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Self-force 1n a gauge appropriate to
separable wave equations
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The self-force per unit mass 1s the acceleration
with respect to the background metric:
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Point-particle renormalization (MiSaTaQuWa):

Particle follows a geodesic of 4

h renormalized — h = h

Compute 2, and A, With a regulator —
¢.g. a cutoff in spherical harmonic /
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renormalized

retarded singular




Teukolsky equation: separable operator

Ty, =3
Source function S= O T,

1 = energy-momentum tensor

¢ a 2"-order differential operator
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The decoupled, separable Teukolsky equation
gives Y, and y, but not 4.

In vacuum, there 1s a prescription for finding /
(Chrzanowski, Cohen-Kegeles, Wald, Lousto-
Whiting, Or1)



*The IRG gauge

g __ -
h”=0  h=0

constraints, agreeing for outgoing waves in flat
vace with a transverse-tracefree gauge.




Find h via hertz potential,

v, = %[L“ff’ +12¥,07°0,¥]

= (4 angular derivatives + time derivative)V

Algebraic solution
for each frequency and angular harmonic




[he solution:

= (—1)" Dy,  +12iMoy,,
D* +144M* &’ ’
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D the Teukolsky-Starobinsky constant.

There 1s an alternative equation for ¥, involving
four radial derivatives, and for each angular
harmonic 1t gives the same ¥, (Or1 "03)



econstructed metric:

=——(0°Y+8°¥)=0(r),

O =0(r™),




his 1s the same behavior as a Lorenz gauge for
putgoing radiation:

and there 1s a corresponding 1RG metric for outgoing
radiation related to a Lorenz (transverse tracefree)

gauge by an asymptotically vanishing gauge vector,

but 1t’s for ingoing radiation!




econstructed metric:

=——(0°Y+0°¥) =0(r™),

dY =0@r™),




his 1s the same behavior as a Lorenz gauge for
putgoing radiation:

and there 1s a corresponding 1RG metric for outgoing
radiation related to a Lorenz (transverse tracefree)
gauge by an asymptotically vanishing gauge vector,

but 1t’s for ingoing radiation!




Outline of method

Compute ¥ o from the Teukolsky equation as a
mode sum over £, m, @
ind the potential V" from w;"

ith algebraic solution for each mode forr =7, .
ret :
Y, ~ unique.

ret

ind, 1n a radiation gauge, the components of 7,

1d 1ts dertvatives that occur 1n the expression for /.

(A does not yet have contributions from mass, spin)
Compute «™* from the perturbed geodesic equation
a mode sum truncated at /_

Compute the renormalization vectors 4“and B




Determine the contribution to 4}; and then /™ of
the perturbations in mass, angular momentum and
change in CM.

6 real parameters:

om,oa 1n, €.g. perturbed Boyer-Lindquist gauge

two angles for gauge transformation » > r, to rotate spin
one parameter for gauge transformation r >

to remove asymptotic dipole moment.




Outline of method

ret

Compute ¥, from the Teukolsky equation as a

mode sum over {,m, @
ret ret

Find the potential V'~ from ¥,
with algebraic solution for each mode forr #r, .

¥, unique.

ret

Find, 1 a radiation gauge, the components of 7,
1d 1ts derivatives that occur 1n the expression for f .
(h does not yet have contributions from mass, spin)
Compute o™~ from the perturbed geodesic equation
5 a mode sum truncated at ¢

ompute the renormalization vectors 4%and B*




Determine the contribution to 4}; and then /™ of
the perturbations in mass, angular momentum and
change in CM.

6 rcal parameters:

om,oa 1n, e¢.g. perturbed Boyer-Lindquist gauge

two angles for gauge transformation » > 7, to rotate spi
one parameter for gauge transformation » > 7,

to remove asymptotic dipole moment.




Mode sum renormalization
(a view of Barack-On)

To find a decomposition of 74,”, can extend
h* smoothly to the sphere r =7,

Two smooth extensions differ by a smooth
function. The coefficients in their angular
harmonic expansion agree — difference
between the harmonic expansions

disagreement falls off faster than any power
of L.




That 1s, the expansion
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is a property of b’ itself.

Lorenz

The first three terms renormalize 4, to the
order needed to compute the self-force.




Orders 1 powers of L same as for Lorenz gauge
(A, B, C different constants in each line below)
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Because the first three terms 1n the harmonic
ret

expansion of ¥, determine the first three

ret

terms in the harmonic expansion of A
ret

one can in principle find ¢, from ¥,




* Although the argument required the order

ret R

/l’bra,d = wmd
!

h/R

rad

The diagram commutes
ret R
lﬂmd 7 wmd

l l because of the linear

7 T'(.‘f 7 R < ~ 2




« Abhay Shah finds the singular parts of
analytically, but a match to
the asymptotic harmonic expansion of /4™
gives the expected agreement. To obtain
more rapid convergence of the expansion
for the renormalized field, he finds by
numerical matching the next set of terms 1n
the asymptotic harmonic expansion of ™" .
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ingular field in generic gau(ge (Gralla):
2

et 2° be tensor in a neighborhood of the particle’s trajectory for which
k™ - ¢ is differentiable and /° has even parity to O(p™!),
nere p 1s the geodesic distance to the particle’s trajectory;

at each point P of the trajectory,
lim j f[h'] dQ =0,

p—0
here the integral 1s over a sphere of constant p,

1en the renormalized self-force 1s given 1n this gauge by

S =lim [ (fTh* ]~ f1h* DA

at 1s, the ﬁrst-order perturbatwe correction to the geodesic of the
ckground spacetime 1s given by a connecting vector Z“ that satisiies




hat 1s, the first-order perturbative correction to the
>odesic of the background spacetime 1s given by a
bnnecting vector Z* that satisfies

mu-Vu-VZ%)= [
ow Abhay Shah’s computation of /* finds

frav(s
Jo,

r a particle n circular orbit in a Schwarzschild
1ckground, as 1s the case for a Lorentz gauge.







ecause
J, has even parity to leading order 1n p,

he tetrad vectors and spin coefficients are constant fc
lcading order 1n p,

¥ and hg are constructed from y, by derivatives
along the tetrad vectors and multiplication by spin
coefficients

,s has even parity to leading order m p.




