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« Review of the Extreme—Mass Ratio Inspiral (EMRI) problem.

« The Particle—without—Particle scheme
« Results from the simulations.

« Conclusions and future work.







path to EMRIs in 7 points

The inspiral of a stellar compact object (SCO), m ~ 1 —50 Mg, | into a massive

black hole (BH),M ~ 10* —107 My will be one of the main sources of gravitational
waves for the Laser Interferometer Space Antenna (LISA).

2. Due to their extreme mass-ratio, m/M ~ 1077 — 1073 EMRISs

can be treated in the frame of perturbation theory where the

back-reaction is pictured as the action of a local self-force.

3. An analogous EMRI problem consists in a scalar point particle q orbiting in a

seodesic of a non-rotating MBH spacetime (Schwarzschild). This framework provides

1s of a testbed for numerical codes to compute the gravitational self—force
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..A path to EMRIs in 7 points
4. Due to the spherical symmetry of this system the retarded field can be

decomposed in spherical harmonics that decouples as:

oo l
Qret - Z Z le(t, r)Y'""(B, (Io)
=0 m=-1
5. The point-like character of the particle leads to singularities in the

retarded field and by extension in the self—-force. Thus, the self-force must be
regularized and we use the mode-sum regularization scheme!:

O0®5 = —4mqs(z)

ret __ S R
il o { OdR — 0 e T =GV — N’ ) = Vo B

This scheme provides an analytic expression for the é~modes of the singular field.

6. We need a numerical method to compute the full retarded field and by
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applying the mode—sum regularization scheme obtain the self-force.




.A path to EMRIs in 7 points

» We have developed a multidomain numerical code which avoids working with
the spatial scale associated with the q (SCO).

» Due that it is a time-domain method, we can deal easily with eccentric orbits.
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We perform a division of the spatial computational domain into two disjoints regions

or subdomains, one at the left of the particle r* < r; and other at the right of the

particle 7" > 7 (r* =7+ 2M In (55 — 1)):

—00 —Tr" r* — o0
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« Locating the particle at the interface between subdomains:

* We avoid the problems associated with the singularity
of the source term.

* We evolve independent homogeneous wave equations inside
each region.

 The solutions have to be matched across the boundaries.
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,ooking for the matching conditions

» Since discontinuities in hyperbolic equations can only appear along characteristics,
we adopt a hyperbolic formulation of the field equation by defining the retarded
field variables: w!m —p q)tm

¢tm = atwtm —— I — (¢tm, qblm’ L‘o!l'."i.)

(Ptm =9, ,tptm

Thus, introducing them in the master equation, we obtain a system of PDEs

OU=A-0.U+B-U+S
A=(

0 0 Gém
{1]) B= (—:z ) . S= (0,—f(rp)6(r —-rp(t)),O) .

Thhisoeatisfied at each subdomain independently. Page 103
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JLooking for the matching conditions

« We split the field variables into two contributions, one at the left and other

at the right of the particle:
U_ U,

\ /

———
rp(t)

« The new variables are introduced into the global evolution equation:

OU=A -0, U+B-U+S

« We obtain the homogeneous wave equations at each side of the particle:
oUL =A-0.. UL +B U,

and the matching conditions at the particle location:

Pirsa: 10060038 [u ] — 1im u + _— ]jm u g Page 11/36
= —>r; e —rr;;



Looking for the matching conditions

« We found that the matching conditions at the particle location are given by?:

Circular Orbit3: r), = constant Eccentric Orbit*: 7'; e r;(t)
v, =0, § ¥ =0,
tm] iy TR
9], =0 e
ARSI L e >
r* — _ af.- " s -
» = F(r) 24", = T 1o
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» Solving the set of PDEs numerically:

» The pseudospectral collocation (PSC) method to discretize in space.

» We use a Runge—-Kutta method for the time evolution.

» With PSC methods the solutions are approximated by an expansion in a basis
of Chebyshev polynomials {T,,(X)} :

N
uN(tir‘) it Zan(t)Tﬂ(r‘)

where a,(t) are the spectral coefficients.

% A property of the PSC method provides exponential convergence with N for

Pirsa: 10955“00&1 fl.l nCtiO nS. Page 14/36




*The key point of the method is to keep the particle at the interface
between subomains

Circular Orbit
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For eccentric orbits, we maintain the particle at the interface by using a time

"teffEhdent mapping between the physical and spectral domains. rege 18



he multidomain pseudospectral method consist in:

« The spatial computational domain is divided in several subdomains.

« The solutions are expanded in a basis of Chebishev polynomials at
each subdomain independently.

 The particle is set at the interface between two subdomains.
« We solve homogeneous waves equations inside each subdomain.

e The solutions are communicated across the boundaries of the
subdomains imposing the jump conditions.
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... The multidomain pseudospectral method:

» The solutions are communicated across the subdomains using two different
methods:

» The penalty method: the system is dynamically driven to fulfill a set of
additional conditions. That is, we introduce constant terms which are

proportional to the junction conditions

» The direct communication of the characteristic fields: The subdomains
are communicated by passing the value of the characteristic fields.
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One advantage of the multidomain pseudospectral method is that

by performing further divisions on the spatial computational

domain, the resolution of our solutions are improved

% In order to achieve a determined degree of resolution in our
results, it is computationally cheaper to introduce further
subdomains with a relatively small N than increase N in a

subdomain.
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e We have computed the derivatives of the regular field for eccentric
orbits with different eccentricity (e) and semilatus rectum (p)

ep)=(0.163) ——
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Circular Orbit
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The dependence of the truncation error ( ~ |an]|)

with respect increasing numbers of collocation

points, N, give us an estimation of the exponential

convergence of the code: e
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Canizares & C. F. Sopuerta '09;

Circular Orbit

» Results for the retarded field derivatives obtained using the penalty method:
D=12, N=50

M Component | Estimation using Estimation from | Error relative to | Error relative to
of &} the PSC Method Frequency- Frequency- Time-domain (c)
domain (a.b) domain (a,b)
(B, ®;"7)| (3.60777,3.60778) - 10~* | 3.600072-10~* | (0.03,0.03)% (0.12,0.12)%
(&R, d™+)| (1.67364,1.67362)-10-* | 1.67728.10~* (0.2,0.2)% (0.18,0.18) %
(BR—, dR+)| (—5.3042, —5.3044) - 102 | —5.304231-10~7 | (4-100%,10*) % | (6-10~%,10-%)%
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(a) [Diaz-Rivera et al. PRD 70, 124018 (2004)] , (b) [Haas, Poisson. PRD 74, 044009 (2006)] (c) [Hass. PRD 75, 12401 | (2007)]
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Values of the retarded field obtained near the pericenter and obtained using the

direct communication of the characteristic fields: D = 80, N = 50

SCO Orbita around the MBH
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(e,p) = (0.0,6.0)* | (e,p) = (0.1,6.3) | (e,p) = (0.3,6.7) | (e,p) = (0.5,7.1)

rp (M)° 6.0 5.7272925 5.1538801 4.7333989
M g 3.609072-10~* | 45171-10~* | 7.6980-10* | 1.2330-10-°
Mg 1.67728-10~* | 21250-10~* | 3.6339-10~* | 5.6122-10~*

prse: 005D S —5.304231-10% | —6.2040-10~% | -9.0402-10~* | —1.2685.40*







» We have developed a new time—domain technique for the
simulations of eccentric EMRISs:

e Avoids the introduction of a small scale in our code, and
provides precise determination of the field and its
derivatives near an on the SCO.

e It is an efficient method to make time—-domain
computations of the self-force because preserves the
properties of the PSC method.

» We would like to apply these techniques to the gravitational
and Kerr cases.
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direct communication of the characteristic fields: D = 80, N = 50

Values of the retarded field obtained near the pericenter and obtained using the
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(e,p) = (0.0,6.0)® | (e,p) = (0.1,6.3) | (e,p) = (0.3,6.7) | (e,p) = (0.5,7.1)
r, (M)© 6.0 5.7272925 5.1538801 4.7333989

M gy 3.609072 - 10— 4.5171-10~4 7.6980 - 104 1.2330 - 103

M g» 1.67728 - 104 2.1250 - 10—4 3.6339 - 104 5.6122 - 10—

prse: 005 —5.304231-107 | —6.2040-10~° | —9.0402-107 | —1.2685..40*






he multidomain pseudospectral method consist in:

« The spatial computational domain is divided in several subdomains.

o« The solutions are expanded in a basis of Chebishev polynomials at
each subdomain independently.

 The particle is set at the interface between two subdomains.
« We solve homogeneous waves equations inside each subdomain.

e« The solutions are communicated across the boundaries of the
subdomains imposing the jump conditions.
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Circular Orbit3: r; = constant

[¢£m]P =0,
[0ef™] =

Sfm
61-"‘ fm] _
2" = 1)
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.Looking for the matching conditions

Eccentric Orbit?:
4
[‘IP m]? =0,

B0, =

0], =

p

« We found that the matching conditions at the particle location are given by?:

r, =1p(t)
r* Sfm
s '»""‘2))’( - 4
Stm
(1 =732)f(rp)
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.Looking for the matching conditions

« We split the field variables into two contributions, one at the left and other

at the right of the particle:
U_ U,

N\ /

—— ————
rp(t)

« The new variables are introduced into the global evolution equation:

OU=A -0, U+B-U+S

« We obtain the homogeneous wave equations at each side of the particle:
oUr =A-0,. UL +B-Ui

and the matching conditions at the particle location:
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.Looking for the matching conditions

« We found that the matching conditions at the particle location are given by?:

Circular Orbit3: rj, = constant Eccentric Orbit*: " =" (t)
™), =0, ™, =0,
E * Stm
fm _ - 9 fm] _ _ "p
9], ey
Betm] = S : e
» P f(r,) ' [0yt ]p = (1 —732) f(r,)
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.Looking for the matching conditions

« We split the field variables into two contributions, one at the left and other

at the right of the particle:
U_ u,

\ /

—
rp(t)

« The new variables are introduced into the global evolution equation:

OU=A -0, U+B-U+S

« We obtain the homogeneous wave equations at each side of the particle:
UL =A-0. UL +B Uy

and the matching conditions at the particle location:
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,ooking for the matching conditions

» Since discontinuities in hyperbolic equations can only appear along characteristics,
we adopt a hyperbolic formulation of the field equation by defining the retarded

field variables: wlm g ‘I)Em
¢£m - at,wtm —] U — (¢£m, t,ﬁtm, (Ptm)
Salm =0,. ,d)!m

Thus, introducing them in the master equation, we obtain a system of PDEs

OU=A-0.U+B-U+S
A=(

- PP
) B= (—-—(}ft ) , S = (0,—f(rp)5(r —rp(t)),ﬂ) .

Thisegetisfied at each subdomain independently. Page 3436
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Looking for the matching conditions

« We split the field variables into two contributions, one at the left and other

at the right of the particle:
U_ U,

N\ /

— ——
rp(t)

« The new variables are introduced into the global evolution equation:

OU=A -0, .U+B-U+S
« We obtain the homogeneous wave equations at each side of the particle:

oUr =A-0. .U +B-U;

and the matching conditions at the particle location:
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Looking for the matching conditions

« We found that the matching conditions at the particle location are given by?2:

Circular Orbit3: rj, = constant Eccentric Orbit*: "" =i (t)
¥ty =0, N
. g , * Sfm
9], = O]y = =i )
Sﬂm E Gém
ar* fm] _ . o fm]
[ d) ]p f(Tp) [ar ’¢’ ]P (1 = 'r"'2)f( )
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