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Self-force and Gauge

A simple thought:

Related:

The topic of this talk is that the first leads straightforwardly to the latter.
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Since the gravitational self-force is pure gauge,
shouldn’t there be a “pure gauge” derivation?

Shouldn’t there be a way of writing the force that holds for
all (allowed) gauge choices?
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Self-force and Gauge

A simple thought:

Since the gravitational self-force is pure gauge,
shouldn’t there be a “pure gauge” derivation?

Related:

Shouldn’t there be a way of writing the force that holds for
all (allowed) gauge choices?

The topic of this talk is that the first leads straightforwardly to the latter.

Spoiler: the result is that the self-force in any allowed e
gauge is simply the angle-average of the bare self-force
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Advantages of the Gauge-independent Approach

The gauge-independent derivation
- Is incredibly simple, involving essentially no computation
- never loses sight of the gauge-dependent nature of the force

- has a great shot of generalizing to second-order self-force
(whereas the harmonic gauge approach would be a giant mess)

The gauge-independent result
- doesn’t prefer humanity’s favorite gauge choice
- comes in a “regularization” form suited to numerical computation

sa: 10060049 - tells you how to compute self-force in a wider class of gauges- -
(e11ich as the one 1iced in Milwatikea?)
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Steps in a self-force Derivation

1. Make assumptions about your spacetime (really, one-parameter family).
- | will use the assumptions of Gralla&Wald 2008

2. Define the “position” or representative worldline of the particle
- | will use a more general definition of position than used in GW2008

3. Compute an equation for the worldline

- | will take a new, “gauge-independent” computational approach

Note that there are some errors in the gauge calculations in the
rrsa: wosoi@PPENdiXx of GW2008. This work corrects them (although the Page 122
combpiitations are done differentlv)



Step 1. Assumpions

(review of our formalism)

To treat a “small body,” consider a one-parameter-family of spacetimes g(A)
containing a body that shrinks to zero size. The body must shrink to zero
mass too, since point particles are not allowed in GR.

We accomplish this by assuming the existence of a second, “scaled” limit
designed to hold any shrinking body at fixed size.
Rescale coordinates t — 1o 7 z' 2

f=— . _— 'JI-E’\ "G
and metric: p A i 4

LetA > 0 G (f0) = lim G (X: o).

This limit zooms in on the body at some time t,, giving a stationary,
asysmptotically flat spacetime characterizing the body at time t,.
| will call this spacetime the “body metric”.
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*We also assume a “uniformity condition” which is like the “region
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Example Family

Consider the Schwarzschild-deSitter metric of mass A*M,

-1

5 ._)‘[u\ ) 9 ._)‘[ z\. _ 9 9 ) "
A2 O = ~ (1 =t —('.,,--)ffr- : (1 o —('..f--) dr? + r2d0*.r > ARo

r r

As A—=0, the body disappears and we are left with a deSitter background.

But rescaling the metric and coordinates,

r/A

,'?_ill' = '\_-!,";'l;ep l'_'E f f\ ,_

we have

) 2,1]“ - y 9 ) 3-‘1;; . 94 9 -1 ) ) )
d2(\) = (| _ o _ ('.._\-;--) i + (| . rz,..\-;--) di® + P2d0%.7 > Ro.

I r

Now, as A= 0 the background disappears and we are left with the
Schwarzschild metric. The scaled limitzooms in on the body.
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Step 2. Definitions

The lowest-order motion is given by the worldline “left behind” by the shrinking
body, which we proved must be geodesic.

The mass, spin, and displacement from geodesic motion are defined to be the
mass, angular momentum, and center of mass of the body metric at time t,.
The center of mass of an SAF metricis given by (Regge & Teitelboim 1974)

1 . o y ]
D! = 167 lim / r2dQ v’ [z (Okgik — 0j9kk) — it + Grrdir]

T r—>00

Some properties:

1. The CM is only defined when the metric is even parity at O(1/r)

2. The CM depends only the I=1, O(1/r*2) part of the metric
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If the coordinates are (super)translated, the CM changes by™ ™
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Step 3. Computation (1)

Under an allowed change of gauge,

&t = FH(t.0.0)+ O(r) — C’” = F¥(tp, 0, &)

even parity
the deviation from geodesic motion changes by

0X! = L] FldQ = inm /s, dQ

:T ;T ,'—--o"
W .

(€ ) rar0

and hence the acceleration changes by (working in Fermi coordinates)

Lo e
r)_\ = (L)[)dﬂt': )r—-,-l) Ricci Identity
vanish Dy parity ( A

)
(anum " 2 rm}()l.-‘fi : vllvmll V VII‘-.,H + R:{ll} sk>r-|1

y o (1 (1) -k
- (vilaﬁlu,’ V 0900 >r—-(l — Rl,h‘t}k(ti >r—-u

. —— auge invariant
— .ﬁ " - — R{ ' .l‘j.\ g g ;
(f lmrtr> r—0 010k correction term
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Step 3. Computation (1)

Under an allowed change of gauge,

& =Fr(t.0.6)+0(r) > & = F"(t,6,0)
even parity

the deviation from geodesic motion changes by

6X" = i__ FldQ = - lim [wsz = (£")r—0

w .

and hence the acceleration changes by (working in Fermi coordinates)

Lo e
00X = (L)[;d(}f; ),._._.l) Ricci Identity
vanish by parity ( A

|
. 7 B . . J:
- (Vllvll‘s: 5 r()n()l.-‘s:' 2 5 Vl]vf\fﬂ o V:Vufn 5 & Ri{l(} Sk)r-ll

P L K
= <an’!}:}; - 3Vrf’!}:{uuj>r—~u — Roior(§" ) r—0

. - vk auge invariant
= o(f. o — Roior0 X i
<f lmrc> r—0 010K correction term
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Step 3. Computation (2)

We have
—{” i <fltmrr->r—-” . Ru_;uld\'} T

It only remains to determine the gauge-invariant contribution F' by
picking a gauge and computing the other terms. Harmonic gauge would
be hard work. But there is a very convenient gauge...
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Step 3. Computation (2)

We have
X' = (fioe)r—0 — Roje X + F

It only remains to determine the gauge-invariant contribution F* by
picking a gauge and computing the other terms. Harmonic gauge would
be hard work. But there is a very convenient gauge...

The gauge in which there is no
deviation from geodesic motion!

X'(t)=0 > F'=—(fi Yo inthisgauge

Only I=1 angular dependence in the metric perturbations can survive the
angle-average. But the relevant terms actually satisfy the linearized
e ocidNStEIN equation about Schwarzschild (“in the near zone”). The factthat
=1 (electric) perturbations are pure agauaqe allows us to show immediately




Result

L~ 1 2 B f (1)
X'= <fh:lrf'>f'—'U' - Rtuu X’ foare = Voo — 5Vigoo

self-force geodesic deviation

This is the equation for the deviation from geodesic motion in any allowed
gauge. The SF agrees with the standard result in harmonic gauge.

ldeology

1. This form of the force is more fundamental than the “tail integral”
form because it holds in any allowed gauge.

2. This form of the force is more fundamental than the “singular field
subtraction” form because it holds in any allowed gauge. Note that
the concept of a singular field never arises in this derivation.

3. What's so great about a singular field anyway? Angle-averaging
reen® seems to best reflect the basic physics: only asymmetric self-fielg§§™

T . AAH*’:kI I‘A e e e lﬁ'ﬂll ‘A'ﬂﬂ



Summary and Conclusions

*The self-force in any allowed gauge is given by the angle average of the
bare self-force in that gauge.

*The allowed class of gauges are those for which the “ADM center of
mass” of the body metric (near-zone background metric) is finite. These
gauges are the ones in which the metric perturbations diverge as 1/r and
have even parity to 1/r. This extends the self-force to a larger class of
gauges.

*The derivation involves essentially no computation, which gives some
hope for a straightforward generalization to second-order. This would
produce a “regularization” (rather than “tail integral”) form more suited to
numerical computation.

-/t also may be possible to generalize the results to an arbitrary

- ndpfeomorphism-covariant theory of tensor fields (matter fields, Einsteig-.,..
Maxwell, modified gravity, etc.) without much additional computation.
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Step 2. Definitions

The lowest-order motion is given by the worldline “left behind” by the shrinking
body, which we proved must be geodesic.

The mass, spin, and displacement from geodesic motion are defined to be the
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1

D' = 167 rlllll /"21'“2 n’ [-’J (OkGjk — OjGkk) — Gj1 + .‘IA-:\-‘iﬂj

Some properties:

1. The CM is only defined when the metric is even parity at O(1/r)

2. The CM depends only the |=1, O(1/r*2) part of the metric
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Step 3. Computation (1)

Under an allowed change of gauge,

h = Fr(t,0,0)+0(r) > & =F'(t,0.0)

even parity

the deviation from geodesic motion changes by

s X! = 4—1_— [F‘ru'il = : lim /E’r!i! =() 0

T r—0
L3

and hence the acceleration changes by (working in Fermi coordinates)

~ x =1 0y -1
X' = (()”()”E; ),._..” Ricci Identity
vanish by parity ( A

1
= (VoVo&i + rmdkf: + VoVi€o — ViVoéo + R,m; &k ) r—0

Skt s b N) pe
— <V1|0!h}r o Svroﬁm >r—-“ i R”"'”"& )r—”

N ~ x~k auge invariant
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