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Abstract: In this talk we will give an overview of how different probabilistic and quantum probabilistic techniques can be used to find Bell
inequalities with large violation. This will include previous result on violation for tripartite systems and more recent results with Palazuelos on

probabilities for bipartite systems. Quite surprisingly the latest results are the most elementary, but lead to some rather surprsing independence of
entropy and large violation.
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» In a so called "Gedankenexperiment’ Bell showed that certain
quantum mechanical effects can not be “explained” using an
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More precisely: Family of probabilities

> We consider families p(a. b|x. y) of positive real numbers such

that

> > . p(a.b|x,y) = P(bly) does not depend on x,
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More precisely: Family of probabilities

> We consider families p(a. b|x. y) of positive real numbers such
that

> > . p(a.blx,y) = P(bly) does not depend on x,
> Y, p(a. blx.y) = Q(a|x) does not depend on y,
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More precisely: Family of probabilities

> We consider families p(a. b|x. y) of positive real numbers such

-

that

> ., p(a.blx.y) = P(bly) does not depend on x,

> >, p(a. blx.y) = Q(a|x) does not depend on y,

> > ., P(bly) =1=>__Q(al|x) for all x.y.

2> The classical (=local) model says that Alice has x inputs, B
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More precisely: Family of probabilities

> We consider families p(a. b|x. y) of positive real numbers such
that

> > . p(a.blx.y) = P(bly) does not depend on x,
> >, p(a. blx.y) = Q(a|x) does not depend on y,
> Y., P(bly) =1=)__Q(alx) for all x,y.

2> The classical (=local) model says that Alice has x inputs, B

has y inputs and the outputs are given by

Proc(a.blx.y) = | pENGHNN) .
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Quantum version

The quantum version of this experiment replaces the commuting

variables pX(\) and g, (\) by commuting operators

Pqua(a. blx.y) = (h|(T @ S;)h). he H® H
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Quantum version

The quantum version of this experiment replaces the commuting

variables pX(\) and g, (\) by commuting operators
Pqua(a. blx.y) = (h|(TS @ S;)h). he H® H

such that for all experiments x. y

e ag - -y IT V9§
3 b
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Quantum version

The quantum version of this experiment replaces the commuting

variables pX(\) and g, (\) by commuting operators
Pqua(a. blx.y) = (h|(T @ S;)h). he H® H

such that for all experiments x. y
el e SRR T E = A
a b

For tripartite systems one may consider (h|(TY @ S; @ RZ)h).
Theorem: (Bell) There are quantum probabilities which are not
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Correlations versus probabilities
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Correlations versus probabilities

Imagine that the classical py(alx) is the probability for tossing a
sign =, € {+1}.
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Correlations versus probabilities

Imagine that the classical py(alx) is the probability for tossing a
sign =, € {=1}. Then

Ux = Y eapalalx) , Vo =) sppa(blx)
b

a

gives the correlation matrix

C\(.y = /’Ux.,\vy.idﬂ(”\)-
J 7

In the tripartite situation one has similarly

C‘(.y.z = / Ux..\ V_v.,\ Wz.,\df-"'(“\) 2
Q
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Imagine that the classical py(alx) is the probability for tossing a
sign =, € {=1}. Then
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b

a

gives the correlation matrix

Cx,y‘ = /’UX.J\VV.,\diI(’\)'
J 2
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Quantum version

The quantum version of this experiment replaces the commuting

variables pX(\) and g, (\) by commuting operators
Pqua(a. blx.y) = (h|(T; @ S;)h). he H® H

such that for all experiments x. y
a1t - 3¢
a b

For tripartite systems one may consider (h|(TY @ S} @ RZ)h).
Theorem: (Bell) There are quantum probabilities which are not
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More precisely: Family of probabilities

> We consider families p(a. b|x. y) of positive real numbers such
that

> > . p(a.blx.y) = P(bly) does not depend on x,
> >, p(a. blx.y) = Q(a|x) does not depend on y,
> > ., P(bly) =1=)__Q(a|x) for all x, y.

2> The classical (=local) model says that Alice has x inputs, B

has y inputs and the outputs are given by
Proc(a.blx.y) = | pENGHNN) .

s HEre Y pX(A)=1=>)"_q.(A) for all x.y. .




Quantum version

The quantum version of this experiment replaces the commuting

variables pX(\) and g, (\) by commuting operators
Pqua(a. bix.y) = (h(TS @ S;)h). he HR H

such that for all experiments x. y

T e & ¥y I~ Y G
a b

=

For tripartite systems one may consider (h|(TY @ S; @ RZ)h).
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Correlations versus probabilities

Imagine that the classical py(alx) is the probability for tossing a
sign =, € {=1}. Then

U = ZfaP.\(a x) , V, = Zi‘bP,\(b x)
b

a

gives the correlation matrix

Cf{.y = /UX.,\Vv_J\d‘H(x\).
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Correlations versus probabilities

Imagine that the classical py(alx) is the probability for tossing a
sign =, € {=1}. Then

Uy — Zi‘ap,\(ﬂ x} , ¥ = Zi‘bP,\(b x)
b

a

gives the correlation matrix

C.rv:.y' — /’Ux.,\\’{v.,\dﬁ(’\)*
J 2

In the tripartite situation one has similarly

C‘(.fv.z - / UX..\ V_v.,\ Wz.,\d:“(’\) .
Q
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Testing with linear constraints
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Testing with linear constraints

~ Let my ,, p be a matrix. Then we can compare

|mije = sup Z p(a. bx. y)my
plocal 4,5
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Testing with linear constraints

~ Let my ,, p be a matrix. Then we can compare

|ml|- = sup | Y p(a. blx.y)my,
plocal .., 5
with
| | i = sup Z p(a. blx.y)my
p quantum ",
=_ s | ) (WTY @ S)hms,|.
ZJT;:]‘:Zng'h x.ay b
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For two Banach spaces X and Y Grothendieck introduced two
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For two Banach spaces X and Y Grothendieck introduced two

norms on the tensor product X @ Y. The largest norm (7-norm) is

given by

The smallest norm
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Commercial Break-norms and tensor products

For two Banach spaces X and Y Grothendieck introduced two
norms on the tensor product X @ Y. The largest norm (7-norm) is

given by
Z||lxr = Z:Emf Xk: Xie || x || Y|l v -

k .}('{( ot Vli.,;

The smallest norm (=-norm) is given by

Y X @ ylle = sup [y x"0a)y ()l -
k

x* |+ <Llly*[ly-<1
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Commercial Break-norms and tensor products

For two Banach spaces X and Y Grothendieck introduced two

norms on the tensor product X @ Y. The largest norm (7-norm) is

given by
Z||lx = inf Z Xic || x || Vil v -
-

Z=) . XDy
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Correlations versus probabilities

Imagine that the classical py(alx) is the probability for tossing a
sign =, € {=1}. Then

Ux = Y sapa(alx) . Vy =) =ppa(blx)
b

a

gives the correlation matrix

C_r{.y — /UX.J\VV.Ed;“(”\)'
JQ :

In the tripartite situation one has similarly

C‘(.y.z = / UX..\ V_v.,\ Wz.,\df-"-'(‘\) =
Q
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More precisely: Family of probabilities

> We consider families p(a. b|x. y) of positive real numbers such
that

> > . p(a.blx.y) = P(bly) does not depend on x,
> >, p(a. blx.y) = Q(a|x) does not depend on y,
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e HERE YA =1=Y_qf(A) forall x y. X =



Correlations versus probabilities

Imagine that the classical py(alx) is the probability for tossing a
sign =, € {=1}. Then

s = Zfap,\(a =y . W Z-—L‘bP,\(b x)
b

a

gives the correlation matrix

Cx._v = /Ux.,\“"{v.,\dﬂ(”\)'
J

In the tripartite situation one has similarly

C‘(.fv.z e / Ux.,\ V_v.,\ Wz.,\d:“(’\) :
Q
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Testing with linear constraints

~ Let m,, be any matrix. By convexity

sup E C‘f‘ymx‘_v = sup E ExOy My y | -

Cheal o, Se==Loy==1

~ The quantum analogue is

sup E C*w:.ym.‘{.y
C quantum

= Sy (h (Tx’ Sv)h)mx.v .

X.Y
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Commercial Break-norms and tensor products

For two Banach spaces X and Y Grothendieck introduced two

norms on the tensor product X @ Y. The largest norm
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Commercial Break-norms and tensor products

For two Banach spaces X and Y Grothendieck introduced two
norms on the tensor product X @ Y. The largest norm (7-norm) is
given by
z|| inf Z Xt || x |lyill v -
-

Z=) . Xk DYk

The smallest norm
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Commercial Break-norms and tensor products

For two Banach spaces X and Y Grothendieck introduced two
norms on the tensor product X @ Y. The largest norm (7-norm) is
given by
z|| inf Z Xic|| x ||yl v -
k

Z=) . Xk Dyk

The smallest norm (=-norm) is given by

Y X @ yille = sup [ x"(a)y ()l -
k

x*| = <Lly*[ly«<1
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Commercial Break-norms and tensor products

For two Banach spaces X and Y Grothendieck introduced two

norms on the tensor product X @ Y. The largest norm (7-norm) is

given by

The smallest norm (=-norm) is given by

Y X @ ylle = sup > X (a)y ()| -
k k

x*|x* <L|ly*|ly-<1

Observation: The extreme points of the unit ball in 7 (cube) are

exactly =1 sequences.
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Interesting examples
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Interesting examples

e 1"],|‘D:(T1 HIP)%J{”'

L a4 P

>~ (C" = {7 gives the usual inner product;
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Interesting examples

T |-

e Jlall, = (X ail?)?; €

> C" = (7 gives the usual inner product;

Il = (tr(lolP))VP; Sp

ol en) = 55085 a1
>~ Ball™ (5] @ S{") = { set of sperarable states}.
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Interesting examples

1
=1 =5 : —_ O
> lallp, = (22 ail?)?; ‘o
> (C" = {7 gives the usual inner product;

> |lplle = (tr(|0l?))?; Sp

s “Hfl(‘x) = Z‘;SUPJ; i | -
> Ball™ (5] @~ S5{") = { set of sperarable states}.

Remark: The theory of operator spaces is the theory of subspaces

of B(/>) with additional norms.
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Interesting examples

1
> |lallp = (2 |eilP)7: €5

>~ Ball™ (5] @ S{") = { set of sperarable states}.

Remark: The theory of operator spaces is the theory of subspaces

of B(/,) with additional norms. The operator space analogue of

Grothendieck’'s = norm is given for X C B(Ha) and Y C B(Hp) by
X Qpuin ¥ C B(H,q x HB) :
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Interesting examples

1
> |lall; =(0; |ailP)>; £
> (" = (7 gives the usual inner product;
> |lpllp = (er(l0l?))/7: S
> Ball™ (5] @ 5{") = { set of sperarable states}.
Remark: The theory of operator spaces is the theory of subspaces

of B(/5) with additional norms. The operator space analogue of

Grothendieck’'s = norm is given for X C B(Ha) and Y C B(Hpg) by
X Qmin Y C B(H4® Hp) .

Now M, = ST satisfies M, @ min Mg = M,. Also there is a

operator space version of 7 whlch produces the all states, not only
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Tensor language

A Bell inequality with violation for a two-partite correlation is a

matrix m, , such that

: :m;(__vex : EL_V £10eL1 < E mx-_Ve"{ . E_V £1 < mint1
X.Y X,y
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Tensor language

A Bell inequality with violation for a two-partite correlation is a

matrix m, , such that

E My y€x & €y ||l10-4 < E My y€x & €y || 1D minf1
X.y X,y

A Bell inequality with violations for a three-partite correlation is a

matrix my , > such that

Z My y € : €y e_val delq < H Z My y z€x €y [|£1 Rminf1
X.V X.V
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Violation = min is bigger than =
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Violation = min is bigger than ¢

A Bell inequality with violations for two partite probabilities is a

matrix my ,, p such that
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Violation = min is bigger than ¢

A Bell inequality with violations for two partite probabilities is a

matrix m, ,, p such that
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Results

Pirsa: 10070009 Page 62/93




Results

T heorem
(J-GP-P-VV-W-08) There exists a rank n matrix in {1 @ {1 @ {1 such

that
m

£1 D mint1 @ mint1

<
-l

£1H0=6100:£1
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Results

T heorem

(J-GP-P-V-W-08) There exists a rank n matrix in {4
that

9 €1 @ £y such

mij¢c mint1 mint1

T S
M| (@124

The rate is optimal and can be achieved using one Hilbert space
n-dimensional.
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Results

T heorem
(J-GP-P-VV-W-08) There exists a rank n matrix in {1 ® {1 @ {1 such
that

) .| —
-1 Y s = \vﬂ'

Qet1Pely
T he rate is optimal and can be achieved using one Hilbert space

n-dimensional.

Theorem
(J-GP-P-V-W-09) There exists a rank n matrix in £1((7_) @ £1(¢7.)
such that = =

!:m mfn E C \v n '
Pirsa: 10070009 m = !Og n
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Recent results
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Recent results

Theorem
(J-P-10) There exists a rank n matrix in £7((5, ) @ (7({5, ) such that
\E M| min —

c < < ENm.
log n m|-

: : : —5
Comments: Previous estimates of polynomial order n=19
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Random techniques-tripartite

@ Khintchine inequality: We know the operator space structure

of the the span of Rademacher's =.
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Random techniques-tripartite

@ Khintchine inequality: We know the operator space structure

of the the span of Rademacher's =,.
° Zl..;;_-:k_j{;n €,j €k 1/2 — \/n is very small.
@ We construct the inequality and the state simultaneously

using large random matrices.
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Random techniques-tripartite

@ Khintchine inequality: We know the operator space structure

of the the span of Rademacher's =.

- | Zlik‘jin €j ki

@ We construct the inequality and the state simultaneously

1/2 =
/< = /nis very small.

using large random matrices.

@ Free model. Let g, be free unitaries. Then

| =t

3]

Zr_lkj/\(gk) /\(8})H = Z QX fgj

k.j kj
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@ We lift this via an ultraproduct argument to find large

Pirsa: 10070009

Random techniques-tripartite

Khintchine inequality: We know the operator space structure

of the the span of Rademacher's =,.

= h1/2
| Zlgk.ji:n Ckj ki

We construct the inequality and the state simultaneously

using large random matrices.

= = /nis very small.

Free model. Let g, be free unitaries. Then

Z r'lkj/\(gk) x )\(g})H

k.j

perturbations of large matrices.

g S

E ¥ ks 5

kj

[ | et
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Random techniques-bipartite probabilities

@ We know that for Banach spaces

n — m n
fp 5 (fl_),
@ [hen use Dvoretzky theorem for p > 2 and choose a large

Hilbertian subspace H, in £7 and get (small =-norm on

H,® H,).
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Random techniques-bipartite probabilities

@ We know that for Banach spaces

G oy { )
@ [hen use Dvoretzky theorem for p > 2 and choose a large

Hilbertian subspace H, in £7 and get (small =-norm on

H,® H,).

@ Hard part a) wrong operator space structure, b) calculating

matrix norms in £,(f,) is very difficult.
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Random techniques-bipartite probabilities

We know that for Banach spaces

)
Then use Dvoretzky theorem for p > 2 and choose a large
Hilbertian subspace H, in £7 and get (small =-norm on
H,® H,).

Hard part a) wrong operator space structure, b) calculating

matrix norms in £,(f4) is very difficult.

Important observation: Maps of the from T°T.
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Random techniques-bipartite probabilities
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Random techniques-bipartite probabilities

@ According to a result by
Bourgain/Casaza/Lindesntrauss/ Tzafriri £5 can not be

complemented in /1({. ), at most up to logn.
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Random techniques-bipartite probabilities

@ According to a result by
Bourgain/Casaza/Lindesntrauss/ Tzafriri £5 can not be
complemented in ¢1({. ), at most up to logn.

@ Step 1: Take a random n-dimensional subspace H,, of 7((5).

Then H, is \/log n complemented and the norm is (1 + <)
hilbertian.
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Random techniques-bipartite probabilities

According to a result by
Bourgain/Casaza/Lindesntrauss/ Tzafriri £5 can not be

complemented in /1({. ), at most up to logn.

Step 1: Take a random n-dimensional subspace H,, of £7({%).
Then H, is \/log n complemented and the norm is (1 + =)
hilbertian.

By Grothendieck's inequality every bounded map

V:li({x) — R, =span{ec; : 1 < k < n} is completely
bounded.
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Random techniques-bipartite probabilities

According to a result by
Bourgain/Casaza/Lindesntrauss/ Tzafriri £5 can not be

complemented in /1({. ), at most up to logn.

Step 1: Take a random n-dimensional subspace H,, of £7((5.).
Then H, is \/log n complemented and the norm is (1 + =)
hilbertian.

By Grothendieck's inequality every bounded map

V:li(l) — R, =span{ec; : 1 < k < n} is completely

bounded. Hence we obtain violation of the order

z - ¥ = n 3 ' ;
fd_fj_;fz_R”_mlan:anl.\"'\(n-
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Bell inequalities

Step 2: The matrix

Then |m| - < Clogn.
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POVM's
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POVM's

for a

for x
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States

For a state " = ) _. «j|ii) we define the indicator

iviol(?) = ||lalls||ell1 -
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States

For a state ©» = ) _. «j|ii) we define the indicator

iViO|(E_‘) = ||| |lells .

T heorem

Let viol(v') > 2. Then there exists Bell inequalities my , ,  and

POVM's such that
mi- < Clogn
and
Y Moy 5(¥, T2 ® SP(¥)) > civiol(y) .
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States

For a state ©» = ) _. «j|ii) we define the indicator
iviol(v) = |lal|~ |7 -

T heorem

Let viol(v)) > 2. Then there exists Bell inequalities my , ,  and

POVM's such that
mil- < Clogn
and
Z mx.a.y.b(f' T‘f 5\?(")) 2 CiViD'(L‘) :

Pirsa: 10070009

n short: Violation for almost all states (neither flat nor rank one)
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Entropy
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Entropy

The Entropy of entanglement for v = ) . a;|ij) is given by

Ent(v) =) _ |ai|* — log(|ai|?) .

I
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Entropy

The Entropy of entanglement for v = ) . a;lij) is given by

Eﬁt(e_*] — Z Y ; == |Dg( ¥ 2] :

]

A
log n

Given 6 > 0, we can find states with Ent(v') < or

Ent() > logn — 0 such that
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Entropy

The Entropy of entanglement for v = ) . a;lij) is given by

Ent(v)) = Z a;|? — log(|a;|?) .

I

0

Given 6 > 0, we can find states with Ent(v') < —
Ent(¢) > logn — 0 such that
= /n . /n
iviol(v)) > c— and iviol(y) > .
log n log n

Conclusion: Entropy and entanglement are almost independent for

our random examples.
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Entropy

The Entropy of entanglement for v = ) . a;lij) is given by

Ent(v) = Z a;|? — log(|a;|?) .

]

o

Given 0 > 0, we can find states with Ent(v') < S—
Ent(o) > logn — 0 such that
== n = /n
iviol(v)) > c— and iviol(p) > .
log n log n

Conclusion: Entropy and entanglement are almost independent for

our random examples.
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