m—fold tensor product $\mathcal{H} = \mathcal{H}_1 \otimes \cdots \otimes \mathcal{H}_{2m}$ of dimension N^{2m} .

Each edge represents the maximally entangled state $|\Phi^+\rangle$ in both subspaces, while each vertex represents a random unitary matrix U (Haar measure ='generic' Hamiltonian), coupling connected systems.

A simple example: three vertices & two edges

We define a random state $|\psi\rangle = (\mathbf{U_1} \otimes \mathbf{U_{23}} \otimes \mathbf{U_4}) |\Phi_{12}^+\rangle \otimes |\Phi_{34}^+\rangle$ where $|\Phi_{kj}^+\rangle$ denotes the maximally entangled state in subspaces k, j.

Multi-partite graph systems: mixed states

Partial trace over certain subspaces

Consider an **ensemble of random pure states** $|\psi\rangle$ corresponding to a given graph Γ . Select a fixed **subset** T of subspaces and define a (random) **mixed state** $\rho(T) = \text{Tr}_T |\psi\rangle\langle\psi|$.

Tasks

- Determine the **spectral properties** of the ensemble of mixed states $\rho(T)$ associated with the graph Γ .
- Find the mean **entropy** $\langle S(\rho) \rangle_{\psi}$ of the reduced state ρ averaged over the ensemble of graph random pure states $|\psi\rangle_{\Gamma,T}$.

Examples of partial trace for the graph \(\Gamma \)

trace is taken over all the subspaces T represented by open symbols.

Graphs and random multi-partite systems

Partial trace over certain subspaces

For ensembles of **random states** associated with certain **graphs** Γ and selected subspaces T – cross (\times) – over which the partial trace takes place

one can compute **moments of the traces** $\mu_q := \langle {\rm Tr} \rho^q \rangle_{\psi}$ and then obtain bounds for the **average entropy** $\langle S \rangle = \langle -{\rm Tr} \rho \ln \rho \rangle_{\psi}$. **Collins, Nechita, Życzkowski**, 2010

Spectral properties of random mixed states I

Example 1: 2 bonds, 4 subsystems and one bi-partite interaction U_0

a) $\pi^{(0)}$ – maximaly mixed state $\rho = \frac{1}{N}\mathbb{I}$ with **entropy** $S(\rho) = \ln N$

b) $\pi^{(1)}$ random mixed state generated according to the induced measure

with **entropy** $S(\rho) \approx \ln N - 1/2$

Let
$$|\psi\rangle = \sum_i \sum_i G_{ij} |i\rangle \otimes |j\rangle$$
 be a random pure state.

Then G is a random matrix of **Ginibre ensemble** consisting of independent complex Gaussian entries normalized as $|G|^2 = \text{Tr}GG^{\dagger} = 1$.

The distribution of eigenvalues of a non–hermitian matrix G is given by the **Girko circular law**, while positive **Wishart** matrices $\rho = \text{Tr}_B |\psi\rangle\langle\psi| = GG^{\dagger}$ are described by **Marchenko-Pastur** law $\pi^{(1)}$.

Spectral properties of random mixed states II

Example 2: 4 bonds, 8 subsystems and four bi-partite interactions V_i

c) $\pi^{(2)}$ random mixed state generated by the 4-cycle graph

After partial trace over **crossed** subsystems the random mixed state has the structure

$$\rho = \alpha G_2 G_1 G_1^{\dagger} G_2^{\dagger},$$

where G_1 and G_2 are independent **Ginibre** matrices and $\alpha = 1/\mathrm{Tr} G_2 G_1 G_1^{\dagger} G_2^{\dagger}$.

Mixed states with spectrum given by the

Fuss-Catalan distribution $\pi^{(2)}(x)$

characterized by mean entropy

$$S(\rho) \approx \ln N - 5/6$$

$$P_{MP}(x) = \pi^{(1)}(x)$$
 and $\pi^{(2)}(x)$.

Spectral properties of random mixed states II

Example 2: 4 bonds, 8 subsystems and four bi-partite interactions V_i

c) $\pi^{(2)}$ random mixed state generated by the 4-cycle graph

After partial trace over **crossed** subsystems the random mixed state has the structure

$$\rho = \alpha G_2 G_1 G_1^{\dagger} G_2^{\dagger},$$

where G_1 and G_2 are independent **Ginibre** matrices and $\alpha = 1/\text{Tr}G_2G_1G_1^{\dagger}G_2^{\dagger}$.

Mixed states with spectrum given by the

Fuss-Catalan distribution $\pi^{(2)}(x)$

characterized by mean entropy

$$S(\rho) \approx \ln N - 5/6$$

$$P_{MP}(x) = \pi^{(1)}(x)$$
 and $\pi^{(2)}(x)$.

Multi-partite systems: a lattice L

Partition of the lattice into two disjoint sets, $L = A \cup \bar{A}$

Consider lattice (graph), in which each **vertex** denotes a spin (different meaning than before!)

and each edge represents an interaction defined by a local Hamiltonian H.

Let A denotes a distinguished set of vertices while ∂A represents **spins** belonging to its **area**, i.e. these spins for which some edges are cut away.

Area law for a partition of the lattice $L = A \cup \overline{A}$

Consider an eigenstate $|\psi\rangle$ of the Hamiltonian H, define **set of spins** A and take the partial trace of the pure state over all spins belonging to the **complementary set** \bar{A} .

• Von Neumann entropy of the resulting mixed state $\rho := \operatorname{Tr}_{\bar{A}} |\psi\rangle\langle\psi|$ is proportional to the area ∂A of the distinguished subset A. Hence entanglement of the state $|\psi\rangle$ with respect to the partition $A \cup \bar{A}$ behaves as the area ∂A .

Eisert, Cramer, Plenio 2008, Rev. Mod. Phys. 2008

Universal Entanglement Area Law

Area law for random graph states

Theorem. Consider a graph Γ and its partition into two sets A and \bar{A} . Let $|\psi\rangle$ be a random graph pure state and $\rho:=\mathrm{Tr}_{\bar{A}}|\psi\rangle\langle\psi|$. Then the mean **entropy of** ρ (entanglement entropy of $|\psi\rangle$) is proportional to the **number** M of **bonds cut** ('area' of A),

$$\langle S(\rho) \rangle_{\psi} = M \ln N$$
.

Example: graph with 10 bonds, M = 5 of them cut

The area law $S(\rho) = 5 \ln N$ is universal

as it does not depend on the choice of Hamiltonians describing the interaction in the vertices.

Only the **topology** of the interaction matters!

Concluding remarks

- There exists a natural, unitarily invariant measure in the space $\mathbb{C}P^{N-1}$ of pure states of a finite size N. A quantized chaotic evolution sends an initial state $|i\rangle$ into a 'typical' state $|\psi\rangle$.
- A generic pure state of a bi-partite quantum system is strongly entangled, so its partial trace is strongly mixed!
- 'Biased' ensembles of random pure states + partial trace allow one to generate random states according to various measures, including (Arcsine, Hilbert-Schmidt, Bures, s-Fuss-Catalan) ensembles.
- With any graph one can associate an **ensemble of random pure** states. Selecting a set A of subsystems we define an ensemble of mixed states ρ by performing the **partial trace** over them. Statistics of the spectra of ρ is described by delta distribution $h_0(x) = \delta(x-1)$, Marchenko-Pastur distribution $h_1(x)$ or Fuss-Catalan distributions $h_s(x)$, with $s \geq 2$, for which mean entropies are known.
- Universal Entanglement Area law: For any graph Γ and its partition A and \overline{A} the mean entanglement entropy of the random pure state $|\psi\rangle$ depends on the area ∂A (the number of bonds cut).

Cracow with the **Wawel Castle** and the **Tatra mountains** in the background.

You are welcome!

No Signal VGA-1

Pirsa: 10070012 Page 47/47