Title: The Fuzzy Side of Decoupling Gravity

Date: Jun 17, 2010 10:45 AM

URL: http://pirsa.org/10060021

Abstract: TBA

Pirsa: 10060021

The Fuzzy Side of Decoupling Gravity

Jonathan J. Heckman

hep-th/1005.3033 w/ H. Verlinde

Outline

Motivation

Particle Physics Ingredients

The Fuzzy Limit

7-Brane Assembly

Motivation

There is a landscape of string vacua

Presumably some look like ours:

Standard Model...

Inflation...

But which ones?

Some Complications

Gravity + particles = complicated:

Particle data set by geometry

But geometry also dynamical

We live in 4D

More dimensions $\Rightarrow \infty$ of 4D modes

Summary: String compactifications are complicated

Simplifying Limit

But gravity is also very weak:

$$\frac{M_{weak}}{M_{pl}} \sim 10^{-17}$$
 and $\frac{M_{GUT}}{M_{pl}} \sim 10^{-3}$

Strategy:

Antoniadis, Kiritsis, Tomaras '00 Aldazabel, Ibanez, Quevedo, Uranga '00 Verlinde Wijnholt '05,...

- 1) Decouple gravity from particle physics
- 2) Identify promising 4D vacua
- 3) Glue back on to rest of compactification

Geometric Picture

Flexibility?

Without gravity, can we do anything we want?

Lose some constraints from UV

Demanding its absence is also a constraint

Still quite flexible, though

Less flexible: No gravity + GUTs Beasley, JJH, Vafa '08

Main Assumptions

i) 4D Theory decoupled from gravity

ii) Some notion of unification (e.g. SU(5) GUT structures)

Roadmap

Motivation

Particle Physics Ingredients

Focussing on Particle Physics I

Gravity and Matter from Different Strings:

Focussing on Particle Physics II

for particle physics

Defer complications from

Qualitative Features

Particles = Strings ending on $\mathbb{R}^{3,1}$ filling Dirichlet Branes:

What about GUTs?

GUTs and Open Strings

 $g_s \ll 1 \Rightarrow \text{Problems}$ with GUTs:

No
$$5_H \times 10_M \times 10_M \Rightarrow$$
 pert. massless t quark

But
$$\overline{5}_H \times \overline{5}_M \times 10_M \Rightarrow$$
 massive b quark

Wrong Prediction: $m_b > m_t$

$$g_s \to O(1)$$

Perturbative open strings somewhat limited

Increasing $g_s \to O(1)$ allows new bound states/interactions

Top quark can now get a mass

Vafa '96

F-theory = Strongly Coupled Formulation of IIB in 12d

 $\tau(y_6) = C_0 + \frac{i}{g_s}$ is shape of a T^2 :

SM Ingredients

8D: Gauge Group (7)

6D: Matter $(7 \cap 7')$

1D. Vulcawas (7 0 7' 0 7'')

F-theory GUTs

All of these intersections described by holomorphic equations

$$f_I(z_1, z_2, z_3) = 0$$

Roadmap

Particle Physics Ingredients

The Fuzzy Limit

Decoupling in 8D

8D fields:
$$\Phi(x_{\mu}, z, \overline{z}) = \sum a_I(z, \overline{z}) \phi_I(x_{\mu})$$

$$\nabla^2_{8D}\Phi(x_\mu,z,\overline{z}) = 0 \Rightarrow (\nabla^2_{4D} + M_I^2)\phi_I(x_\mu) = 0$$

KK modes start to enter at energy $E = 1/R_4 \equiv \text{Vol}(\mathcal{M}_4)^{-1/4}$

Decoupled at energies $E < 1/R_4 \Rightarrow \text{send } R_4 \rightarrow 0$

Small Volume

Natural place to stabilize: At small volume Dine Seiberg'85

Same argument also for $g_s \sim O(1)$

$\mathcal{M}_4 \to \text{point}$

 $\mathcal{M}_4 \to \text{point is a non-trivial restriction:}$

Requires \mathcal{M}_4 have positive curvature \Rightarrow only 10 choices

Example: 2D \mathcal{M}_2 classified by genus:

Volumes and Couplings

Start from 8D 7-brane gauge theory

$$L_{8D} = -\frac{1}{g_s \times l^4} Tr F_{\mu\nu}^{(8D)} F_{(8D)}^{\mu\nu}$$

$$\Rightarrow L_{4D} = -\frac{\text{Vol}(\mathcal{M}_4)}{g_s \times l^4} Tr F_{\mu\nu}^{(4D)} F_{(4D)}^{\mu\nu} = -\frac{1}{2g_{YM}^2} Tr F_{\mu\nu}^{(4D)} F_{(4D)}^{\mu\nu}$$

$$\Rightarrow g_{YM}^2 \sim \text{Vol}(\mathcal{M}_4)^{-1} \to \infty$$
 ???

Couplings and Fluxes

8D gauge theory has internal magnetic fluxes $\mathcal{B} = F + B$

Spreads out string ends:

In $Vol_{closed}(\mathcal{M}_4) \to 0$ Limit:

$$L_{eff} \sim -\left(\int_{\mathcal{M}_4} \mathcal{B}^2\right) \times F_{\mu\nu} F^{\mu\nu} \Rightarrow$$

$$\frac{4\pi}{g_{YM}^2} = \frac{N_{\text{flux}}}{g_s}$$

Two Geometries

Main Point: Open and Closed strings see different geometries

$$Vol_{closed} \rightarrow 0 \text{ BUT } Vol_{open} \neq 0$$

String ends now attach to "fuzzy points" specified by fluxes

Non-Commutative Geometry

In flat space: $\mathcal{B} \neq 0 \Rightarrow [Z, Z^{\dagger}] = \hbar_{NC}$

Connes Douglas Schwarz '97 Seiberg Witten '99,....

Decoupling limit: keep Lowest Landau Level

⇒ Open strings see non-commutative (fuzzy) geometry

Need to extend to more general compact 4D spaces

Fuzzy Points

 $Classical \rightarrow Non-Commutative:$

Specified by deforming algebra of functions: $f \cdot g \to \widehat{f} * \widehat{g}$

Complementary View:

 \widehat{f} is an operator acting on a Hilbert space \mathcal{H}

 $|\Psi\rangle$ = "fuzzy point" of \mathcal{H}

Fuzzy Geometry

Classical vacua of a Gauged Linear Sigma Model (GLSM)

$$z_1,...,z_r$$
 of C^r

Subspace:
$$\sum q_j |z_j|^2 = \xi \pmod{z_j \to e^{iq_j\theta} z_j}$$

This generalizes to fuzzy theory

JJH, Verlinde '10

$$[Z_i, Z_j^{\dagger}] = \delta_{ij}$$
 Fock space $\mathcal{F}(C^2) = \left\{ \prod \frac{Z_j^{\dagger n_j}}{\sqrt{n_j!}} |0\rangle \right\}$

Subspace:
$$\sum q_j Z_j^{\dagger} Z_j |\Psi\rangle = N |\Psi\rangle$$

Example: Fuzzy S^2

Oscillators: Z_1, Z_2 such that: $[Z_i, Z_j^{\dagger}] = \delta_{ij}$

$$\overrightarrow{J} = Z^{\dagger} \frac{\overrightarrow{\sigma}}{2} Z \Rightarrow SU(2)$$
 algebra: $[J_i, J_j] = i \epsilon_{ijk} J_k$

$$|0,N\rangle \qquad |N,0\rangle$$

$$J_{+}=Z_{1}^{\dagger}Z_{2}....J_{+}J_{+}J_{+}J_{+}J_{+}$$

Example: Fuzzy $S_I^2 \times S_{II}^2$

 7_{GUT} on $R^{3,1} \times \text{Fuzzy S}_{\text{I}}^2 \times \text{S}_{\text{II}}^2$:

Matter on $7_{GUT} \cap 7'$

Classically: $f(z_I, z_{II}) = 0$

Fuzzy: $\widehat{f}(Z_I, Z_{II})|\Psi\rangle = 0$

Fuzzy Geometry

Classical vacua of a Gauged Linear Sigma Model (GLSM)

$$z_1,...,z_r$$
 of C^r

Subspace:
$$\sum q_j |z_j|^2 = \xi \pmod{z_j \to e^{iq_j\theta} z_j}$$

This generalizes to fuzzy theory

JJH, Verlinde '10

$$[Z_i, Z_j^{\dagger}] = \delta_{ij}$$
 Fock space $\mathcal{F}(C^2) = \left\{ \prod \frac{Z_j^{\dagger n_j}}{\sqrt{n_j!}} |0\rangle \right\}$

Subspace:
$$\sum q_j Z_j^{\dagger} Z_j |\Psi\rangle = N |\Psi\rangle$$

Fuzzy Geometry

Classical vacua of a Gauged Linear Sigma Model (GLSM)

$$z_1,...,z_r$$
 of C^r

Subspace:
$$\sum q_j |z_j|^2 = \xi \pmod{z_j \to e^{iq_j\theta} z_j}$$

This generalizes to fuzzy theory

JJH, Verlinde '10

$$[Z_i, Z_j^{\dagger}] = \delta_{ij}$$
 Fock space $\mathcal{F}(C^2) = \left\{ \prod \frac{Z_j^{\dagger n_j}}{\sqrt{n_j!}} |0\rangle \right\}$

Subspace:
$$\sum q_j Z_j^{\dagger} Z_j |\Psi\rangle = N |\Psi\rangle$$

Example: Fuzzy $S_I^2 \times S_{II}^2$

 7_{GUT} on $R^{3,1} \times \text{Fuzzy S}_{\text{I}}^2 \times \text{S}_{\text{II}}^2$:

Matter on $7_{GUT} \cap 7'$

Classically: $f(z_I, z_{II}) = 0$

Fuzzy: $\widehat{f}(Z_I, Z_{II})|\Psi\rangle = 0$

4D Theory

$$\phi(x_{\mu}, z, \overline{z}) \to \phi(x_{\mu}, Z^{\dagger}, Z)$$

Theory with finite # 4D fields $\sim N_{\rm fuzz} \times N_{\rm fuzz}$ matrices

8D Lagrangian now an operator: $\mathcal{L}_{8D}(Z^{\dagger}, Z)$

$$\mathcal{L}_{4D} = \sum_{|\Psi\rangle} \langle \Psi | \mathcal{L}_{8D}(Z^{\dagger}, Z) | \Psi \rangle$$

Example: Fuzzy $S_I^2 \times S_{II}^2$

 7_{GUT} on $R^{3,1} \times \text{Fuzzy S}_{\text{I}}^2 \times \text{S}_{\text{II}}^2$:

Matter on $7_{GUT} \cap 7'$

Classically: $f(z_I, z_{II}) = 0$

Fuzzy: $\widehat{f}(Z_I, Z_{II})|\Psi\rangle = 0$

"Fuzz preserves holomorphy" \Rightarrow preserves F-theory description

Gauge Coupling

$$\frac{4\pi}{g_{4D}^2} = \frac{1}{\alpha_{GUT}} = \frac{\sum \langle \Psi | \Psi \rangle}{g_s} = \frac{N_{\rm fuzz}}{g_s}$$

F-th input:
$$5_H \times 10_M \times 10_M \Rightarrow \tau \sim e^{\frac{2\pi i}{3}} \Rightarrow \frac{1}{g_s} \sim \frac{\sqrt{3}}{2}$$

$$\Rightarrow \alpha_{GUT}^{-1} \sim N_{\text{fuzz}}$$

Realistic Value: $\alpha_{GUT}^{-1} \sim 25 \Rightarrow N_{\text{fuzz}} \sim 25$

Roadmap

Flux and Fuzz

■ 7-Brane Assembly

From 7-Branes to D3-Branes

Fuzzy $SU(N_c)$ 7-brane is built from D3-branes:

Detect via: $L_{D7} = \int C_4 \wedge \mathcal{B} \wedge \mathcal{B} \Rightarrow N_{\text{fuzz}} = N_{D3}$

Assembling a 7-Brane

Suggests building up the brane:

Large N

Large # of D3-branes gravitationally backreact on geometry

N D3's on $R^{3,1} \times R^6 o$ IIB supergravity on $AdS_5 \times S^5$ Maldacena'97

$$\left(\frac{\text{Radius}}{l_{\text{string}}}\right)^4 = g_{YM}^2 N \equiv \lambda \Rightarrow \text{weakly curved when } \lambda \to \infty$$

Large N_{fuzz} ?

Candidate dual is strongly curved:

$$\left(\frac{\text{Radius}}{l_{\text{string}}}\right)^4 = g_{YM}^2 N_c \times N_{\text{fuzz}} = \frac{g_s}{N_{\text{fuzz}}} N_c \times N_{\text{fuzz}} \sim O(1-10)$$

Reason: geometry is fuzzy, D3's not at one point

Higher Energies

At higher energies 3-3' strings become dynamical

Weakly coupled holographic dual opens up?

Probing The Fuzz

What does a nearby D3-brane see?

What is $V_{eff}(z_{\perp})$?

Conclusions

Decoupling and Fuzz

 $\alpha_{GUT}^{-1} \sim N_{\rm fuzz}$

Collective D3-branes

■ ¿Probe Theory?

