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Random Matrices from Random Quantum Circuits:
convergence rates for arbitrary statistical moments
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|. Motivation & Background
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Quandom randomness: useful...

@ A powerful tool across applied mathematics, statistics, physics (disorder/quantum chaos)...

@ A fundamental resource across quantum information theory._..

— A random U is very effeciive at ‘concealing’ quantum information:

L ‘
lv |4 —=|@

Random coding saturates the quanium capacity of the quantum erasure channel

Bennett et al. PRL 1997
Applications to superdense coding, remote state preparation, quantum data hiding and
approximate encryption protocols, quantum state discnmination...

Arrow et al. PRL 2004; DiVincenzo ef al. PRL 2004; Hayden et al. Commun. Math Phys 2004 ibid 2006,
Ambainis & Smith_ LNCS 2004 Sen. Complexaty 2006
— A random U can enforce 'typical behavior’ (measure concentration) in large Hilbert spaces:

Applications to efficient (scalable) noise estimation in open quantum systems...
‘Superoperator twirling’ A—»=UloA0U = Trlle) el A{Ule ) ¢lU U]

Overlap 1s an unbiased esiimator of average gate fidelity/channel sirength
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Randomly distributed unitaries <— Circular Unitary Ensemble (CUE)

Dyson. | Math. Phys 1962; Mehta. Random Mairices, 1991

@ Dei: A random U acis on a N-dimensional complex Hilbert space #H, dim H = N = 27 _and
is drawn uniformly from the (unique) invariant measure on U(N):

p U U =p(U), VU U'cUN) Hoarmeasure

Fact: the volume of U(N) grows exponentially fast with ...

@ Any circuit implementing an exact parametrization of CUE requires exponential resources:

— Explat procedure provided by t he Hurwitz parametnzation:
Pomiak et al_ | Phys A 1998

— O[AZ (log NP] = O’ Z=] single- and two- qubit gates from a fixed universal set,
plus
2 independent classical 'input’ parameiers = exponeniial quanium and classical resources.
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Quandom pseudo-randomness: random Circuits

_WeakKer requirement: seek efficient approximations of the Haar measure.
Emerson ef al, Saence 2003; Phys Rev_ A 200

@ Def: A pseudo-random unitary ensemble is indistinguishable from CUE limited to a restricted

set of statistical properties/test functions.

— Pseudo-random operators can be generated by implementing a random gquantum circuit =
sequence U, . U, of gates drawn independently at random from a biased distribution u{U}.

qu ET
|q = 1 Random {/{Z) rotation
' = Ising NN coupling
la. £
U__ iterate._.

© Thm: Provided that p has support on a universal gate set, the measure over random circuits
converges exponentially fast (in circuit depth &) to the Haar measure:

p (U= (U= du(U,)..dp{U}é{v—U,..U,)) = Imy__u(Uug(U}

kL
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Quandom pseudo-randomness: unitary t-designs

Want: distributions on uvnitaries that maich a sub—set of momenis of the Haar measure

Ambainis & Emerson. IEEE Conf. Comp. Complexity 2007; Dankert et al. Phys Rev_ A 2009
S

Law_ PhD Thesis. arXiv-1006 522

© Def: (i) ~order moments of a distribution p on YN} = expectations of "balanced’ --monomials

in the matrix elementsof U E {u_ _u, u = = u_.. ugu, ...u, dp(U)

gL F """ o | Cix} L &

(1) p iIs an exact unitary ~design on UN) if for all ¥ x N complex matrices o

E(u™e@Y}=E, _(t"e(t'}"}] < E(M@U)=E, (MU}

L

— No efficient constructions of exact unitary t-designs are known except 1 =2, N = 2~ [Clifford].

@ Def: pis an e-approximate unitary r-design on €UIN) if for all balanced monormals of degree ¢

[ (e )}-E, (M@)f<—

— Slightly different definitions depending on specific choice of norm...

A unitary -design cannot be operationally distinguished from the Haar measure
with respect to any test that uses at most 7 copies of a selected unitary U.

Pirsa: 10070007 Page 7/23




e e S e cions

© Approximate unitary /-designs are a practical resource for a variety of quantum tasks:

— t =1 suffices for implementing a private quantum channel __ e

— [ =2 suffices for quantum data hiding and protocols relying on Clifford twarls;
Abeyesinghe at el. Proc R Soc A 2010
_..estimation of Haar-averaged fidelity and seledive quantum process tomography:
Dankert at el. Phys Rev. A 2009: Bendersky et al. Phys Rev lLett 2009
_.generation of typical (subsystem) entanglement:
Dliverra et al, Phys. Rev_ Lett 2007; Zmidaric. Phys. Rev. A 200

..model intemal Thermalzation" dynamics of an evaporaiing black hole;
Hayden & Preskill. | High En. Phys. 2007 Sekino & Susskind. ibid 2007

— [ =4 required for estimation of fidelity vanance in randomized benchmarking.

Magesan et al. arXiv-0910 1315

© Def: An c-approximate unitary -design p on UN) 1s efficient if there exists an algorithm
to sample and implement unitaries from p that uses Ofpoly(log NV, log 1/¢)] resources.
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© Efficient constructions of state ~~designs do not directly generalize to umtary -designs.

Ambaims & Hnerson, Comput. Complexity 2007

An efficient construction of a e-approximate unitary r-design on n qubits for any t = Ofn/log n]
may be obtained from quantum '7-copy tensor product expanders’.

Harrow & Law, arXiv-0811 2597

Can t-designs emerge from generic physical models of random dynamics?...
In particular, how are random circuits related to unitary t-designs?_.

@ A random circuit on n qubits yields e-approximate (1- and) 2-designs.
A random circuit of length poly|n, 1, log I/e] s conjectured to yield an ¢-approximate 7-design.

Harrow & law_ Commun_ Math. Phys 2009
[See also Diniz & Jonathan. arXiv-1006.4202]

— Partial supporting evidence based on numencal analysis...

Arnaud & Braun. Phys Rev A 2008
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[I. Main Result
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Random circuit assumptions

lq. FE£] £

la, o R — la. ) — —
: = e U

la. EEE

i S U, < u(v)

> 5
L3

Consider pseudo-random circuits consisting of a sequence U, ... U, of n-qubit unitaries,
constructed as follows:

(1) Pick a pair of distinct qubits (z j) uniformly and independently at each time step &

(i) Apply a gate selected from a universal (single- and two- qubit) gate set on U4) according
to a probability distribution ji (U ] that obeys

a{Uy=nf U'y, YUe U@ 'Reversibility condition

(iii) Optional condition: Assume that j{U ) is invariant under the subgroup U(2) X U(2) CU4).

@ Dei: (Reversible ) permutationally invariant random circuits = class of aircuits obeying (i)-{i).

Page 11/23
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© Claim 1: For any permutationally invariant random circuit on n qubits, and for any fixed 1 > 0,
arbitrary r-order momenis converge exponentially fast (in circuit depth &) to their
Haar value, with an asymptotic rate A, that decreases linearly with n:

= @, a f/u}
J,_: ] — — = lo ¥ )'
. Z_:=a H':; mn {.‘HJ__-‘

for expansion coefficients | a_| that may in general depend on t.

@ Claim 2: For any locally invarant random circuit on n qubits, and for any fixed 7 > 0,

the asymptotic convergence rate A, is independent on f to leading order in n.

Implication: Upper bound on scaling of minimum circuit length &_ for arbitrary 7 as n grows:

T, A random circuit of length k_ ~ [z log Z/¢] yields an e-approximate 7-design.
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llI. Technical Approach
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_Asymptotic convergence rates

© Claim 1: For any permutationally invanant random circuit on n qubits, and for any fixed 1 > 0,
arbitrary r~-order moments converge exponentially fast (in circuit depth &) to their
Haar value, with an asymptotic rate A, that decreases linearly with n:

A=Y —+O(—)

for expansion coefficients | a | that may in general depend on 1.

@ Claim 2: For any locally invarnant random circuit on n qubits, and for any fixed 7 > 0,

the asymptotic convergence rate A, is independent on 7 to leading order in n.

Implication: Upper bound on scaling of minimum circuit length &_ for arbitrary 7 as n grows:

070007 A random circuit of length k_ ~ [z log Z/¢] yields an e-approximate 7-design. ... 1.




lll. Technical Approach
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Physical n-qubit space: # = @ H

7 qubits :
s 9 e\ /@ ® e dim(#) =N = 2r
L 8 85 S L] b .
t mpta{ - s =V 4
A ¢ | . af _ @ _ qf ®n
[D . / \ D . Moment space: , rrE—N
dm{#, )=D=N=

U H, U H, : =
- e Local moment space: H, = H_°®4

dam{#,)=d=+

E =

Uy M|

=S =

© Recall that --order momenis are expectations of monomials of degree 1,7- E {u__..

— Action of the random circuit on f copies of the n-qubit space induces
a superoperator on density operators on nf qubits:

p — M. [ul(p)= E'.{[*@" o(U’ ﬂ‘EJ- dp(U}U* p(U')™ Moment superoperator

e In Liouville representation, M |u] acts as a linear operator on D-dim ‘operator kets' in :H'M::

A=|A)), A'=((A s -
i E . | = M[p]=] du(U} U™ 0U™
UAU'=UeU |A)), Uec UN) e
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_Convergence properties-|

© Properties of the moment superoperator:
— Hermicity:
Reversibility condition, a{U}=a({U"}, implies MJul=M[u] on %,

— Forward composition property:

A

[ =[ T, au@ I, (vZeu)=]1,_, [ du(v,jus ou;>= (M [u]) = M*[u]

Comvoluiion produd translates into matnx multi plcation for momenis of fixed order.

— bBigenvalue structure:
|2.|< 1forall £, with the exiremal eigenvalue }_ =1 corresponding to the set of fixed points,

v.=spani|¢)) |{U*0U™)l¢)) =l¢)). VU=UN)}

@ Convergence properties of the measure p_over the random circuit translates into
convergence of -order momenis:
! _ F _._.-;r T T
l‘mi'—m:‘l{;_u' = H'-'_:M:'_HHIF Vi
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_Convergence properties-||

© Approach of M{u] to M|u_| depends only on non-extremal eigenvalues/eigenprojectors of M [u]
If &k is sufficiently large,

e ), = Subdominant eigenvalue = 1 —A_

s ula [ =1 r*m|~Rk[]m].
. LH L Mg i} fzm.=1 £l 1] A, = Spectral gap

— Convergence is exponential in circuit length, with a rate I determined by the speciral gap:

=—logd,=—log{l—A,}) = A,

@ Knowledge of convergence rate allows to upper bound convergence time = rmimmum circuit

length &_required for M{u] to become ‘operationally indistinguishable’ from M ]u_] within z.
— Require that arbitrary n-qubit density operators be close: || " u]{p)— M [u, (0} < &

Since M u](p}~M_ [u_](p} < A; ; we can bound 1-norm using 2-norm:

: [ M Tulo— M Luzllo) [ < 2725
— Letting 2" A;“< ¢ yields upper bound

k_< _1___; fluglff+nriog2)
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Moment superoperator structure

© For arbitrary permutationally invanant arcuits, the moment superoperator obeys:

(1) Locality properties — M [u]is a sum of operators with support only on d x d dim
bi-local moment spaces %, ® %, for a fixed qubit pair (z /).

(2) Symmetry properties — M [u] is invariant under arbitrary qubit re-labeling.

L Mp=—>—Y mila] milal-mal=[ da(U)U™eU™, Uculy)

© M |u] defines a permutationally invariant qudit Hamiltonian, a=4:

— Outer product basis for operators on 7 i:b;s =l Bl. «.8=1....d} =

A =

m, _f‘::Z_ﬂ}.é:; Cas, s'b:-:sb: 5> CagysER
— M Ju] may be (exactly) rewritten in terms of 5U(d) collective operators:
Bxsz Z:=; b'e;- —— 1 £
e ML‘U.;:—_ZL, .:I-BJSB 5_65}'3-.16
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Lipkin-Meshkov-Glick model Hamiltonians

Collective Hamiltonians have a long/rich history in many-bedy physics

© Paradigmatic case: Quadratic functions of §U(2) collective spin operators = Spin % LMG model

Lipkin, Meshkov. Glick, Nucl. Phys. 1965

r=1ly STty S5ty SheES. 5:=;Zf_:ur;. a=x.y.z: y.. heR
FI % 4 ¥ s F=i

— Infinitely-coordinai ed, exacily solvable via (algebraic) Beihe Ansaz
— Low-energy spedrum well undersiood inthe thermodynamic imit 7 —<=;

Ribewro et al. Phys Rev_ Lett 2007

— Mapping to LMG model exploited to analyze corvergence of 2™ -order momenis:

=5 1 2y 1 Zmdaric, Phys Rev_ A 2008

M-,,,UEZ_L .S‘ S . H+H—c 5,
. nin—1} S i

@ For generic £, M [u] corresponds to a d-level extension of the standard L MG model.

Gilmore_] Math Phys 1979

[M,[u].5.]=0, Vi
i

L Symmetric group

— Slate space # ,, cames (reduable) n-fold tensor produd representation of STlld);
rrsa THAAEN eigenvedor of AL[u] belongs to a fixed irrep. Page 20/23
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_Ground-state manifold

e ——

© For any | MG Hamiltonian, the exact ground state is given in the thermodynamic limit by a
variational mean-field Ansaiz over sUld) coherent states of the totally symmeiric S_-rrep:

lim__ mm,, (CS®NH|CS™))=((Gs|H|GS)), |cs¥)) =]¢))""

- LE §

Gilmore, ] Math Phys 1979

Stronger result: Mean-field extremal eigenspace of M, [u] is exact for any finite ...

— Exiremal eigenspace V_ consisis of fixed points under fold tensor producis of T(27):
147 E-r__ = I{-—B:‘p{"iﬁ::(p' V{,’E .Eﬂzrrl
— Each such operator must be a inear combination of permutations of the 7 copies of # in 7

0¢9) = X7, lii) (i gyl 7S,

— Permutations of copies correspond to produd states relative to decomposition # |, = 7, ®™

an 4 L B

’O-:I- = izz-_=ﬂllf'-‘;.‘ f:-’lf'-"{f:‘]:l = :[ﬂ' :’

@ For any L MG Hamiltonian corresponding to a (reversible) random quantum circuit on n qubits,
the ground-state manifold i1s exactly spanned by (degenerate) factorized eigenstates.

s oidig@hly non generic: related to physics of ‘ground-state factorization’...
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@ | owest excitation energy in the large-n limit may determined by a vanational mean-field Ansatz.

— For the totally symmetric irrep, start from realizng U(d) in terms of Schwinger bosons:

|

E = 1 . -
B —=""a_= ﬂ.ﬁ:l ..... d M = Z - ¢ ddes
= : mn—1; afyd=1 apyre a ¥y p d

B

— Regard the boson mode that corresponds to alny) ground staie f-_l{r . . as 'frozen’ inthe
vacuum for a generalized Holsiein-Pnmakoif transformaiion:

O(n={n—) _d.a) , a,—0(n), a—6(n

Dkubo_ ] Math Phys 1975

Only terms up to the leading order in 1'n need to be kept in square root =

- £/ % )
M/[pl= 1_%Z,ﬁ=15a§‘1‘; a5+0(%), E_=26_,~(calm|oB)) —{(calm|a))]
. -_1_'."! - ’

© |Large-z expansion: to order 1/n, lowest excitations correspond to single-boson excitations

L ¢ %

|z =n—1.2=1 =—llo..ca) )+ +|lac._o))).

X - g
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_Spectral gap scaling

o Spectral gap is determined to leading order by a, = min{eiglE .| = Claim 1 is established,

g~ . & PN
—"‘.'_Z_:=3 H.':_ " lo(tnl)‘

provided that:

(1) Leading-order coefficient i1s non-vamshing — Formal proof that a, > 0 follows from invanance
properties of bi-local moment superoperator m..
hitp-/link aps org/supplemental/ 10 1103 PhysRevlLett 104 250501

(2) Mean-field expansion captures all low-lying excitations — Rigorous proof not available (?)...

— Mean-ield Ansaiz exiremely well supporied (analytically and numencally) for LMG models.
Ortiz et al. Nucl Phys B 2005 Dusuet & Vidal. Phys Rev_ B 2005:
| eyraz & Heiss. Phys Rev_ Lett 2005; Ribewo et al_ ibid 2007

— Rigorous proof might be possible for LMG models supporting ground-state factonzation (?)

@ Under the additional assumpition of local invariance, Claim 2 follows upon showing that matrix
elements determining the spectral gap attain their maximumatz =2 _.
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