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Abstract: Motivated by the goal of self-consistently calculating self-force-corrected orbits and waveforms with (3+1) evolution codes we derive a
covariant expression for a non-singular representation of a scalar point charge moving along a geodesic of an arbitrary spacetime. This differs from
previous representations that were anchored to the use a particular locally-inertial coordinate system.
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leview of the (3+1) approach

@ "Regularization before evolution”

@ Solve the following equations simultaneously for 'R and u“:

OuR = (2. u®)

”,jvljuu = gchj'vj l.'R

@ Advantages:

» Non-post-processing approach to self-consistent evolution
» Does not rely on the underlying symmetries of the spacetime
» Uses existing numerical relativity infrastructure

@ Disadvantages:

» Lower accuracy — (could be a deal breaker)
» Inherits the difficulties that confront any (3+1) calculation
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ffective Source

\way from the worldline, the effective source is defined by
S = —O(Wv¢°) = —-Wp® — 2VOWV 0> — ¢°0O0W

vhere

@ ¢ is an accurate-enough (explicit) approximation to the exact

Detweiler-Whiting singular field, and

@ 11" is an appropriately chosen window function, defined so that

> lim, .V, R = F,
» R — )"t away from the source,
» Seff is regular on the worldline.

-xample of a singular field approximation:

> =q/p+ O(p).
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New" covariant starting point
_ovariant singular field (Haas and Poisson, 2006)
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ffective Source

\way from the worldline, the effective source is defined by
S = -O(Wy°) = —-WOy? — 2V WV 4> — ¢°0OW

vhere

@ ¢° is an accurate-enough (explicit) approximation to the exact

Detweiler-Whiting singular field, and
@ 1" is an appropriately chosen window function, defined so that

> by o Vo™ =F,,
» R — ™t away from the source,
» Seff is regular on the worldline.

-xample of a singular field approximation:

V> = q/p+ O(p?).

Pirsa: 10060044 Page 6/30

L o mra e L /.-2 =g 1;2 = -2 T = [ o AR - Sy A O .




New" covariant starting point
_ovariant singular field (Haas and Poisson, 2006)
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ffective Source

\way from the worldline, the effective source is defined by
S = —O(Wv¢°) = —-Wp°> — 2VOWV o° — 0°0OW

vhere

@ ©° is an accurate-enough (explicit) approximation to the exact

Detweiler-Whiting singular field, and
@ 11" is an appropriately chosen window function, defined so that
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» R — /"™ away from the source,
» Seff is regular on the worldline.

-xample of a singular field approximation:
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New" covariant starting point
_ovariant singular field (Haas and Poisson, 2006)
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3ackground coordinates

s can be expressed in terms of an expansion in the coordinate
lisplacement w® = (1“ — T°):

N 3, 3, )
-06(2, T) = gap” +Ans w” w+ Ay grsw Twlw’+ A, 3Gl Tl wlwt+. ..
vhere
1
A“ By — ._]:'a 34
2
_.1(:1_ o 1 I‘*u I*u r;t )
A [yo — ()( d T B "r‘))

A%z = O(T) + O(r") +0(I?)

re all quantities evaluated on ~.
1ere then we have a perfectly legitimate (generic) singular field

\pproxmmation in terms of the background coordinates. page 1012



New" covariant starting point
_ovariant singular field (Haas and Poisson, 2006)
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3ackground coordinates

T4 can be expressed in terms of an expansion in the coordinate
lisplacement w® = (x“ — T):
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re all quantities evaluated on ~.
{ere then we have a perfectly legitimate (generic) singular field

\pproxmmation in terms of the background coordinates. Page 12130



New" covariant starting point
_ovariant singular field (Haas and Poisson, 2006)
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3ackground coordinates

T4 can be expressed in terms of an expansion in the coordinate
lisplacement w® = (2 — T°):
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k potential issue with the covariant approach?

@ One approach that was originally pursued was to find a covariant
expression of the effective source. (Barry's talk).

@ Derive covariant expressions for (Ju> and V¢ from Eric's covariant
approximation of the singular field.

@ This requires truncations of higher-order terms.

@ Truncation introduces inconsistencies in the effective source that may
ruin the key relation 'R = ¢ret — T17¢°

@ The benefit in pursuing a coordinate approach is that it affords one
the ability to commit to the coordinate expression of ¢*> and not
throw out anything when computing Ou*°.
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New" covariant starting point
_ovariant singular field (Haas and Poisson, 2006)
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e

5 truncation allowed in going from > to Ou°?

Recall the wave equation with the effective source:
(YR = —SOW — 2VOWV ,°— WS
Determine a nice covariant expression for CuS: call it F(o).
(v = F(o) + Ro™.
Jse this truncated version in the effective source:
OyR = —°0OW — 2VeWV > —W F (o)
s there any crucial difference between «'/* and /7

O(yR — Ry = WRo"
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_hoosing the approximate singular field

1) Re-package the singular field as

-:S - i ;
> = ,,.SI‘
vhere
- 2 (FQ_-‘“'z)R I_'(FZ—B.L;Q)R (,—-2_32)]?
e 6 uouo T ')—l uocuo|u i)—l wouo o

2) Truncate s* and F' at the appropriate order.
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.oding up the effective source

@ Following the original THZ code, | wanted the effective source to be
computed entirely through evaluations of the helping polynomials and
their explicit (partial) derivatives.

@ 72 C/C++ functions

@ [hese helping polynomials are generally VERY long and nasty.
@ Many many thanks to Maple and its code generation facility!

@ ... and to "“grOptionDefaultSimp := 0" in grtensor. (Whoever laughs
at this is a true pro!)

_/C++ code for effective scalar charge moving along a generic geodesic in

ychwarzschild — DONE!

vince nothing said so far is specific to Schwarzschild, Kerr should now be

rivial.
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nterpolation

\ problem that arises in calculating the effective source is the subtraction
f very large numbers occuring close to the particle.

[wo important facts:
1) S =0 on v (formally).

/

2) S is smooth everywhere except on 7, where it is just C.

_onsider S(\) := S(F(A)) as a function of A, along the coordinate ray,
0

—
@

F = To + Ar, where 1 := =—

—_
»
—
. ra
.

ol”

0 compute S at a point very close to 7, instead use (Lagrange)
nterpolation with S(A = 0) = 0 and a few other evaluations of S along
he coordinate ray.
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lesults after interpolation
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lesults after interpolation
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lesults after interpolation
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lesults after interpolation
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lesults after interpolation
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-ffective source for a circular orbit in Schwarzschild

S5e-07
4e-07
3e-07
2e-07
1e-07

-1e-07
-2e-07
-3e-07
-4e-07
-0e-07

\\\ ) = o
'005\ = -

1\\-

059

[he"éfféctive source along the equatorial plane. (This is for a circular orBit; but it



‘ake home message

@ C/C++ code for an effective scalar charge moving along generic
geodesics of Schwarzschild . (Kerr is to follow quickly).

@ Interpolation effectively handles the errors arising from the delicate
cancellations that occur close to the particle.

@ With Peter Diener's (3+1) finite difference code, self-consistent
evolution for a scalar point charge is now possible.
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