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How to generate an ensemble
of random density operators?

Reduction of random pure states

1) Consider an ensemble of random pure states |v) of
a composite system distributed according to a given

measure /.

2) Perform partial trace over a chosen subsystem B to
get a random mixed state

-— gy

Depending on the structure of the compaosite system, the initial measure
i in the space of the pure states and the choice of the subsystem B, over
which the averaging is performed

one obtaines different ensembles of random mixed states.
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Pure states in a finite dimensional Hilbert space Hy

Space of normalized complex pure states for an arbitrary N-:

Since (¢’|v") = 1 a normalized state belongs to the sphere S2V—1.

Two states equal up to a phase are identified, |¢') ~ e®|v), so the set of
states is equivalent to the complex projective space CPV—!
of 2N — 2 real dimensions.

N =2: For qubit =  antum the word geometry
can be treated literally!

1Y) = cos:|1) + e sin %[0
. 211) + € sin 2|0)
['P! = Bloch sphere of N = 2 pure states
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Random Pure states in Hy

‘Quantum chaotic’ dynamics (pseudo-random evolution)

described by a random unitary matrix U acting on a pure state produces
(almost surely) a "'generic pure state’ |1 = Ulog).

e Formally one defines an (unique) Fubini—Study measure ;: on complex
projective spaces which is umitarily mvariant: for any (measurable) set A
of states one requires u(A) = pu(U(A)).

1

e This measure covers the entire space C PN~ uniformly, and for N =2
it is just equivalent to the uniform, Lebesgue measure on the sphere S°.

How to obtain numerically a random pure state |v) ?

a) Take a column (a2 row) of a random unitary U so that |v') = Uli).
b) generate N independent complex random numbers z according to
the normal distribution. Write |¢)) = Stl ¢i|i) where the expansion
coefficients read ¢; = z;/+/) .. |zi|% .

I
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Properties of 'typical’ pure states in Hy

Expansion coefficients: |v))

Expand a 'typical’ state |«') in an (arbitrary) basis |i).
What is the distribution of the components y; = |¢|* ?

e To characterize the distribution P(y) define the entropy
S(v) =— S:l yi Imy;

e Compute the mean entropy averaged over the set of pure quantum
states of size N

-
Sy =W(N+1)—W(Q2) =) 1/k ~ InN—(1—7).

where W(x) represents Digamma function,
while v+ = 0.5772... is the Euler constant.
Study of the distribution P(y) - the eigenvector statistics,
Kus, Mostowski, Haake, 1988
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One quantum state fixed, one random._.

Fix an arbitrary state :';). Generate randomly the other state uv»).

e What is the average angle \ between these states ?/

e What is the distribution P(x) of the angle v\ := arccos|(v1|v2)| ?
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Properties of 'typical’ pure states in H

Expand a 'typical’ state |«') in an (arbitrary) basis |i).
What is the distribution of the components y; = |¢;|* ?

e To characterize the distribution P(y) define the entropy
v; In y;

—i.:]_ - B
e Compute the mean entropy averaged over the set of pure quantum
states of size N

where W(x) represents Digamma function,
while v+ = 0.5772... is the Euler constant.
Study of the distribution P(y) - the eigenvector statistics,
Kus, Mostowski, Haake, 1988
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One quantum state fixed, one random._.

Fix an arbitrary state ;). Generate randomly the other state 19 ).

e What is the average angle \ between these states ?/

e What is the distribution P(x) of the angle v := arccos|(v|v2)| ?
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One quantum state fixed, one random...

Fix an arbitrary state «';). Generate randomly the other state (v5).

e What is the average angle \ between these states 7

e What is the distribution P(y) of the angle \ = arccos|(¢q|ua)]| ?

Measure concentration phenomenon

'Fat hiper-equator’ of the sphere SV in RN-1

It is a consequence of the Jacobian factor for expressing the volume
element of the N— sphere. Let z = cos/;. so that

1 ~ (sin 91)N " b(v2

Hence the typical angle y is ‘close’ to 7/2 and two "typical random states’
are orthogonal and the distribution P(y) is 'close’ to o(y — 7/2).
How close?
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Quantitative description of Measure Concentration

Levy’s Lemma (on higher dimensional spheres)

Let f - S¥ — R be a Lipschitz function,

with the constant ;7 and the mean value (f) = ]5-,; f(x)dpu(x).

Pick a point x = S at random from the sphere. For large N it is then
unlikely to get a value of f much different then the average:

(N +1)a*
Om3p2 )

!

P( f(x) — (F)] > a) < 2e~><p(—

Simple application: the distance from the 'equator’

Take f(xy....xy1) = x3. Then Levy's Lemma says that the probability
of finding 2 random point of S outside a2 band along the equator of
width 2 converges exponentially to zero as 2 exp|—C(N + 1)”:]_

> 1 then every equator of SV is 'FAT".
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Composed systems & entangled states

bi-partite systems: H = Ha @ Hp
@ separable pure states: ) = 0a) © |og

@ entangled pure states: all states not of the above product form.

Two—qubit system: d =2 x2 =4

Maximally entangled Bell state /7)) = %(300 + 11 )

Entanglement measures

For any pure state |v) € Ha & Hpg define its partial trace & = Trg|v) (¢

Definition: Entanglement entropy of |v’) is equal to von Neumann
entropy of the partial trace

—Ir olne

The more mixed partial trace, the more entangled initial pure state...
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Entanglement of two real qubits

Entanglement entropy at the tetrahedron of d = 4 real pure states
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More on this is can be 'fc:u_nd In
|I. Bengtsson and K. Zyczkowski, (- con
(Cambridge, 2006, 2008)
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Generic pure states of a bi-partite system

"Two quNits’ = N x N gquantum system

The space CPN°-1 of all states in H = Hy @ Hy has dige = N* — 2
dimensions.
The subspace of separable (product) states CPV—! .« CPN-! has only
dsep = 2(N — 2) dimensions. For large N we observe that
dsep ~ 2N << dioe ~ N* so the separable states form a set of measure
zero in the space of all states.

Thus a "typical’ random state is entangled!

How much entangled?

Mean entropy of the reduced density matrix p

Let us call H = Ha @ Hg. Take any pure state |v') = 'H and define its
partial trace p := Trg|v) (¥| = Tral|vw) (¥

The von Neumann entropy S of the reduced mixed state p is a
measure of entanglement of the initially pure bi-partite state |v7).
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Average entanglement entropy for a bipartite system

N < N system

valid for random states in Hy @ Hix with K > N

S(v))w = W(INK +1) —W(K +1) — N,};‘:l InN—%‘

N x K system: probability measure

Let A = {A1.... Ay} denote the spectrum of the reduced matrix
p = Trgluw) (v|. If |¢) is taken uniformly on Hy & H then

F'...' wl A pen= l::":‘. e » :_ = S k. l—I .". — '-. 1_[ ( —= _
normalization constants Cy x derived in Sommers, Zyczkowski (2001)
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Concentration of entropy of the partial trace

Consider an N x K system with K > N

The maximal entropy (achieved for p. = L/ N) is equal to Spax ;= In N.
Since the mean entropy, (S),. = Sy — % is close to the maximal

value 2 concentration effect has to occur...

Levy’'s lemma and concentration of entanglement

Consider the sphere S2V5 —1 which represents pure states of a N x K
system with K > N > 3. Use Levy's lemma with f = S(p). It implies

(NK — 1) 2)

P(S(Tralv)(e]) < InN — N/2K —a) < exp(-

Hayden, Leung, Winter (2006)

Thus the reduced density matrix p is close to the maximally mixed state
p. = Ly /N, while the initial random pure state is close to 2 maximally

entangled state |« ) with entropy S, = In .
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Composed bi—partite systems on Hx @ Hp

Partial trace over one subsystem produces mixed state

Consider an ensemble of random pure states | distributed accoridng
to a given measure . Define a reduced mixed state o4 = Trglv) (0.

Ensembles obtained by partial trace: a) induced measure

i) natural measure on the space of pure states obtained by acting on 3
fixed state (0. 0) with a global random unitary Uasg of size KN.

Ha U g p\ ifu

—gy
® 2 = ®
) OD,\) ) =
i) partial trace over the K dimensional subsystem B leads to the induced
measure Py k() in the space of mixed states of size N. Integrating out
all eigenvalues but A\; one arrives (for large N) at the Marchenko—Pastur
distribution P.(x = N\;) with the parameter c = K /'N.
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Composed bi—partite systems on Hy @ Hp

Partial trace over one subsystem produces mixed state

Consider an ensemble of random pure states | distributed accoridng
to a given measure . Define a reduced mixed state p, = Trgl

Ensembles obtained by partial trace: a) induced measure

1) natural measure on the space of pure states obtained by acting on a
fixed state |0.0) with a global random unitary Uag of size KN.

L .

. : — .
= ) ><
@ ® i)

i) partial trace over the K dimensional subsystem B leads to the induced
measure Py k() in the space of mixed states of size N. Integrating out

all eigenvalues but \; one arrives (for large N) at the Marchenko—Pastur
distribution P.(x = N ;) with the parameter c = K /' N.
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Spectral properties of random matrices

Non-hermitian matrix G of size N of the Ginibre ensemble

Under normalization TrGGT = N
the spectrum of G fills uniformly
(for large N!) the unit disk

The so—called circular law !

Hermitian, positive matrix p = GG’ of the Wishart ensemble

Let x = NA;, where {\;} denotes the spectrum of p. As Trp =1 so
x) = 1. Distribution of the spectrum P(x) is asymptotically given by the
Marchenko—Pastur law

~D(x) = Pyp(x) = ?bi —1 for x €[0.4]
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'Biased’ ensembles of bi—partite states

Superposition of locally transformed states

Consider a superposition of a given bi-partite state
oag) € Hy = Hy with the same state
transformed by a random local unitary U,

1

{. ag) + (Ua

"y

Is the outcome superposition state «') (on average)
more entangled than the initial |oag) 7

What reduced states are (on average) more mixed:
p = Trloag){dag| or o = Trlwr) (| 772
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Composed bi—partite systems ||

b) Arcsine ensemble

i) Consider 2 superposition of two maximally entangled states on
= tag) T (Ua @ 1n)|vag), where [P25) = (1/ N}E?J:l 1),

while Uy = U(N) is 2 Haar random unitary matrix with phases a;.

Ha Hg

~
-

7
AB
2 @e——->0

f 4 B | PR |
) Ieshaedcigeny, — 1~ "
] . - 2N+ Tr(Up+ U}
has the spectrum A\; = (1 +cosa;)/N for i =1 N. Thus for large N
the spectral density has the form of the arcsine distribution,

Feain)— with support x € [0. 2], where x = NA.

s xt2—>
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c) Bures ensemble

i) Consider a superposition of two pure states: a random state |z’;) and
the same state transformed by a local unitary Vj,

= (L2 1L+ Va® 1)), where |vy) = Uxgl0.0
while V4 € U(N) and Usg = U(N?) are Haar random unitary matrices.

P Try

>

i) The reduced state pp — ~ '. — 2~ s distributed according

> - —Rf2 1N (Ai—A; )2
to the Bures measure, Pg(\;... A\y) = C{j 1, A, g

=< AjTA
(Osipov, Sommers, Zyczkowski, 2010) characterized by the
Bures distribution,

where 2 = 3/3. Square matrix G of size N from the Ginibre ensemble is

. L £ c - P L -
obtained from the first column of Uyg od size N- which acts on |0.0).
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Composed mutipartite systems & projections

a) Four-partite system & =2 distribution

Take a four-partite product state,

J)A U)E J A
1) Apply two random unitary matrlces U4E and ULD r::Jf size
’ N -

i) = Uag @ Ueplva) = 31—
i) Consider projector P .= 14 & WEC

on the maximally entangled state, |Wg-) =

!

Fa CAB 3. . UCD 34, H .

GEETGT

The spectrum of the iii) reduced state pa = =T CEET G

consists of squared singular values of the product GE
of two independent Ginibre matrices, so the spectral density
is described by the Fuss-Catalan distribution ='2)(x).
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b) 2s-partite system & =5} Fuss-Catalan distribution

Take a 2s-partite product state,
te) =10)1 @ --- @ |0)2s € Hx™".
i) Apply s random unitary matrices U; 5, Uz 4... Use_; 2 of size N* each,

w)Ur 2@ ---Uss 124|0 B—Y. . (ki (G .clh. ..

le—1-.125 S

ii) Project onto the product of (s — 1) maximally entangled states,

s — 13 23 23 LU“_-:—:_ s—1

s-1 Flos

sy Hy FHo
2 ]

@ @ 2 ® -
= - - €—>

Us 4 Uszs 1.2 P35

F, o Hz Ha
2 o
==

The spectrum of the iii) reduced state

A
. = =

consists of squared singular values of the product G; - - - G,
of s independent Ginibre matrices, so the spectral density
is described by the Fuss-Catalan distribution ='5/(x).
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Fuss-Catalan distribution 7%

defined for an integer number s is characterized by its mnments

[ xPa S (x)dx = o (777) =

P
equal to the generalized Fuss—Catalan numbers .
The density 7%/ is analitic on the support [0.(s + 1)
while for x — 0 it behaves as 1/(7x5/(5+1)).

Pi

The case s = 1 is equivalent to the Marchenko—Pastur distribution.
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Spectral properties of the ensembles analyzed

Spectral density P(x) of the rescaled eigenvalue x = N\

matrix W P(x) b support | entropy
1 Y {1) 0
1+ U arcsine ) [0.2] | InZ ~ —0.307
G M.-P. =1 = [0. 4] — —0.5

(L+U)G | Bures " s .3v3] | 2 ~ —0.693
G1G FCz® | x7? . -0.833

Gy---Gs F—C =%

T

[ able: Ensembles of random mixed states obtained as normalized Wishart
matrices, p = WW™ / TrWW?'. Here bs = (s + 1)°™* /s* and the mean entropy
S) = — [ xInxP(x)dx.

XZ (IF UJ/CFT PAN ) Random Quantum States July 5, 2010 25 /%




Interpolating ensembles of random states

Generalized ensemble of random Wishart matrices

. — (3; + (1 — 3)U)Gl -+ - Gg

where U is the Haar random unitary matrix,
while G; are independent random Ginibre matrices.
Define interpolationg ensemble of normalized random density matrices

Pas — W, s W;g Tl( W, s W;—g)

Special cases:
=& a2—40 — arcsine ensemble
—=1. 2a=1/2 = Bures ensemble
—0 a1 — Hilbert-Schmidt ensemble
a=1 = s — Fuss Catalan ensemble
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Multi—partite systems: graphs

Graph random states

Consider a graph I consisting of m edges B;. ... B,, and k vertices
Vi.... V.. It represents 2 composite quantum system consisting of 2m
sub—systems described in the Hilbert space with 2m—fold tensor product
H=H; 2 ---% Hom of dimension N*™.

Each edge represents the maximally entangled state |© ) in both
subspaces, while each vertex represents a random unitary matrix U
(Haar measure ="generic’ Hamiltonian), coupling connected systems.

A simple example: three vertices & two edges

We define a random state o | Uys = Uy) @, 34
where dJ; denotes the maximally entangled state in subspaces k. j.
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Multi—partite graph systems: mixed states

Partial trace over certain subspaces

Consider an ensemble of random pure states ') corresponding to a
given graph . Select a2 fixed subset T of subspaces and define 2
(random) mixed state po(7) = Tr+ v

Tasks
e Determine the spectral properties of the ensemble of mixed states
p( T') associated with the graph I'.
e Find the mean entropy (S(p)) .. of the reduced state p averaged over
the ensemble of graph random pure states |v)r. 1.

Examples of partial trace for the graph [

E'-‘, E-, = = ‘[:1 =
= o B o v % = &

-':-n. — 3 — —
— S " The partial
trace is taken over all the subspaces [ represented by open symbols.
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Graphs and random multi—partite systems

Partial trace over certain subspaces

For ensembles of random states associated with certain graphs I and

selected subspaces T — cross ( <) — over which the partial trace takes place
E - ;

- = -

Sk Sk

H- Hs 5 V;

one can compute moments of the traces u, := (Trp9),
and then obtain bounds for the average entropy (S) = (—Trplnp),.

Collins, Nechita, Zyczkowski, 2010
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Spectral properties of random mixed states |

Example 1: 2 bonds, 4 subsystems and one bi-partite interaction Uy

a) = — maximaly mixed state p = 5 1 with entropy S(p) =In N
Vi . V3
.-*‘—‘a\\ 1'-2 | 1 i IE
~~_.d~f(. ar -
b) =% random mixed state generated according to the induced measure
Va3

/ = - e
S with entropy S(p) =~ InN —1/2

" o %

et |v)) = S ) D Gijli N be a random pure state.

Then G is a random matrix of Ginibre ensemble consisting of
independent complex Gaussian entries normalized as |G|? = TrGG™ = 1.

The distribution of eigenvalues of 3 non—hermitian matrix G is given
by the Girko circular law, while positive Wishart matrices

p = Trgle)) (v’| = GG' are described by Marchenko-Pastur law =1
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Spectral properties of random mixed states ||

Example 2: 4 bonds, 8 subsystems and four bi-partite interactions V;
c) ='%) random mixed state generated by the 4—cycle graph

After partial trace over crossed subsystems
the random mixed state has the structure

p=aGGG|G.

where G; and Gy are independent Ginibre
matrices and o = 1/TrG G G| G, .

Mixed states with spectrum given by the
Fuss-Catalan distribution ~'</(x
characterized by mean entropy
nN—-5/6

Pap(x) = =Y (x) and =17
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Spectral properties of random mixed states ||

Example 2: 4 bonds, 8 subsystems and four bi-partite interactions V;
c) ='%) random mixed state generated by the 4—cycle graph

After partial trace over crossed subsystems
the random mixed state has the structure

p=a66GG, G,

where G; and G are independent Ginibre
matrices and a = 1/TrG, G, G| G,.

Mixed states with spectrum given by the
Fuss-Catalan distribution =</ (>
characterized by mean entropy
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Multi—partite systems: a lattice L

Partition of the lattice into two disjoint sets, [ — AUA

Consider lattice (graph), in which each vertex denotes a spin
(different meaning than beforel)
and each edge represents an interaction defined by a local Hamiltonian H.

. w
_— i
= l—_if.'#”‘ -
aY
i a-va B
- - @
a & ..',.-’“

' —_— .

- e g = -
- L

w aill - -

Let A denotes a distinguished set of vertices while JA represents spins
belonging to its area, i.e. these spins for which some edges are cut away.
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Area law for a partition of the lattice L = AU A

Consider an eigenstate «') of the Hamiltonian H, define set of spins A
and take the partial trace of the pure state over all spins belonging to the
complementary set A

e Von Neumann entropy of the resulting mixed state p := Irz v
proportional to the area JA of the distinguished subset A.

Hence entanglement of the state ) with respect to the partition
A U A behaves as the area JA.

Eisert, Cramer, Plenio 2008, Rev. Mod. Phys. 2008

XZ (IF UJ/CFT PAN ) Random Quantum States July 5, 2010 35 / 2B




Universal Entanglement Area Law

Area law for random graph states

Theorem. Consider a graph [ and its partition into two sets A and A Let
) be a random graph pure state and p ;= Irz|v) (v

Then the mean entropy of p (entanglement entropy of |¢7)) is
proportional to the number M of bonds cut ('area’ of A) |

S(p))y: =M InN .

Example: graph with 10 bonds, M =5 of them cut

The area law S| — 5InN is

universal

as it does not depend on the
choice of Hamiltonians describing
the interaction in the vertices.

Only the topology of the
interaction matters!
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Concluding remarks

There exists a natural, unitanly invariant measure in the space
['PN—1 of pure states of a finite size N. A quantized chaetic
evolution sends an initial state |/) into a "typical’ state |v

A generic pure state of a bi-partite quantum system is strongly
entangled, so its partial trace is strongly mixed!

'Biased’” ensembles of random pure states + partial trace allow one
to generate random states according to various measures, including
(Arcsine, Hilbert-Schmidt, Bures, s—Fuss-Catalan) ensembles.
With any graph one can associate an ensemble of random pure
states. Selecting a set A of subsystems we define an ensemble of
mixed states p by performing the partial trace over them. Statistics
of the spectra of p is described by delta distribution hg(x) = d(x — 1),
Marchenko—Pastur distribution h;(x) or Fuss—Catalan distributions
hs(x), with s > 2, for which mean entropies are known.

Universal Entanglement Area law: For any graph I and its
partition A and A the mean entanglement entropy of the random
pure state |v’') depends on the area JA (the number of bonds cut).
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Cracow with the Wawel Castle and the Tatra mountains in the
background.

You are welcome!
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